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Abstract. A family of new 4-noded membrane elements with drilling degrees of freedom and unsymmetric assumed stresses is 
presented; it is derived from a mixed variational principle originally formulated for finite strain analysis and already used in 
the literature to develop a purely kinematic membrane model. The performance of these elements, investigated through some 
well established benchmark problems, is found to be fairly good and their accuracy is comparable with that given by models 
with a larger number of nodal parameters. 

1 Introduction 

The aim of this paper is to present a few assumed (unsymmetric) stress membrane elements with 
drilling degrees of freedom, as counterparts of purely kinematic models recently developed by Iura 
and Atluri (1992). 

The introduction of corner drilling rotations to develop improved membrane elements dates 
back to the mid-60s, but early attempts (see for a list MacNeal and Harder 1988) were disappoint- 
ingly unsuccessful. In recent years, however, Allman (1984) and Bergan and Felippa (1985) 
succeeded in establishing good triangular elements with corner rotations. 

Since then, a revival of interest on the topic of membrane elements with drilling degrees of 
freedom (DOFs) resulted and several contributions appeared; for a partial list the interested reader 
is referred to Ibrahimbegovich, Taylor and Wilson (1990) and to Iura and Atluri (1992). 

On the other hand, since the pioneering work of Pian (1964), assumed (symmetric) stress 
elements, with enhanced performances compared to standard displacement-based elements, are 
now well established. 

Assumed unsymmetric stress models were pioneered by Atluri and Murakawa (1977), Murakawa 
(1978) and Murakawa and Atluri (1978, 1979); unfortunately their formulation, based on the use 
of complete polynomial stress functions, as suggested by Fraeijs de Veubeke (1975), leads to 
elements which are too stiff due to the presence of redundant stress modes; however, considering 
that when the works were published the concept of stability (the so called LBB condition) was not 
completely clear and the requirements for building least-order coordinate invariant elements (see 
Punch 1983, and Rubinstein et al. 1983) had still to be addressed, their approach is still interesting 
and might originate further investigations. 

Recently Cook (1987), Allman (1988), Yunus (1988), Yunus et al. (1989), among others, proposed 
assumed-symmetric-stress membrane elements with drilling DOFs, based on a modified comple- 
mentary energy or on a Hellinger-Reissner principle. The rotation field is not present in the original 
form of the variational principle, but is brought into play by the selection of Allman-type shape 
functions for the displacements: the displacement field of an 8-noded quadrilateral element is 
approximated by that of a standard 4-noded element with the addition of 4 corner drilling DOFs. 
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A different approach is instead proposed by Ibrahimbegovich, Taylor and Wilson (1990); a 
mixed variational principle is used where the variables are the displacement, the skew-symmetric 
part of the stress tensor and the rotation field. The skew-symmetric stresses are chosen to be 
constant within the element and the rotation is assumed to be independently modeled; however 
the displacement field is discretized through Allman-type shape functions and, therefore, is not 
completely independent of the rotation. 

In the formulation presented here, the independently assumed fields are the displacements, 
rotations and generally unsymmetric stresses. 

In the next section, the variational principle used to develop the new finite element will be formu- 
lated; in Sect. 3 the discretization of the independent variables will be presented. Comparisons 
with other assumed-stress models are made in Sect. 4 and the results of some meaningful 
benchmark problems are reported and commented upon in Sect. 5. 

2 Formulation of a mixed variational principle 

In order to obtain a mixed variational principle for linear elastic analysis involving displacements, 
rigid rotations and unsymmetric stresses, it seems natural to deduce it from a general non-linear 
variational principle of the same kind. 

However, as it will be shown, when this approach is adopted, the resulting functional is not 
directly suitable for applications, since it turns out that the complementary energy is no longer a 
positive definite quadratic form of the stress components. At the element level this prevents the 
so called H matrix (see Punch and Atluri 1984) from being inverted as it is required in assumed- 
stress mixed formulations, wherein the stress parameters are eliminated at the element level. 

To overcome the above problem, a perturbation term needs to be introduced in the functional, 
to ensure that the complementary energy is still a positive definite quadratic form; in doing so, 
however, a direct relation between the functionals for non-linear and linear analysis is somehow 
destroyed. 

Another approach is to give up, since the very beginning, the idea of building a variational 
principle for linear elastic analysis as a limit case of a non-linear one; it is then possible to postulate 
a set of governing equations (possibly depending on a free parameter) for the linear elastic problem 
and, going backwards, construct a functional that admits the very same equations as its Euler- 
Lagrange equations when the stationarity conditions are enforced. It will be shown that the two 
approaches are equivalent, in the sense that the functional obtained in this way can be reduced, 
with an appropriate selection of the free parameter/perturbation term, to that obtained through 
the former approach. 

2.1 Derivation of a variational principle for linear elastic analysis 
from a general non-linear case 

Although any general form of a mixed variational principle involving only displacements, rigid 
rotations and unsymmetric stresses may be reduced, in the framework of a linear elasticity, to one 
and the same expression, here, consistently with Iura and Atluri (1992), the functional which forms 
the basis of the current formulation is chosen to be that obtained by Atluri (1979, 1980) for the 
rate formulations of finite strain problems. It is a Hu-Washizu type functional, whose expression 
in Cartesian components, when only elastic effects are taken into account, is: 

H(fi,,D,j, ~ j ,  i,j)= S {~)(O,j)- J'A + i j ,%, j -  Oi j -  Wit)--1Ti~Wik Wkj-- "cNWikOkj}dV 
VN 

- I ~',fi,dS- 5 ~f,(fii-~,) dS (1) 
S~N SuN 

where fii is the velocity, Dij the velocity strain tensqr, W~j the spin tensor, iij the rate of the nominal 
(unsymmetric, 1st Piola-Kirchhoff) stress tensor~ fi the rate of the body force, -c~ the true (Cauchy) 
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stress tensor at the N-th incremental configuration, ~ the rate of surface traction on the part, S~,,, 
of the contour of the body where tractions are prescribed; and T~, ~ the rate of surface traction 
and the velocity on the remaining part, SuN, of the contour of the body where velocities are prescribed; 
a comma denotes differentiation with respect to the corresponding Cartesian coordinate; and 
integration is carried out, in the framework of an Updated Lagrangean formulation, with reference 
to the last (the N-th) known configuration. Moreover the rate potential Q is given by 

O ( D i j )  1 1 N ~- ~ D i j L i j k l D k l  - -  ~ ' c i j D i k D k j  (2) 

where Li j k l  is a fourth order tensor of elastic moduli. 
For isotropic linearly elastic plane stress problems, or the first increment of an otherwise non- 

= = T N = O, D i j  = e i j  , W 12 ~- - -  O, W 21 = O, linear problem, using the simplified notations: it i ui, iij tij, ij 
etc., the above functional reduces to 

v2)(el 1 e v)(q 2 Hl(u~,e,r h E 2 -t- 2 . . } _ 2 V e l l e 2 2 )  q_ - 2 .q_e221) 
s 2(1 - -  e22 2(1 + 

-[- t l l ( U l , l  - -  e l l  ) -[- t 2 2 ( U 2 ,  2 - -  e 2 2  ) At- t 1 2 ( U 2 , 1  - -  8 2 1  - -  O) 

-I- t21(Ul, 2 --el2 -4- O)--f,u=IdS-- ~ hT=u=dc- ~ hT~(u=-O=)dc (3) 
) C~ Cu 

where h is the thickness of the membrane (assumed from now on, without loss of generality, equal 
to unity), E and v are respectively the Young's modulus and the Poisson's ratio, while greek sub- 
scripts, ranging from 1 to 2, are used to denote the coordinates in the plane of the membrane. 

It must be noted that in Eq. (3) the strain components are assumed to be symmetric, since such 
are, by definition, the components of the velocity strain Dij in Eq. (1); thus e12 = e21 , and the 
symmetry is also inherited by their variations (6el 2 = &2 ~) which are, therefore, not independent. 
From this functional, Eq. (3), it is possible to derive a Hellinger-Reissner type variational principle 
by eliminating the strain tensor. One way to do so is to enforce, identically, the condition of 
stationarity of H~ with respect to arbitrary, but symmetric, variations of the strain components 
e~. The corresponding Euler-Lagrange equations give the constitutive law (CL) for the unsym- 
metric stress components: 

E 
tl 1 - -  1 - v 2 (el 1 + ve22) 

E 
t22 - -  1 - -  V 2 (822 -[- Vel 1) 

E 2E 
t12 q- t21 = ~ ( g 1 2  -t- e21) = e12" (4) 

l + v  l + v  

As a consequence of the symmetry of e,~, only the symmetric part, t,a + t~,, of the stress tensor 
enters in the constitutive law and therefore the shear components are not completely determined 
by the knowledge of the strain components. However, since the strain energy in (3) is still a positive 
definite quadratic form (for E > 0, [v I < 1), CL can be inverted and expressions for e~a in terms of 
top back-substituted in (3), in order to obtain the following Hellinger-Reissner type functional: 

H2(u , O, = Hl(u , O, 

1 2 2 1-~-V. 
= j" - - ~ ( t t t  + t22-- 2vtllt22 ) ~ - ( t 1 2  + t21) 2 + tllUt.1 + t22u2.2 

S 

+t12(u2,1-O)+t21(ul,2+O)-f~u, I d S -  ~ T,u~dc- ~ T,(u~-O~)dc. (5) 
J Co C,~ 

It is easy to see that the complementary energy is no longer positive definite: in matrix form one 
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has indeed: 

t 1 Wc(ta/~) = { t l l  t12 t21 2 2 } ~  

l + v  l + v  

2 2 

l + v  l + v  

2 2 
--V 

--V'- t l l  [ 

t t2[ 

~21[ 

1 _ , t22 J 

(6) 

and since the principal minors of the compliance matrix are no longer strictly positive, there will 
exist some combinations of non vanishing stress components which produce a zero energy state, 
as pointed out by Fraeijs de Veubeke and Millard (1976). Obviously this holds also when the stress 
field is discretized and each component is expressed as a linear combination of polynomials 
depending on some undetermined parameters fli. As a consequence, since it is not possible to 
perform a matrix inversion, stress parameters cannot be eliminated at the element level. 

To better understand this point, let's consider the Euler-Lagrange equations corresponding 
to the stationarity of/72 w.r.t, arbitrary variations of G, G~; of course the stress tensor is generally 
unsymmetric, so that the variations of its components are not related. With simple manipulations, 
it turns out that stationarity of / /2  implies the following: 

t l l  - vt22 t 2 2 -  vt l ,  1 + v (q 2 + t21)+0 (7) 
U l ' l -  E ' u 2 ' 2 -  E ' U2'I= 2E 

l + v  
Ul, 2 -  ( t l z + t 2 1 ) - 0 ,  tl 2=t21 (8) 

2E 

tll,1 "1- t21,2 - - f l  =0 ,  t21,1 "+ t22.2 - - f2  = 0  (9) 

which are respectively the compatibility condition, CC, written in terms of stress components, 
Eq. (7), the angular momentum balance, AMB, Eq. (8), and the linear momentum balance, LMB, 
Eq. (9). For sake of completeness, the boundary conditions enforced by the stationarity of (5) are, 
as usual 

Gt=~ = 7'e on C, (10) 

u==~= onC,  (11) 

i.e. the traction boundary condition (TBC) on that part of the contour where traction are prescribed 
and the displacement boundary condition (DBC) on that part of the contour where kinematic 
constraints are prescribed; G is a unit outward normal to the contour. The only condition to be 
satisfied a priori is the constitutive law given by Eqs. (4), used to evaluate strains once stresses are 
known. 

However, as easily seen, the last two of Eqs. (7) cannot be solved for t~2 and t2~ separately; it 
is nonetheless possible to eliminate the stress components from Eq. (5) by means of Eqs. (7) and 
obtain a functional where only kinematic variables appear: 

E 2 2 
H3( G, O) = II2( G,  O, Go(u~, 0)) = s ~ 2(1 Z v2) (ul't + u2'2 -~- 2VUl"lU2'2) 

E 
(u,, 2 + O)(u2,1 - O) - f=u=} dS + contour integrals (12) 

+ l + v  

but in Eq. (12) 0 is virtually already eliminated, since, by the last two of Eqs. (7), it results a priori 
0 = (U2,1 -- Ul,2)/2. 

The particular structure of/ /2,  with the complementary energy depending only on the sym- 
metric part of the stress field, is not a result of the particular way to derive it from Eq. (3); indeed 
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a Hellinger-Reissner variational principle can be deduced directly from Eq. (1) by introducing the 
following contact transformation: 

Q(D,~) - ij~D,j - z~ W~kDkj --- -- R(i,j ,  W~j) (13) 

and gives 

Hug(fii ,  VF~j, iij ) = I - -  t{( i iJ  , W i j  ) - -  f i~i  31- iJi(fii,J -- Wq) -- 
vN 

- j ~,a, d S -  ~ T,( f i , - -~, )dS (14) 
S~n S~n 

which, reduced to an isotropic linearly elastic problem, leads again to Eq. (5). Obviously the same 
happens if H i is derived directly by the corresponding Hellinger-Reissner principle written for 
the continuum in incremental form, as in Murakawa (1978), or for general shells, as in Atluri (1984); 
this will be shown in a forthcoming paper. 

As a result it seems that it is not possible to deduce a mixed variational principle--involving 
only displacements, rigid rotations, and a priori unsymmetric stresses--for the linear elastic analysis, 
starting from a general non-linear one. 

The rationale can be found in the fact that, when reducing to the linear elastic case, the nominal 
stress tensor turns out to be a priori symmetric: indeed, it can be shown (see Atluri 1980) that 

i,j = a , j - ( %  + Dik)~j (15) 

where 6ij = j z  N + iij  is the Kirchhoff stress rate, j the determinant of the rate of the deformation 
�9 J 

gradient, and ~j the rate of the true stress. Obviously d~i is a priori symmetric since such are both 
z~ and i~j; as a consequence, for a linear elastic analysis--or, which is the same, for the first step 
of a non-linear one--v/~ = 0 and therefore from Eq. (15) it follows iij = ~ii, symmetric.  

To obtain a Hellinger-Reissner principle able to deal with assumed unsymmetric stress compo- 
nents, a perturbation term may be inserted inside the functional, in order to ensure that the 
complementary energy is always positive definite. One way to do so is to introduce some particular 
initial stress state so that some of the components of z. N, are retained when deriving Eq. (5) from 

t j  

Eq. (14); however there are no guidelines to ensure that the resulting complementary energy is free 
from zero stress energy states; another method is to add to the complementary energy a perturbation 
term consisting of the square of the skew-symmetric part of the stress tensor multiplied by a strictly 
positive, but otherwise arbitrary, parameter, 7, in order to obtain: 

! { 1  2 l + v ,  l + v  
/~2(U~, O, t~/~) = - - ~ - ~ ( t l l  + t 2 2 - - 2 V t l l t 2 2 ) - - ~ - { t 1 2 + t 2 1 ) 2 - - V ~ - ( t l i - - t 2 1 )  2 

t i i u l ,  I + t22U2. 2 -]- i l l ( U 2 , 1  - -  O) + t21(U,,  2 + 0) --  f , u ~ l  + dS 

- j 7r, u~dc - j L ( u ,  - an)de.  (16) 
Ca C~, 

It is easy to see that the first two CC, Eq. (7), the AMB, Eq. (8).and the LMB, Eq. (9) are still the 
Euler-Lagrange equations resulting from the stationarity o f /7  2, while the last two CC are sub- 
stituted by: 

l + v  
ul,1 = ~ - [ ( t 1 2  + t l l )  + 7(t ,2  - t 2 , ) ]  + 0 

l + v  
u , . i  = - : -  [ ( t12 + t 2 0 -  7(t~2 - t ~ , ) ]  - 0 

2 / z  
(17) 
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while the complementary energy, Eq. (6), becomes 

1 

1 

1+ l + v .  1 ~ v ( 1 + 7 )  - ~ - - ( - ~ )  

l + v  1+v(1--7)2 ~ - - ( 1 + ~ )  

--v- 

--v 1_ 

t l l  

t12 

t2t 

t22 

(18) 

which is positive definite (with the usual restrictions on E and v) as long as ~ is strictly positive. 
As it is easily seen, for the particular choice 7 = 1, Eqs. (17) become decoupled. 

Numerical analyses have shown that the results are almost insensitive to the value of 7, at least 
for a range of several orders of magnitude (10- 3 < V < 104). 

Clearly the introduction of this perturbation term does not allow, in general, to build consistently 
a variational principle for non-linear analysis of which Eq. (16) is the linear counterpart, and this 
is a price to pay; on the other hand, a similar technique has been already successfully applied by 
Ibrahimbegovich, Taylor and Wilson (1990) for the formulation of a variational principle (originally 
proposed by Reissner 1965) based on the displacement, rigid rotation, and skew-symmetric stress 
fields. 

It is worth noting that the kinematic functional used by Iura and Atluri (1992) can be consistently 
derived in a more rigorous way by eliminating the stress components from the modified functional 

2.2 Construction of a variational principle starting from equations governing 
a linear elastic problem 

Although the nominal stress turns out to be a priori symmetric in the limit of linear elasticity, it 
is nonetheless possible to introduce, for linear elastic analysis, a different stress tensor, t'B, which 
is still a priori unsymmetric. Thus, a different approach to obtain a mixed functional where displace- 
ment u~, rigid rotation 0 and assumed unsymmetric stress t*, (no longer the nominal stress) are the 
independent variables, is to postulate the existence of a se(})f governing equations like: 

E g 
t~l - 1 - v i(ul'* + vu2'2)' t*2 - 1 - v 2 ( u 2 ' 2  -1- v U l ' l )  

t~2 (1 + v~ ~(ul,2 + u2,1) + e(u2,, - u,,2 - 20) 

E [1 - 2 0 ) 1  (19) t~l (1 § Y) 2 (ul'2 § u2 ' l ) -~(u2 ,1  --UI'2 

(corresponding to the CC expressed in terms of stress components, or even to the CL expressed 
in terms of displacement gradients and rigid rotation), and the equivalent LMB, Eq. (9), AMB, 
Eq. (8), TBC, Eq. (10), and DBC, Eq. (11) written in terms of t*p instead of t=p. In Eqs. (19) ~ is an 
arbitrary, but strictly positive, parameter. 

It is easy to verify that the following functional: 

1-I*(u,,O,t=*~) = !{--~---E(t .2 + t .2 - -2v t~ l t*2) -  1 + v(t*4E 12 § t~l )2 -- 1 + v (t*280~-E-- - -  t ~ l ) 2  

--}- t~lUl, 1 -}- t~2U2, 2 ~- t~2(U2,1 -- 0)'1- t~l(Ul, 2 § 0)--LRc~}dS 

- f 5F=u~dc- 5 T * ( u = - ~ ) d c  (20) 
C~ Cu 
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admits the above equations as its Euler-Lagrange and boundary conditions when stationarity is 
enforced. It is also easy to verify that the functional of Eq. (20) corresponds to / )2  when the value 

= 1/(2~) is chosen for the perturbation parameter; as before, therefore, it is not possible to extend 
it to cover non-linear problems. 

2.3 Variational principle applied to a finite element assembly 

So far the continuum problem has been considered; for a finite element discretization it is necessary 
to take into account the effects of interelement boundaries also. In the following, distributed 
external forces acting along the interelement contour will not be taken into account and, unless 
otherwise stated, it will be assumed that the displacement field is at least C O continuous across 
the elements and that the prescribed displacements will be modeled through the same shape 
functions. 

Consequently the DBC will be met a priori, as long as the interelement displacement continuity 
is met; no restrictions will be imposed, a priori, on the stress field which, generally, is separately 
modeled over each element, so that traction reciprocity along any interelement boundary is usually 
violated. 

However this traction reciprocity requirement turns out to be included in the functional (5) 
when it is applied to an assembly of finite elements: indeed the stationarity condition w.r.t, arbitrary 
variations of the displacement field is, in this case: 

6Hz(u,,O,t~p)=O=~, S {tllOUl,l +t226U2,2+t21(~Ul,2+g12(~U2,1--fl~Ul--f2(~U2} dS" (21) 
rn S m  

Now the divergence theorem is applied to each element and introduces the contribution from 
elements boundaries, p,,: 

Z I {tll(~Ul, 1 q- t22(SU2, 2 oF t21(~Ul, 2 oF ti2(SU2, I - - A ( S U l - f 2 a u 2 } d S  
m S m  

= ~ i {- - ( t l l .*  oF t2L2 oF f~)au,--(t,2., + t22.2 oF f~)au2}dS + Z {r, aul + r~au~}de (22) 
m Sm m p,~ 

where T= = n~tp~ is the traction acting on the boundary of the m-th element, whose outward unit 
normal is n~. 

Clearly the sum of the boundaries of all the elements gives the external boundary of the body, 
plus all the interelement boundaries, each counted twice, with unit normals equal and opposite: 
n~- = - n~-. So the terms coming from the contour integration in Eq. (22) add up to give the DBC 
(aul = 6uz = 0 on C,) and the TBC (T, = T 2 = 0 on C~ since there are no applied distributed 
tractions) for the whole body; and as many interelement boundary conditions such as: 

I ~m) t~))au,}dc (23) {ne(te= -- 
Pm ~ Pn 

as the number of interelement boundaries. It is apparent that Eq. (23) constitutes the traction 
reciprocity condition (TRC), written in its weak form. 

It is important to note, as it can be seen from Eq. (22) that LMB, TBC and TRC are all summed 
up (i.e., each is not individually satisfied) in the Euler-Lagrange equation of the variational principle, 
in the case of an assembly of finite elements; and it is expected that this combined condition of 
LMB, TBC, and TRC might produce poor results in each of these individual conditions, in the 
presence of a distorted mesh. 

3 The finite element model 

In order to implement the variational principle stated in the previous section, it is necessary to 
develop a finite element model where the three fields, displacement, rigid rotation and unsymmetric 
stress are independently discretized. 
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3.1 Discretized form of the variational principle 

When suitable interpolations are introduced for u~, 0, t~a in terms of undetermined parameters ql 
(nodal displacements), o9i (rotations), fll (stresses)--written in vector form as q q, m_, fl respectively--it 
follows that the discretized form of Eq. (5) referred to a single element is: 

= t .  a t  - -  F12 --�89 - H=p,o'co+ G='q+Qt'q (24) 

where 

{ 1  l + v  l + v ,  } 
�89 -~(t~l  + t]2 - 2vt,,t22) +~4--E-(t,: + t2,) 2 + ~/--~E-(t ,z-  t:O2 dS 

S 

_flt'H__ #~,'o9_ = ~ {t120 - - t2 ,0}dS 
S 

~t.G.q = ~ {tllul,1 + t22u2,2 + t12uz,, + tzlu,,2}dS 
S 

Qt'q = - ~ ( f , u , ) d S -  I ~F~u,dc 
S C.  

where the dot denotes a matrix product and superscript t the transpose of the relevant vector or 
matrix. 

As usual, the stress parameters are eliminated at the element level, while for the rotation para- 
meters both options, to retain them or to eliminate them, should be considered. In the former case, 
which occurs only when these parameters are nodal variables and the rotation field is continuously 
modeled across the elements, the following kinematic model is obtained, once stresses are eliminated: 

//qo~ 1 @ . .  1 t. . = ~_ ~=qq.q_ + _q'K-q,~- .o0_ + ~_ K=o,o, ~ + Qt'q (25) 

with 

Kqq . . . . . . . . . .  = G'.B;~.G; g q ~ ,  = - Ko~,o = n tp~,'H-l" = H p o , . =  pa (26) 

In the latter case, i.e. when rotation parameters are considered internal ones, not necessarily 
referred to the nodes, and consequently the rotation field is assumed to be discontinuous across 
elements, the following displacement model is obtained: 

1 t .  ~ . rIqq - Iz;=q  q + Q"q 

with 

~2qq== =p~ -=G"HT~ .tr4t . H - I . H  ~-l .Ht .t_r-l.c,. 

(27) 

(28) 

In this way, when the drilling DOFs as internal parameters are eliminated at the element level just 
like the stress parameters, at the assembly stage the element has exactly the same number and type 
of DOFs of a standard displacement-based element. So, even if it is required to perform a matrix 
inversion at the element level in order to build the stiffness matrix, nonetheless the solution 
procedure is that of a standard stiffness formulation and this proves effective, since it is allowed 
to mix an element of this type with displacement-formulated ones. 

3.2 Choice of discretization of the kinematic fields 

Since the main goal of mixed formulations is to improve the accuracy of results--especially in 
terms of stresses--without the need of increasing the number of nodal variables, it is preferable 
to model the displacement field as in a standard 4-noded isoparametric element. 

The rigid rotation field is, in the present formulation, independent of the displacement field: 
this means that there are no restrictions on the number of parameters used to discretize it; some 
reasonable choices--each one giving a different finite element model--are:  
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- -1  parameter model: 

0 = [1] {(91} (29) 

the rotation field is therefore constant inside each element and discontinuous across the boundary; 
physically this DOF can be associated with a rigid rotation of the centroid. 
- - 3  parameters model: 

0 = [ 1  4' 423 (92 �9 (30) 

(93 

where 41, 42 are the natural coordinates (referred to the bi-unit square - 1 < 41 ~ 1, - 1 _< 42 < 1 
used to define the "parent" element), transformed by the isoparametric mapping into the physical 
coordinates x 1, x 2 (referred to the "actual" element defined by its corner points x~, x 2, i = 1,. . . ,  4). 
The rotation field in Eq. (30) is a complete linear polynomial; however no physical meaning can 
be associated with the coi. 
- - 4  parameters model: 

f 0 = [ 1  ~1 ~2 4142] (92 . (31) 
(9.03 

(D 4 

The rotation field (bilinear) is an incomplete quadratic polynomial. In the framework of the iso- 
parametric formulation the same field may be expressed in terms of nodal rotations and, therefore, 
a physical meaning is associated with these DOFs. However, retaining them as external DOFs, 
which is equivalent to enforcing the rotation field to be continuous across the elements is neither 
necessary nor advisable: generally this results in poor performance of the model when more than 
one elements are assembled together since the relevant AMB conditions are satisfied not individually 
(in each element), but only in an average sense (over a group of elements), producing a locking effect. 
- - 5  parameters model: 

0) 2 

0 = [ 1  ~ 42 41~ 2 (1-(4~)2)(1-(42)2)] 0)3 �9 (32) 

0)4. 

0) 5 

This is an extension of the previous model, Eq. (31) where the introduction of an extra DOF, 
associated with a bubble-type function (and therefore without a physical meaning) proves effective 
to relax the continuity requirement of the rotation field across the elements. Thus when an assembly 
of elements is analyzed, the last DOF is condensed while the others are treated as nodal DOFs: 
this allows the individual AMB conditions, enforced at the individual element level and not only 
in an average sense, over a group of elements, to be satisfied in a more accurate way. 

3.3 Discretization of the stress field 

Once the number d of kinematic parameters (coming from both the displacement and the rotation 
field) is chosen, a necessary requirement for absence of zero energy modes imposes that the number 
of independent stress modes s has to satisfy: 

s > d - r (33) 

where r is the number of rigid body modes. Following the work of Punch (1983), Rubinstein, Punch 
and Atluri (1983) and Punch and Atluri (1984) it turns out that, provided that stability and invariance 
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are achieved, the best stress model is a least-order one, i.e. Eq. (33) should be satisfied as an equality, 
since the introduction of redundant stress modes results generally in a stiffer element. Also, a least 
order stress selection (s = d - r) seems to be optimal both in terms of performances and of use of 
computer resources. 

Least order stress selections are possible for the 10), Eq. (29), 30), Eq. (30), and 50), Eq. (32) 
models, and will involve 6, 8 or 10 stress modes respectively; for the 40) model, Eq. (31), however 
it is not possible to find a suitable 9/3 stress model, and the same 10 stress modes adopted for the 
50) model will be used instead. 

Condition (33) is not sufficient to ensure that zero energy modes will not appear, but their 
absence can be checked by means of an eigenvalue analysis to verify that the resulting stiffness 
matrix, Eq. (25) or Eq. (27), has always correct rank. 

With reference to a perfect square with sides parallel to centroidal coordinates 2 ~, 22 a reason- 
able selection is: 

t21[ lf13 + f1822 + B,o 2122 (34) 

t22J [ f14 ~- /3621 

where the 8/3 parameters model is obtained when/39 =/310 = O and the 613 parameters model when 
/37 -~- /38 ~--- /39 = /310 = O. 

The normal stress components are modeled through incomplete linear polynomials, while 
incomplete second-order polynomials are used for the shear components; in particular the mixed 
second order terms are necessary to ensure that matrix H t .H -~- =Hao ~ in Eq. (26) and (28) has 
always the correct rank. 

With this choice of stress modes the element is capable of modeling any state of constant stress 
and any state of pure bending; moreover the stress modes corresponding to 131 -/38 satisfy a priori 
the LMB in absence of body forces (however this is no more true, in general, if these polynomials 
are expressed in natural coordinates ~ ,  42). 

The 613 stress selection is a generalization to an unsymmetric stress tensor of Pian's 5/3 para- 
meters stress model (Pian and Chen 1983; see also Punch 1983 and Punch and Atluri 1984, who 
obtain the same model with a different procedure). 

When the shape of the element is not that of a perfect square, there are several options for 
defining the stress model and some care is required because some of them lack coordinate invariance 
while others are not able to model a state of constant stress so that the resulting element cannot 
pass a patch test. 

To understand this issue, let's consider stress components defined in the natural space, (with 
coordinates ~ ,  ~2) where the base vectors are Cartesian, and then transformed into the physical 
space through the isoparametric mapping. As usual the coordinates of the physical space are again 
Cartesian. 

Even if the isoparametric mapping for 4-noded elements is bilinear 

x r = a ~ + a ~  1 + a ~ l ~  2 +af~ 2 (35) 

with 

a o - r - (x r+xr+xr3  +x2)/4, a f = ( - x r + x r 2 + x f - - x r ) / 4  
F a 2 --l'--(x[--xr2+ xr--xr)/4, a3--(--x f - -x~+ x f+ xr)/4 (36) 

nevertheless stress components in the physical space defined as above turn out to be curvilinear, 
since their base vectors are a function of position and change orientation from point to point. 

Covariant as well as contravariant base vectors can be considered, so that the stress tensor 
transformed into the physical space can be represented through its contravariant, covariant or 
mixed convected components; only the first two types are here considered, namely 

= ~ g ~ g ~  = a ~ g ~ g  ~ (37) 
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the representation in terms of the fixed Cartesian basis is instead: 

a = trAere A (38) 

since e r = e r. 
If ~1, ~2 are convected coordinates, Cartesian in the natural space and x 1, x 2 are the Cartesian 

coordinates of the physical space, then the relation between covariant convected and Cartesian 
base vectors is the following: 

Ox r 
g, = (?--Ter (39) 

So, in matrix form: 

{ g ; } =  " 0 ' I / { : : }  = [ J l  = [ J ] { : ; }  (40) 
[_~X 1 (~X2 [ LJ 1 j2J(e2J 

where I-J] is the Jacobian of the isoparametric transformation (see Cook 1981) and 
IJI , 2  2 1  l e  12  l e  12  1 12  12  2 

= - -  = ( a l a  2 - -  a 2 a l )  ~ ( a e a  3 - -  a 3 a 2 )  ~ (41) J1J2 J1J2 ( a l a 3 - a 3 a  O+ + 
its determinant which must be everywhere positive. This allows to invert the Jacobian in order to 
express the Cartesian base vectors as functions of the convected ones: 

{ } 1 [ J2 2 --J2~gl"~= _llgll" 
el = ~ - J 2  J~ J(geJ [J]  (42) 
e2 1 ( g 2 )  

On the other hand, if contravariant convected base vectors are used, their relation with the 
Cartesian ones is: 

{ } 1 I J22 - J ~ f e , ' ~  Tie1} 
gl = ~  --J1 (e2 g 2  2 J11 Jteg3 --  I - J ] -  (43)  

and, inversely 

Now, by making use of Eqs. (40)-(44), it is possible to transform any stress state from Cartesian 
to convected bases and vice-versa; for instance a uniaxial constant stress state whose expression 
in Cartesian components is (see Punch 1983) 

a=trAerea=kelea=[: :]ereA (45) 

becomes in contravariant convected components 

k [ {Jet 2 _j j27 
tr=~P~g'ge=~)-~,_ _j21j2 (jz)z Jg,gp (46) 

while the covariant convected components are: 

kF(J  ) 2 
a= a~g~g ~ = LJ~Ij~ (j~)2j o ,. (47) 

As a result, in the contravariant component representation, Eq. (46), a constant Cartesian stress 
state is no more expressed, generally, by means of simple polynomials but by rational functions, 
due to the presence of IJI 2, a quadratic polynomial as shown by Eq. (41), in the denominator; the 



240 Computational Mechanics 11 (1993) 

covariant component representation, Eq. (47), is still expressed by means of polynomials even if 
the presence of quadratic terms would generally require the use of a higher number of stress para- 
meters. 

These considerations are useful for the construction of the stress model when the shape of the 
element is irregular; a 10 parameters stress model is sought which reduces to Eq. (34) in the limit 
as the distortion of the element angles goes to zero. The model has to be coordinate-invariant and 
be able to reproduce any state of constant Cartesian stress: under these conditions the element 
can behave isotropically and pass the patch test. 

If stresses are modeled directly in Cartesian coordinates, referred to the centroid of the elements 
with the same shape functions of Eq. (34), the resulting stiffness matrix of the element is not co- 
ordinate invariant (Punch 1983), since the stress field is not modeled through complete polynomials; 
moreover the stress distribution is insensitive to distortion of the element shape: the patch test is 
passed but for non-uniform stress states a locking effect which increases with the severity of mesh 
distortion should be expected (see Fig. 1). 

Coordinate invariance of the stiffness matrix is achieved if the components of the stress model 
are expressed in the natural coordinates: indeed, being formulated in the natural space, the stress 
distribution is insensitive to any translation and/or rotation of the physical coordinates and, 
moreover, the particular choice of the stress modes ensures that the stress components have the 
same expression regardless on the orientation of the ~1, ~ axes (i.e. regardless on the way that the 
"parent" element is mapped into the actual one). There are, however, several ways to express the 
stress components in natural coordinates, namely: 

--Stress shape functions are expressed in the natural coordinates, but stress components are 
assumed to be Cartesian: 

[ f l l " ] - f l 5 ~  2 /~2-~-flT~2-~-f19~1~ 2 ]  
q = erea. (48) 

/h + ~ .~ '  +/~10~1~ 2 /~4+/~6~' 

--Stress shape functions are expressed in the natural coordinates, and are assumed to be contra- 
variant (curvilinear) convected components: 

a=L 2, o22]g,g~= B3+f i s~ '+ f l l o~ l#  2 B4+/~6~ 1 ]g,g~. (49) 

so that the Cartesian components are, by Eq. (40): 

,-1,2 ,1 - , - 1 ,  12 (72,) (j1)=a22 t ' l  = ( J 1 )  (7 -Jr a l J 2 ( (7 Jr -Jr 2 

~ l r 2  11 ~1r2  12 -- r 2 r l  21 ~1~2 22 
t12 ~ J i d ,  ff + d l d 2 ~ 7  ~ - d ,  d2(7 + d 2 J 2 ( 7  

1 2-11 ~2~1 12- -~1~2  21 1 2-22 
t21 = J1J ,  o + J ,  d2~7 -I- d l J 2  O" 7 L- J2J2 o 

,--2,2 11 --2r2, 12 (721) ..[._ (,]2)20-22" (50) t22 = ( d l )  (7 + d1J2((7 + 

--Stress shape functions are expressed in the natural coordinates, and are assumed to be covariant 
(curvilinear) convected components: 

LO'21 a22A ~3 + ~8~1 + ~10~1~ 2 ~4 + ~6~ 1 g~'g'~ (51) 

so that the Cartesian components are, by Eq. (43): 

= ~ : 2 (j2)2o22] t l  I [(JZz)261a - J1J2((712 + o2t  ) + 

1 
t12 = ,'~7g,~ [ - -  j 2 j 2 f f l l  2 1  -~- J1J2(71212 + j1j2(72x21 _ j 1 j t o . 2 2  ] 1 2  

IJI o 



A. Cazzani and S. N. Atluri: Four-noded mixed finite elements, using unsymmetric stresses 241 

i 
= J a J a a l l  + J1J2612  + J1J2621  -- J~Jt0022] t21 _ f f ~ [  1 2  2 1  1 2  1 2  

1 1 2 1 l 
= -- Jr J2(0012 + + t22 i ~ [ ( J 2 )  0011 0~ (J~)2G22 ] (52) 

--Stress shape functions are expressed in the natural coordinates, and are assumed to be contra- 
variant components referred to the centroidal base vectors: 

r o ' l l  00121 ^ ^ F 81 " ] - f 15~  2 f l 2 - ' [ - ] ~ 7 ~  2 + / ~ 9 ~ 1 ~ 2 " ]  ^ ^ 

~ 0022J g ' g a =  L ~ Z " ~ f l 8 ~ l ' ~ - f l l o ~ l ~  2 ~ 4 - ~ - f l 6 ~  1 j g , g ~  (53) 

and the Cartesian components are still given by Eq. (50) but with the Jacobian components 
evaluated at the centroid and therefore constant. 
--Stress shape functions are expressed in the natural coordinates, and are assumed to be covafiant 
components referred to the centroida] base vectors: 

o-= & +/ 9 1U 
L0021 0022 ]~3 -'[- f18 ~ t  "b f f ' o ~ l ~  2 ~4- -1- f16~ 1 

where, similarly, the Cartesian components are given by Eq. (52) when the components of the 
Jacobian are evaluated at the centroid. 
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Figs. 1 and 2. Distortion sensitivity analysis 1 in a pure bending problem for several stress models; 2 in a uniform extension 
problem for several stress models. Material properties are: E = 1.0, v = 0.0 
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The selection of Eq. (48) gives an element which is both coordinate invariant and passes the 
patch test, but due to the limited sensitivity to distortion, locking effects should be expected to 
take place when non-uniform stress are analyzed with an irregular mesh. 

On the other hand, selection of a stress model where shape functions are used to define contra- 
variant curvilinear components, Eq. (49), leads to an element which is coordinate invariant but 
cannot pass the patch test, since, as noted when looking at Eq. (46), the images in the ~1, 42 space 
of polynomials of order zero and one in the x 1, x 2 space are, in general, rational functions and no 
more polynomials. A similar comment does apply to the choice of Eq. (51), since, as Eq. (47) shows, 
it would be necessary to have at least complete quadratic polynomials in the natural space to 
model a constant Cartesian stress state; moreover, the integration involved in the functional (16) 
which is to be performed numerically cannot give the exact result, if standard Gaussian rules are 
used due to the presence of a generally non-constant denominator in Eq. (52). 

This is the reason that justifies the adoption of a stress model defined in terms of contravariant 
or covariant components which are referred to a fixed, centroidal, and generally skew system of 
base vectors and not, as before, to a general curvilinear one. Since the Jacobian components are 
now constant, it turns out, looking at Eqs. (46), (47), (50) and (52), that each of these approximation 
allows to formulate a finite element which passes both the coordinate invariance and the patch 
test. However (see Pian 1985) the stress model cannot satisfy in general the equilibrium equation 
pointwise, except at the centroid (where it is always satisfied) or when special conditions are fulfilled, 
like presence of constant stress modes only, or particular restrictions on the shape distortion of 
the element. It should be noted that the two stress models (53), (54) are different and cannot be 
reduced, in general, to the same one. 

The results produced by these possible choices of stress models are reported in Figs. 1 and 2 
where a comparison is made with reference to sensitivity to mesh distortion for the two cases of 
pure bending and uniform extension respectively. 

It appears that the best choice among those previously outlined is the use of a contravariant 
centroidal stress components model and this will be adopted for all subsequent computations. 

4 Comparison with other assumed-stress finite element models 

Among the family of new elements proposed here, the 6/3 - leo one is similar to that proposed by 
Pian and Sumihara (1984), Pian (1985), Pian and Tong (1986) and Pian and Wu (1988)--and, 
independently, by Rubinstein et al. (1983), and Punch and Atluri (1984)--where a s y m m e t r i c  stress 
model depending on 5/3 parameters, based on a Hellinger-Reissner functional without drilling 
DOFs, is proposed. Interestingly, the approach introduced by Pian and his coworkers starts from 
the definition of a complete symmetric (9fl parameters) linear stress model in the natural coordinates, 
whose components are assumed to be Cartesian, and then through the use of incompatible displace- 
ment functions they enforce equilibrium condition in order to decouple LMB and TRC from the 
Euler-Lagrange equations of their Hellinger-Reissner principle. This results in 4 constraint condi- 
tions between the stress parameters, which allow to reduce the independent stress modes to only 
5: as noted by Pian and Sumihara (1984), however, this approach is equivalent to directly introduc- 
ing the stress model in the contravariant centroidal components and then transform these into 
physical, Cartesian components. Under this point of view the choice of contravariant centroidal 
components is optimal in the sense that they are able to better approximate equilibrium (in a weak 
sense) with a minimum number of free parameters. 

The stress model adopted for the 6/3 - lc0 element is however different in that the stress compo- 
nents are not assumed, a priori, to be symmetric and also the constant part of the stress field is 
transformed according to Eq. (52) with the Jacobian evaluated at the centroid, so that the stress 
parameters are generally coupled; anyway the particular discretization of the rotation field, Eq. (29) 
ensures that the AMB condition has to be satisfied also in its strong form within each element, i.e. 
the stress tensor in the solution becomes symmetric. 

Assumed-unsymmetric-stress elements as introduced by Atluri and Murakawa (1977), Murakawa 
(1978), and Murakawa and Atluri (1978, 1979) have been used in the framework of incremental 
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large deformation analysis of compressible and incompressible elastic solids. The formulation is 
based on a modified complementary energy principle where displacement, rigid rotation and 
unsymmetric stress are the independent variables. For the displacement field, a standard 4-noded 
isoparametric model is selected. The rotation field is discretized through internal parameters, 
without a specific physical meaning, defined as the coefficients of a complete polynomial expansion 
of the rotation field; completeness here and in the stress representation is sought in order to ensure 
coordinate invariance of the element. The unsymmetric stress components must satisfy a priori the 
LMB and are derived from first order, i.e. once differentiable, Cartesian stress functions, expressed 
as complete polynomials in the physical coordinates 21, 22: 

f11=~/1(3~1,.~2),2,  t12~---~/2()~1,)~2),2, t 2 1 = - - ~ / 1 ( . ~ 1 , X 2 ) . 1 ,  t 2 2 =  --~/2(3~1,2~2).1 . (55) 

Depending on the choice of their order, the number of stress parameters is automatically determined: 
so for a linear, quadratic, cubic selection of stress functions, the corresponding number of stress 
parameters will be 4, 10 or 18 (obviously the stress functions are defined to within a constant, since 
the zero-order term does not give any contribution); except for the 4 stress-parameters model, 
which is always rank-deficient, all the other elements have redundant stress modes and conse- 
quently their response is generally too stiff. For comparison purposes the 10fl - 3a~ model has been 
implemented: the rotation field is defined as: 

0 = [ 1  co2 (56) 
6O 

i.e. similar to Eq. (30) but with natural coordinates substituted by the physical ones. The stress 
functions are expressed as: 

~2 = /~2 ~1 -}- /~4 ~2 ~- /~6(2~1) 2 -t- /~82~1X 2 -11- /~10(2~2) 2 

the corresponding stress components, by virtue of Eq. (55), are: 

+ 2/ 9 q2 + 2/h0 
t21 = -- fll  -- 2fls ~1 - / ~ 7  x2,  t22 = - f12 - 2fl6 x l  -/~82~2 (57) 

and already satisfy LMB. This requirement results in an element which is somehow overconstrained 
regardless of its shape, as it is shown by the eigenvalue analysis (see Table 3), and is also apparent 
from the results depicted in Fig. 1: in absence of distortion the element is nonetheless unable to 
correctly model a state of pure bending; on the other hand, no substantial improvement of the 
performance can be achieved if Eqs. (57) are rewritten in natural coordinates and the corresponding 
stress tensor is assumed to be expressed in contravariant centroidal components. 

A different approach for the formulation of a stress-based element with drilling DOFs is 
introduced by Cook (1987), Yunus (1988), Yunus et al. (1989). In the first paper an assumed- 
symmetric-stress triangular element is developed from the complementary energy principle; the 
stress model is equilibrated within the element (in absence of body forces) and displacements are 
then introduced to enforce the equilibrium along the boundary in terms of boundary tractions. 
The stresses are defined in terms of local, centroidal (not convected) coordinates and each element 
results from the assembly of three triangular subelements, in order to achieve coordinate invariance. 
The displacements are modeled by means of Allman-type shape functions, i.e. they are assumed 
to depend on corner nodal displacements and on some corner nodal drilling DOFs deduced by 
condensing the mid-side nodal displacements of a 6-noded triangular element (see Allman 1984). 
Since the nodal drilling DOFs are not true rotations, in the sense that they are not independent 
of the displacement parameters, it turns out that the element has always a spurious zero-energy 
mode corresponding to a mechanism in which all the drilling parameters are the same; as a conse- 
quence in a finite element mesh it is necessary to restrain at least one of these parameters by fixing 
its value. 



244 Computational Mechanics 11 (1993) 

In the two following papers (Yunus 1988 and Yunus et al. 1989), the assumed-symmetric-stress 
triangular element and a quadrilateral one are deduced from a Hellinger-Reissner variational 
principle, i.e. following a mixed approach. As in the previous case, drilling DOFs are introduced 
in the formulation by the choice of Allman-type shape functions for the displacements, not by the 
particular structure of the functional, as it happens in (5) where rotational parameters are necessary 
to enforce AMB; this explains how drilling DOFs can coexist with an a priori symmetric stress 
model. The complete linear assumed-stress model (depending on 9 unconstrained/3 parameters) 
is chosen to be expressed in contravariant convected components, as in Eq. (50), but in order to 
pass the patch test a reduced integration (2 x 2 Gaussian quadrature rule) must be used; here the 
reduced integration plays the same role as the use of centroidal components outlined in the previous 
section (with reference to the formulation of the new element), allowing the element to model a 
constant Cartesian stress state. However a spurious zero energy mode is still present and that's 
why at least one drilling DOF has to be fixed in the mesh. 

This reason, and the difficulties connected with imposing boundary conditions in terms of 
rotations (the drilling DOFs associated with the Allman shape functions are not true rotations: 
see Allman 1988) suggest one not to use this type of shape functions, though effective in dealing 
with in-plane bending problems, in the development of the finite elements presented in the previous 
section. 

5 Examples 

In this section the results of some simple benchmark problems will be presented, in order to assess 
the reliability of the proposed finite element formulation. Most of the test cases are taken from 
Pian and Sumihara (1984), MacNeal and Harder (1985) and Ibrahimbegovich et al. (1990). 

All numerical integrations are performed by means of a 3 x 3 Gaussian quadrature rule which, 
for the particular choice of shape functions employed, turns out to give the same results obtained 
by analytical integration; moreover the perturbation term 7 in Eq. (16) has been taken equal to 1. 

To obtain a meaningful comparison of the performance of the present elements with respect 
to the others, for any given problem the results will be expressed in terms of the total number of 
external DOFs used in the mesh, before imposing the boundary conditions. This method, used 
also by Cook (1986), allows one to draw conclusions checking the performance against the total 
cost of the analysis (i.e. the use of computer resources), and makes possible to compare elements 
with a different number of DOFs, like in the present case (see Table 1). However, since only the 
total number of external DOFs is evaluated, small discrepancies in the way of imposing the 
constraints due to a specific type of element do not affect the comparison. 

Table 1. Basic properties of the elements used for the numerical tests 

Element Number of Number of Number of 
nodal stress rotation 
DOFs parameters parameters 

Allman (AQ) 12 0 4 
Ibrahimbegovich et al. (M) 12 1 4 
Iura and Atluri (M1) 12 0 4 
Iura and Atluri (M2) 12 0 4 
MacNeal and Harder 12 0 4 
Pian and Sumihara 8 5 0 
Q4 8 0 0 
Yunus (Mixed AQ) 12 9 4 
Present (6/3 - lo)) 8 6 1 
Present (8/3 - 3co) 8 8 3 
Present (10/3 - 4~o) 8 10 4 
Present (10/3 - 5co) 12 10 5 
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5.1 Eigenvalue analysis 

The eigenvalues of the stiffness matrix of a single perfect square element for E = 1 and different 
values of v in the range 0 to 0.5 have been evaluated analytically by means of a program able to 
perform algebraic computations in symbolic form and are reported in Table 2: the results clearly 
show that the stiffness matrix has always correct rank; the results are the same for all the models 
with 8 external DOFs (6fl- leo,  8f l -30)  and 10ft-409), where the rotation parameters are 
condensed at the element level. The 10ft - 5o9 model (with 12 external DOFs) should be used only 
when more elements are assembled together, since the AMB condition relative to the fifth para- 
meter is not independent of the others when only a single element is considered. 

In Table 3 the non-zero eigenvalues of the present elements with 8 DOFs and of the model 
proposed by Pian and Sumihara (1984) are numerically evaluated in the case of a perfect square 
with E = 1 and v = 0.3 and it is found that they coincide; for comparison purposes also the eigen- 
values, obtained by Murakawa (1978) for the same geometric and material properties and for 
elements with several combinations of stress and rotation parameters, are reported; in general the 
eigenvalues corresponding to flexural modes are too high and this results in a too stiff response 
when bending is the dominant state. 

5.2 Patch tests 

The elements can pass the single element patch test with a minimum number of constraints: a single 
trapezoidal (skewed) element with one side constrained (2 displacement components fixed at first 
node and 1 at the other, as in Ibrahimbegovich, Taylor and Wilson 1990) and subject to uniform 

Table 2. Eigenvalues (analytically evaluated) for a perfect square element as a function of the 
Poisson's ratio (6fl - le), 8fi - 3co, lOft - 4co models) 

Mode v = 0.0 v = 0.1 v = 0.2 v = 0.3 v = 0.4 v = 0.5 

Rigid trans. I 0 0 0 0 0 0 
Rigid trans. II 0 0 0 0 0 0 
Rigid rotation 0 0 0 0 0 0 
Bending I 1/3 1/3 1/3 1/3 1/3 1/3 
Bending II 1/3 1/3 1/3 1/3 1/3 1/3 
Shear I 1 10/11 5/6 10/13 5/7 2/3 
Shear II 1 10/11 5/6 10/13 5/7 2/3 
Uniform ext. 1 10/9 5/4 10/7 5/3 2 

Table 3. Eigenvalues of a perfect square element (with E = 1, v = 0.3) for several models; fl, co, DOFs 
refer respectively to the number of stress, rotation and nodal degrees of freedom parameters 

Element Pian Present Murakawa Murakawa Murakawa 
and (I) (II) and (IV) (III) and (V) 
Sumlhara 

(6,1,8) (10,1,8) (10,3,8) 
fl, co, DOFs (5,0,8) (8,3,8) (4,1,8) and and 

(10,4,8) (18,1,8) (18,3,8) 
Bending I 0.333 0.333 0.000 1.367 0.373 
Bending II 0.333 0.333 0.000 1.367 0.373 
Shear I 0.769 0.769 0.769 0.769 0.769 
Shear II 0.769 0.769 0.769 0.769 0.769 
Uniform ext. 1.429 1.429 1.282 1.282 1.282 

Trace 3.634 3.634 2.872 5.606 3.566 
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tension applied to the opposite side gives the exact response in terms of both displacements and 
stresses for the 8 DOFs models. 

For an assembly of elements, two different patch tests can be devised: in the former a square 
plate consisting of four distorted elementsis subjected to uniform tension (see Iura and Atluri 
1992); in the latter a rectangular plate is divided into five elements, one of which is completely 
surrounded by the other ones and has no nodes on the contour of the plate, is subjected to pres- 
cribed boundary displacements (see MacNeal and Harder 1985). For both these problems the 
element gives the exact solution. 

5.3 A simply supported beam 

With this test the ability of the proposed models to deal with uniaxial bending is checked in the 
presence of regular and distorted meshes; the material data are: E = 100 and v = 0, while geometry 
and loads are sketched in Fig. 3. As shown in Table 4, for the case of regular mesh the value of 
the midspan deflection is exact; when the mesh is distorted, the relative error is less than 7~  for 
the 8 DOFs models (and this result is more accurate than those obtained with any other model) 
and about 34~o for the 12 DOFs model. 

5.4 A thin cantilever beam 

This very thin cantilever with a moment applied to the free end (see Fig. 4) is another pure bending 
test, but unlike the previous one, the effect of the Poisson's ratio is here taken into account 
(E = 3.0 x 107, v = 0.30). The results reported in Table 5 show that, when the mesh is distorted, 
this is the most critical test for the elements (if the mesh is undistorted, the theoretically exact 
solution is always obtained). On the other hand, if a comparison is made with other similar models 
available in the literature, it appears that only those based on Allman-type shape functions (see 
Allman 1988), whose drawbacks are outlined in Iura and Atluri (1992), give relatively acceptable 

1 < 
1 

l 1 > T 

~)7 < ~- 
I- lo 

1 1 

< l ' I ~ +  
/ / , 

g97< ~- 

Fig. 3, Regular and distorted mesh for the analysis of the 
simply supported beam problem. Midspan deflection is 
referred to point A 

Table 4. Midspan deflection at A for the simply supported beam problem 

Element No. of Regular Distorted 
DOFs Mesh Mesh 

Exact - -  1.5 1.5 
Ibrahimbegovich et al. 42 1.5 1.14045 
lura and Atluri (M1) 42 1.5 1.0910 
Iura and Atluri (M2) 42 1.5 1.0495 
Q4 28 0.6279 0.2523 
Present (6/3 - leo) 28 1.5 1.3994 
Present (8/3 - 3o9) 28 1.5 1.3994 
Present (10/3 - 409) 28 1.5 1.3994 
Present (10/3- 509) 42 1.5 0.9809 
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6,0 t 
0.9 21 29 4.1 4.9 ~l l j_~" 

- -  1.1 1,9 3,1 39 5.1 ~ ( - -  
Fig. 4. Distor ted mesh used for the analysis 
cantilever beam problem 

of the thin 

Table 5. Tip deflection at A for the thin cantilever beam 
problem (distorted mesh), normal ized on the exact value 

Element No. of  vA 
D O F s  

Iura and Atluri (M1) 42 0.10 
Iura and Atluri (M2) 42 0.07 
Pian and Sumihara  28 0.16 
Q4 28 0.02 
Yunus (Mixed Aq) 42 0.85 
Yunus et al. (AQ) 42 0.82 
Present  (6 /~-  10)) 28 0.16 
Present  (8/~ - 30)) 28 0.16 
Present  (10/~ - 40)) 28 0.16 
Present  (10/~ - 50)) 42 0.16 

T 
12 

• 

B C 

I D 

48 t ~ - -  12 I 12 I 12 [ 1 2 ~  

C c 

I \ ; / /  +T A I  12 A 
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1 - -  16 [ 4 ~-- 8 [ 2 0 - - t  

Fig. 5. Regular and distorted mesh for the analysis of the shear- loaded thick cantilever beam problem. Point  A is used to 
evaluate the tip deflection, point  B, C a,ld D for stress computat ions.  The pat tern  of mesh refinement is partially shown in the 
regular mesh 

Table 6. Axial normal  stresses at locations B, C, D for the shear- loaded beam test problem 

Element Mesh No. of cr B ac aD 
D O F s  

Exact - -  - -  - 80.00 - 50.00 + 50.00 
Yunus (Mixed AQ) 4 x 1 30 -71 .90  - 5 0 . 0 0  +50.00 
Yunus et al. (AQ) 4 x 1 30 - 70.00 - 50.00 + 50.00 
Present  (8/~ - 30)) 4 • 1 20 - 70.00 - 50.00 + 50.00 
Present  (8/~ - 30)) 8 x 2 54 - 7 4 . 5 4  -49 .98  +49.98 
Present  (8fl - 30)) 16 x 4 170 -80 .58  -50 .00  +50.00 
Present  (10/? - 5o)) 4 x 1 30 - 70.00 - 50.00 + 50.00 
Present  (10fl - 50)) 8 x 2 81 -74 .48  - 50.00 + 50.00 
Present  (10/3 - 50)) 16 x 4 255 - 80.34 - 50.00 + 50.00 
Yunus (Mixed AQ) 4 x 1, dist. 30 - 70.30 - 50.60 + 50.80 
Yunus et al. (AQ) 4 x 1, dist. 30 - 7 0 . 5 0  - 5 3 . 6 0  +46.00 
Present  (8/? - 30)) 4 x 1, dist. 20 -65 .01  -45 .83  +45.83 
Present  (10fl - 50)) 4 x 1, dist. 30 -64 .27  -41 .87  +41.23 
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or even good (Yunus 1988; Yunus et al. 1989) results; therefore it seems reasonable to state that 
the locking effect is more likely due to the displacement model than to the stress model chosen. 

5.5 A thick cantilever beam 

In this case a shear-loaded cantilever beam is analyzed, and the results, in terms of average tip 
displacement, are checked against the theoretical value obtained for a Timoshenko beam. Geometry 
and load condition are reported in Fig. 5; the material properties are E = 30000, v = 0.25. Some 
regular and one distorted mesh are considered and the relative response of the numerical simulations 
can be found in Figs. 6 and 7. The present elements perform well and, even in the distorted case 
(the relative error is less than 7% for the 8 DOFs models - -a  better result, if compared with other 
similar available elements, and obtained with a lower number of D O F s - - a n d  about 10% for the 
12 DOFs one). Comparison in terms of stress computations is presented in Table 6. 

5.6 Cook's problem 

This tapered panel with one edge fixed and the opposite subjected to a uniform shear load (see 
Fig. 8) was first proposed as a test problem by Cook (1974) and is considered a useful tool to 
evaluate the performance of membrane elements in presence of a distorted mesh under combined 
bending and shear stresses. No analytical solution is available for this problem, so the results 
in Fig. 9 and in Table 7 (stresses) are compared with a "best value" obtained through a refined 
numerical analysis. The material properties are E = 1, v---1/3. The response of the proposed 
elements, especially of those with 8 DOFs, is fairly accurate, comparable with that produced by 
the models M1 and M2 of the paper by Iura and Atluri (1992) which, on the other side, have 12 
DOFs; in Fig. 9 the convergence plots show that a substantial saving can be achieved if the new 
8 DOFs element are adopted. 
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Figs. 6 and 7. Convergence plots (6 with regular mesh and 7 with distorted mesh) for the shear-loaded thick cantilever beam 
problem 
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Figs. 8 and 9. 8 Geometry and loads for 
the analysis of the Cook's problem. Tip 
deflection is evaluated at point A, while 
point B, C are used for stress computa- 
tions. The pattern of mesh refinement is 
partially shown. 9 Convergence plots for 
the Cook's problem 

6 Conclusions 

A Hellinger-Reissner type variational principle is presented which allows to develop membrane 
elements where a priori unsymmetric stress components and drilling DOFs, as well as the traditional 
displacement DOFs,  are the independent variables. The AMB condition is one of the Euler- 
Lagrange equations of the functional, so the symmetry of the stress tensor, at least in a weak sense, 
is guaranteed a posteriori, once stationarity is enforced. Provided that no zero energy modes are 
introduced, there are no restrictions on the choice of the shape functions which define the stress, 
rotation and displacement fields. 

In order to achieve a reasonably good level of accuracy with a small number of nodal para- 
meters, a family of 4-noded elements has been developed, with several selections of rotation and 
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Table 7. Values of minimum principal stress at B and maximum principal stress 
at C for the Cook's problem; the best known solution was obtained by Bergan 
and Felippa with a refined 32 • 32 mesh 

Element Mesh No. of O'min, B O'max, C 
DOFs 

Best known solution - -  - -  -0.2012 +0.2359 
Allman (AQ) 2 • 2 27 -0.1716 +0.1825 
Allman (AQ) 4 • 4 75 -0.1921 +0.2261 
Allman (AQ) 8 • 8 243 - 0.2004 + 0.2340 
Yunus (Mixed AQ) 2 x 2 27 -0.1763 +0.1849 
Yunus (Mixed AQ) 4 • 4 75 -0.1944 +0.2225 
Present (8/3 - 3tn) 1 • 1 8 -0.1204 +0.1937 
Present (8/3 - 3o~) 2 • 2 18 -0.1549 +0.1854 
Present (8/3- 3co) 4 • 4 50 -0.1856 +0.2241 
Present (8/3 - 3~o) 8 • 8 162 -0.1986 +0.2344 
Present (8/3 - 3co) 16 • 16 578 -0.2025 +0.2364 
Present (10/3- 5e~) 2 x 2 27 -0.1591 +0.1746 
Present (10/3 - 5co) 4 • 4 75 -0.1864 +0.2251 
Present (10ft - 5~) 8 • 8 243 -0.1985 +0.2346 
Present (10/3- 5co) 16 • 16 867 -0.2024 +0.2365 

(least-order) stress models; stress components are defined in natural convected coordinates, but 
referred to a centroidal base system, in order to pass the patch test. In some cases it is possible to 
express the rotation parameters in terms of nodal rotations, and also to add these drilling DOFs 
to the DOFs coming from the displacement field, so that an element with 3 DOFs per node can 
be formulated. Even if the performance of such an element are often not as good as that of elements 
where rotation parameters are condensed, nevertheless it may be useful as the basis of a flat faceted 
element for analysis of curved membranes, where the presence of additional connectors in the form 
of drilling rotations could improve the smoothness of the solution. On the other hand, when the 
rotation parameters are condensed, the presence of higher order stress modes is not going to stiffen 
the element, as it might be otherwise expected. 

The elements have been compared with other membrane models based on mixed or hybrid 
variational principles to point out differences and similarities, with particular reference to elements 
with drilling DOFs and to the standard 4-noded displacement-based isoparametric formula- 
tion (Q4). 

Some benchmark problem have been solved to check the reliability of the new elements; results 
of the numerical study show that the performance is, in almost all cases considered, excellent. 
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