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Abstract. The Gibbs method permits simultaneous evalua- 
tion of the relationships among all intensive thermodynamic 
variables of a heterogeneous system in equilibrium. Addi- 
tion of mass balance constraints permits simultaneous eval- 
uation of both intensive and extensive variables so that 
changes in phase chemistry and modes may be monitored. 
Assumption of closed system behavior results in a system 
of equations with two degrees of freedom, regardless of the 
thermodynamic variance, as specified by Duhem's theorem. 
Open system behavior increases the number of degrees of 
freedom by the number of components to which the system 
is open. The methodology presented is therefore a formal 
statement of the constraints among the differential of all 
of the intensive and extensive variables of a heterogeneous 
system. 

Examples of the application of this formalism include 
contouring pressure-temperature space for mineral compo- 
sition, modal changes and reaction progress; contouring 
reaction space with pressure, temperature and mineral com- 
position; and calculation of compositional and modal 
changes of phases for prescribed changes in pressm'e and 
temperature, as, for example, in the calculation of synthetic 
garnet zoning profiles or liquid lines of descent in crystalliz- 
ing magmas. 

Introduction 

The texture and chemistry of a rock exposed at the surface 
is in part a function of the changes in external conditions 
(e.g. P, T, a(H20), etc.) that the rock has experienced. A 
goal of the petrologist is to determine the particular changes 
in external conditions that have resulted in the observed 
texture, mineralogy, and mineral chemistry of the rock. 

The purpose of this paper is to present a methodology 
that may be of some assistance to the petrologist in the 
interpretation of reaction textures and mineral chemistries. 
The method involves a thermodynamic formalism known 
as the Gibbs method (Spear et al. 1982) that permits simul- 
taneous calculation of changes in intensive (e.g. P, T and 
mineral composition) and extensive (e.g. modes) thermody- 
namic parameters of a heterogeneous system in equilibrium. 
The technique described here represents an extension of 
earlier treatments of the Gibbs method (e.g. Spear et al. 
1982; Spear and Selverstone 1983) in that the earlier treat- 
ments incorporated only the intensive variables P, T, # 

(chemical potential) and X (composition). The present study 
permits consideration of extensive variables M (modes or 
moles of phases present) through the addition of mass bal- 
ance constraints. 

This formalism may be applied to the contouring of 
P -  T space for changes in mineral composition or mineral 
abundance. Alternatively, because reaction progress can be 
defined in terms of the production or destruction of a phase, 
the formalism may be applied to the contouring of reaction 
space (Thompson 1982) for P, T and mineral composition. 
These contour diagrams may aid in the interpretation of 
observations such as textural criteria as to whether a phase 
is being produced or consumed or the compositional history 
of minerals in the rock as inferred from chemical zoning 
or the compositions of mineral inclusions. Examples from 
simple igneous and metamorphic systems will be given. 

Theory 

The theoretical framework involves application of the con- 
cepts embodied in Duhem's theorem to the formalism of 
the Gibbs method (Spear et al. 1982). The Gibbs method 
relates all intensive parameters of a heterogeneous system 
in equilibrium through a system of linear differential equa- 
tions. These equations have been derived elsewhere (e.g. 
Spear et al. 1982), but briefly they include (1) a Gibbs-Du- 
hem equation for each phase in the assemblage: 

O = S d T - -  VdP + Z X j d # j  (1) 

(2) a set of linearly independent stoichiometric relations 
written among differentials of the chemical potentials of 
the phase components: 

0 = Z v i #i (2) 

and (3) equations that relate changes in the chemical poten- 
tial of independently variable phase components to changes 
in composition through the curvatures and cross curvatures 
of the Gibbs free energy function: 

O= --(d # i - d  #d)--(Si- Sa) dT + (V~-- Ve) dP 
+ Z(~ 2 G/~Xe ~Xj)~, r dXi  (3) 

where the subscript d refers to the dependent phase compo- 
nent, S~ and V~ are partial molar entropies and volumes, 
and the summation is over all independent phase compo- 
nents. The equations (1), (2) and (3) represent formal rela- 
tions among the intensive variables dT, dP, d# and d X  



250 

in a heterogeneous system at equilibrium. Because the 
Gibbs method relates only intensive variables of a heteroge- 
neous system, this methodology is best suited to systems 
of low thermodynamic variance where the number of inde- 
pendent intensive variables is small. 

The addition of mass balance equations to the Gibbs 
method permits the consideration of changes in extensive 
properties of the system such as moles of phases present. 
The mass balance constraints take the form 

mi = Z Mk Z Vk,j,i Xk,j (4) 
k j 

where mi is the moles of the i 'h system component, Mk is 
the moles of the k t~ phase in the system, vk,ja is the number 
of moles of the i th system component in one mole of the 
f~ phase component in the k 'h phase and X~,j is the mole 
fraction of t h e f  h phase component in the k th phase. Because 
the Gibbs method employs the differential forms of the in- 
tensive thermodynamic variables, it is necessary to use the 
differential of the mass balance equations. The derivative 
of Eq. (4) is 

dmi = ~  dMk ~ vl,.j,i Xg,j 
k j 

+ Mk vk,j,, d (5) 
k j 

Because only mole fractions of the independent phase com- 
ponents are variables in the Gibbs method, it is necessary 
to eliminate the derivative of the dependent mole fraction 
from Eq. (5), hence 

dml = ~ dMk ~ Vk,j, i Xk, j 
k j 

+ ~ Mk ~ (Vk,j,i-- Vk,d,i) dXk,j (6A) 
k j 

where vk,a,~ is the number of moles of the ith system compo- 
nent in the dependent phase component in the k th phase. 
Equations (5) and (6A) are valid for either open or closed 
systems. 

There is one equation of the form (6A) for each system 
component. In addition, Eqs. (6A) introduce as new vari- 
ables the differentials of the moles of the phases in the as- 
semblage (dMk) and the differentials of the moles of system 
components (dmi). The number of these new variables is 
equal to the number of phases plus the number of system 
components. Combining Eqs. (6A) with (1), (2) and (3), for 
a system containing NC system components, P phases and 
a total of NP phase components of which NXj. are indepen- 
dently variable, there are a total of 2 + NP + NX i + P + NC 
variables and P + N P -  NC + NXj + NC = P + NP + NXj 
equations. The difference between the number of variables 
and equations is 2 + NC. 

Duhem's theorem states that for a closed system of 
known composition, only two variables are necessary to 
describe the equilibrium state of the system (Prigogine and 
Defay 1954). Incorporation of the notion embodied in Du- 
hem's theorem into the Gibbs method requires that the bulk 
composition of the system be held constant. This require- 
ment can be satisfied algebraically by setting dm~=O in 
equations (6 A), hence: 

0 = ~  dMk ~ vk.j,i Xkd 
k j 

+ ~ Mk ~, (Vkd,~-- Vk,d,,) dXk,i. (6B) 
k j 

The variance of the system of equations resulting from the 
combination of (1), (2), (3) and (6B) is 2, which is consistent 
with Duhem's theorem. In general, the variance of the sys- 
tem of equations is equal to two plus the number of system 
components to which the system is open. 

Equations (1), (2), (3) and (6A or 6B) may be solved 
in a variety of ways depending on the desired result. In 
general, solutions are obtained by making an arbitrary 
choice of independent variables and solving for changes in 
the remaining, dependent variables. Mathematically, this 
can be expressed as 

Oi = F (X1, X2 . . . .  XN) (7) 

where Oi is the dependent variable and X1, X2 ... XN are 
the independent variables. The total differential of (7) is 

dOi =(~OjOX1)xj. 1 dX1 
+ (~Oi/~X2)xj~_ 2 dX 2 + . . .  ( ~ O i / ~ X N ) x j : # N  d X  N . (8) 

The change in dependent variable O may then be computed 
by solving for the derivatives (80i/~Xk)xi,k and multiplying 
by the change in the independent variable Xk. 

For closed system behavior, the number of independent 
variables is 2, and results may be obtained by specifying 
changes in only 2, arbitrarily chosen variables. For example, 
if P and T are chosen as the independent variables, the 
changes in the compositions and modes of all phases can 
be computed for any change in P and T Alternatively, the 
independent variables may be chosen to be compositional 
variables, such as dXg,j, or modal variables such as dMk. 
In this case, changes in mineral chemistry as deduced from 
chemical zoning profiles, mineral inclusion suites of frac- 
tionating phases, or changes in modal mineralogy as de- 
duced from textural analysis, may be employed to monitor 
changes in P and T 

Systems undergoing fractional crystallization, such as 
crystals settling from a melt or metamorphic garnets under- 
going growth zonation, can be modeled by setting the drnl 
terms equal to the moles of component i lost to the fraction- 
ating phase. Alternatively, fractional crystallization can be 
modeled by noting that the mode of any phase undergoing 
fractional crystallization is always zero. 

The methodology outlined above is fundamentally no 
different from other techniques to compute equilibrium 
phase assemblages, with one important distinction. Free en- 
ergy minimization techniques, such as those presented by 
Brown and Skinner (1974), Ghiorso (1985), and Russell and 
Nicholls (1985) all require as input enthalpy, entropy, and 
volume data, activity models and the bulk composition of 
the system. Specification of the values of two independent 
variables is then sufficient to compute the values of all other 
variables. The primary difference between these approaches 
and the Gibbs method is that the latter utilizes the differen- 
tial forms of the equilibrium thermodynamic and mass bal- 
ance constraints, rather than the integrated forms of these 
equations. Consequently, enthalpy data are not required, 
which can be a major advantage because enthalpy data 
are often the most poorly constrained. Moreover, the equa- 
tions of the Gibbs method are linear, so direct computation 
of changes in system variables can be made without itera- 
tion. Iteration is only required to ensure that the numerical 
integration of the system variables by Eqs. (8) from one 
set of values to another is numerically precise. The disad- 
vantage of the Gibbs method is that there is no information 



Table 1. System of linear differential equations for the assemblage quartz + pyroxene + olivine in the system Si02-  FeO-  MgO 
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in the equations as to the relative stability of competing 
assembalges. 

The philosophy inherent in applications of the Gibbs 
method is also somewhat different from that of techniques 
that incorporate the integrated forms of the thermodynamic 
equations. The Gibbs method is best suited to applications 
where the equilibrium state of the system is known or can 
be inferred from natural assemblages. In this case, nature 
provides the thermodynamic constant of integration (i.e. en- 
thalpy) and an analysis of the phase relations can proceed 
from this reference point. Any changes in phase assemblage 
experienced by the rock must be inferred from the texture 
and chemistry of the phases (e.g. by an analysis of mineral 
zoning, inclusion suites of crystal fractionation sequences). 
The approach relies heavily on the petrographer's ability 
to decipher the paragenesis of a rock and less heavily on 
the quality of the thermodynamic data base. 

Applicat ions  

The system S i 0 2 -  M g O -  FeO 

Consider the assemblage quartz + orthopyroxene + olivine 
in the system SiO 2 -  MgO--FeO.  The system of equations 
relating intensive variables in this assemblage were derived 
by Spear et al. (1982). The complete system of equations, 
incorporating the mass balance constraints, is shown here 
in Table 1. There are three phases, five phase components 
and two independent exchange potentials resulting in a total 
of twelve variables and ten equations. Note that conserva- 
tive gram cation units have been used for the balanced stoi- 
chiometric relations and mass balance constraints. The in- 
put parameters necessary to solve these equations consist 
of the compositions (Xkd), molar proportions of phases 
(Mk), molar entropies (Sk), molar volumes (Vk), exchange 
entropies and volumes (S j - S d ;  V~-Ve) and the second de- 
rivative of the Gibbs free energy function at the pressure 
and temperature of interest. 

In the examples discussed in this study, ideal solution 
models are assumed for all phases. With this assumption, 
the Gibbs function 

G = X X i  #i (9) 

may be readily differentiated to yield 

(82 G/~X2)p, T = o:RT(1/X~ + 1/Xd) (10) 

and 

(82 G/SX~ OXj)p, r = c~RT/Xd (11) 

where Xd is the dependent mole fraction in the phase of 
interest and c~ is the crystallographic site multiplicity. The 
contribution to the curvature from nonideal mixing can also 
be readily incorporated if such terms are know. It should 
be noted that the equations presented in Tables 1 and 2 
are completely general and make no assumptions as to ther- 
modynamic data or solution models. 

The equations in Table 1 may be solved in a variety 
of ways given the required input parameters. Bohlen and 
Boettcher (1981) report experimental data on this system, 
which indicate that at 900 ~ C, 9.4 kb, the composition of 
orthopyroxene and olivine in equilibrium with quartz are 
XF~ = 0.90 and XF, = 0.951, respectively. Using these values 
as a reference point and thermodynamic data of Helgeson 
et al. (1978) and Berman et al. (1986), the diagram in Fig. 1 
was constructed. Isopleths of XF~ in pyroxene have shallow 
positive slopes in agreement with the experimental results 
and extrapolation of Bohlen and Boettcher (1981). Isopleths 
of XF~ in olivine are also shallow and slightly steeper than 
the XF, isopleths except in the limit where X v ,  = XF, = 1.0. 

Contours of the moles of olivine, pyroxene and quartz 
were computed from a system at 900 ~ C, 9.4 kb, arbitrarily 
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Fig. 1. P - - T  diagram depicting contours of XFs ,P  x (dashed lines) 
XF~,O l (dot-dash lines), Mez,  Mol and Max (solid lines) for the assem- 
blage orthopyroxene+olivine+quartz in the system SiO 2 
- -MgO--FeO.  Large dot depicts reference P - - T  conditions 
(T=900~ P=9 .4kb ,  Xvs,ex=0.9, XFa,Ol=0.951, MQz=0.4, 
Mo1=0.3, and Mp.=0.3) 
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Table 2. System of linear differential equations for the assemblage olivine + melt in the system SiO2- M g O -  FeO 

S TM - V ~ Xv~ XF~ 0 0 0 0 0 0 0 0 
S m - V M 0 0 xU, XvMo Xs~ 0 0 0 0 0 
0 0 1.5 --1.5 --1 1 0 0 0 0 0 0 
0 0 3 0 2 0 1 0 0 0 0 0 

,co,  ~o,~ ( V O , _  V~O,) 1 - 1 0 0 0 C~ 0 0 0 0 --  kOFa -- OF0/  
M M M M (V~ - V~g) 0 1 - 1 0 0 GM2 GMa 0 0 - (SFo - Sm~) 0 
M M M M (v~, - V~g) o 1 0 - 1 0 G% G~ 0 0 - (Ssi - SM~) 0 
0 0 0 0 0 0 0 0M ~ OM m M M 1/3 Xs M 
0 0 0 0 0 0 0 --2/3M ~ --M ~ - - M  m 2/3XF~ XM~ 
0 0 0 0 0 0 0 2/3M ~ M ~ OM ra 2/3Xv~ Xve 

dT 0 
dP 0 

d# TM o 
d ktv~ 0 
d lt~j~ 0 
aug~ = 0 
d ~i 0 
d Xv~ 0 
dX~o o 
dX~ 0 
d MOl - _ 

_dM ~a_ 

a Xs3T,v Gz2=(a G /a(XFo) )T,V 
M 2 M M 2  G33=(a G /a(Xsi ) )T,V 

consisting of 0.4 moles (48.7 volume %) quartz, 0.3 moles 
(24.8 volume %) olivine and 0.3 moles (26.5 volume %) of  
pyroxene. As can be seen, the mineral abundance isopleths 
have positive slopes that are very nearly parallel to the 
compositional isopleths for XF~ and Xw.  Isopleths for oliv- 
ine, pyroxene and quartz are exactly parallel in this assem- 
blage because only one net transfer reaction is possible. 
Mineral isopleths are not exactly parallel to composition 
isopleths because in addition to the net transfer reaction 

Quartz  + Fayalite = Ferosilite (12) 

the exchange reaction 

Fayalite - Forsterite = Feros i l i te -  Enstatite (13) 

also occurs, which affects the slopes of composition iso- 
pleths but not mineral isopleths. 

The assemblage quartz + pyroxene + olivine with initial 
molar  ratios of 0.4, 0.3 and 0.3 respectively is not  stable 
in all P - T  space. As reactions proceed, phases are con- 
sumed and the P - T  limit of the assemblage occurs where 
the amount  of one or more phases equals 0. This, of course, 
depends on the initial bulk composition. The accessible lim- 
its of P - - T  space for the initial conditions are shown by 
heavy lines in Fig. 1. Thompson  et al. (1982) and Thompson 
(1982) have described the area (or volume) accessible to 
an assemblage as the reaction polygon. 

The slopes and spacing of mineral abundance isopleths 
are also a function of the initial bulk composition of the 
rock. For  the phase proport ions at 900 ~ C, 9.4 kb con- 
sidered above, computed slopes are ( d P / d T ) g w  
= 15.2 bars/deg and (dP/dMe~)r  = 3750 bars/mole fraction. 
For  an assemblage consisting of 0.8 moles of quartz, 
0.2 moles of olivine and 0.0 moles of pyroxene at 900 ~ C, 
9.4 kb, these slopes are 16.6 bars/deg and 13660 bars/mole 
fraction, respectively. 

Olivine-melt equilibria. The equilibrium between olivine and 
melt in the system SiO 2 - M g O - F e O  is an example of a 
system with a higher thermodynamic variance. The system 
of equations for this assemblage is shown in Table 2. Note  
that because the melt is a ternary solution, both curvatures 
and cross curvatures of the Gibbs function are required 
to define the exchange potentials (Eqs. 3). 

lsopleths of melt and olivine composition and moles 
of  melt and olivine are depicted in Fig. 2, using the input 
parameters specified in the figure caption. As can be seen, 

isopleths of mineral and melt composition are steep and 
nearly parallel owing to the relatively large entropy of the 
melt compared to olivine, and the relatively small AS of 
exchange. With decreasing T at constant P, both X(SiO2) 
in the melt and Xva in olivine increase monotonically. XF,O 
in the melt, however, first increases to a maximum at ap- 
proximately 0.243 and then decreases with decreasing T, 
although Fe/Mg increases monotonically. 

In Fig. 3 are plotted two computed isobaric liquid lines 
of descent along with the composition of coexisting olivine. 
The first (Fig. 3A) shows the liquid line of descent under 
conditions of continual olivine-liquid equilibrium. As ex- 
pected, the tie lines between olivine and melt pivot on the 
bulk composition. The maximum in X w o  in the melt is 
also readily apparent in this plot. In Fig. 3B, the liquid 
line of descent under conditions of fractional crystallization 
of olivine is plotted. Again, as expected, the trends of both 
the melt and the olivine are towards considerably more 
Fe-rich compositions than in the equilibrium crystallization 
model, al though the melt is not  as silicic for a given change 
in T. Also, the maximum in XFoO,M~lt is shifted to slightly 
higher values (0.265) and lower temperatures. 
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Fig .  2. P -  T diagrams depicting contours of Xw, o~ (dotted lines), 
XFeO, M~Jt (dashed lines), Xsio2,Melt (dot-dash lines) and Mol (solid lines) 
for the assemblage olivine + melt in the system SiOz-MgO--FeO. 
Reference conditions (large dot) are P =  5 kb, T= 1000 ~ C, Xw.o~ 
= 0.2, Xvoo.me . = 0.227, Xslo2,m,l, = 0.5, Mol = 0.05, MM~I, = 0.95 
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Fig. 3A, B. Ternary Fe2SiO4-Mg2SiO4-SiO 2 diagrams depicting the evolution of melt and olivine composition with isobaric cooling 
from the initial conditions specified in Fig. 2. ~e lines connect coexisting olivine and melt at different temperatures. A Equilibrium 
crystallization; B Fractional crystallization of olivine 

Pelitic Schists 

Consider the assemblage garnet + biotite + staurolite 
+ q u a r t z + m u s c o v i t e + f l u i d  (H20) in the system SiO 2 
- A1203 - FeO - MgO - K 2 0  - H 2 0  (KFMASH).  Garnet, 
biotite and staurolite (Fe2A19Si3.75022(OH)2) are assumed 
to be binary F e - M g  solutions and quartz, muscovite and 
fluid are assumed to be pure. With these assumptions, there 
are two independent exchange reactions 

FeMg_ 1 (garnet) = FeMg_ 1 (biotite) (14) 

FeMg_ 1 (garnet) = FeMg_ 1 (staurolite) (15) 

and one net transfer reaction (balanced for gram-cation un- 
its) 

0.913 staurolite + 1 biotite + 0.232 quartz 

= 0.579 garnet + 0.889 muscovite + 0.058 H20.  (16) 

The results of calculations for this assemblage are pre- 
sented in Fig. 4 as isopleths of XFc in garnet, biotite and 
staurolite and of moles of garnet. According to the petro- 
genetic grid of Spear and Cheney (1986), the limiting reac- 
tions for the assemblage garnet + biotite + staurolite are the 
two K F M A S H  reactions chloritoid + muscovite + quartz 
= garnet + biotite + staurolite + H 2 0  and staurolite + mus- 
covite + quartz = garnet + biotite + A12SiO5 + H 2 0  and the 
K F A S H  reaction Fe-staurolite + annite + quartz = alman- 
dine + muscovite + H20.  Isopleths of X F e  in garnet, biotite 
and staurolite must necessarily start at the limiting K F A S H  
reaction with values of 1.0 and decrease with increasing 
temperature and/or pressure. The isopleths are not exactly 
parallel for the three minerals owing to the interactions 
of the two exchange reactions and the net transfer reaction 
on the mineral compositions. Garnet  has the steepest isop- 
leth, then staurolite with biotite showing the shallowest. 

Isopleths of garnet abundance were computed by assum- 
ing initial molar ratios for each phase as indicated in the 
figure caption at a pressure and temperature of 7 kb and 
620 ~ C and mineral compositions consistent with these con- 
ditions (the large dot in Fig. 4). The contour for Maar = 0 
therefore passes through this P - T  point. Contours for 
+ MGar signify garnet growth whereas contours for - M G a ,  
signify garnet consumption. The amounts of all other phases 
also change across the mineral isopleths by an amount  ex- 

actly specified by the stoichiometric ratios in the net transfer 
reaction (Eq. 16). 

The contours for Mca~ may be interpreted as the P - T  
trace of the net transfer reaction (Eq. 16). In the limit as 
XFc approaches 1.0 in each of the phases, these contours 
must become parallel to the K F A S H  limiting reaction. The 
mineral isopleths are not necessarily parallel to any of the 
composition isopleths because composition isopleths are 
governed by the exchange equilibria in addition to the net 
transfer reaction. 

As an example of a natural pelite, consider again 
the assemblage garnet + biotite + staurolite + quartz + mus- 
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Fig. 4. P - - T  diagram depicting contours of XF~,Ga, (dot-dashed 
lines), XVe,Bio t (dashed lines), XFe,Sta u (dotted lines) and MGa r (solid 
lines). The reference point for constructing composition isopleths 
is XFe  ,Gar = NEe,Blot = XFe,Stau = 1.0 along the KFASH limiting reac- 
tion Stau + Ann + Qtz = Aim + Mus + H20. The reference point for 
mineral abundance isopleths (large dot) is P=7 kb, T=620 ~ C, 
Xv~,~ar = 0.927, XFe,Biot = 0.702, Xv~,Stau = 0.904, MQ~=0.25, 
Mri~o=0.0, MM~=0.25, MGa~=0.0, MBiot=0.25, Msta~ =0.25 
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Table 3. Initial conditions at T=520 ~ C, P=3.5 kb for calcula- 
tions involving the assemblage garnet+biotite+staurolite+mus- 
covite + quartz + plagioclase + fluid (HzO) in the system 
MnNCKFMASH 

Phase Moles XF~ X~, Xc~ 

Quartz 0.20 - - - 
H20 0.0 - - - 
Muscovite 0.25 - - - 
Plagioclase 0.10 - - 0.243 a 
Garnet 0.15 0.682 0.161 0.038 
Biotite 0.20 0.463 0.003 - 
Staurolite 0.10 0.793 0.028 - 

a Xanorthi te  

cov i t e+f lu id  (HzO) with plagioclase in the system 
S i O 2 -  A 1 2 O a - M g O -  F e O - M n O - C a O - N % O - K z  O 
- H 2 0  ( M n N C K F M A S H ) .  In addi t ion  to reactions 14, 15, 
and  16, two addi t ional  exchange reactions 

F e M n _  1 (garnet) = F e M n _  ~ (biotite) (17) 

F e M n _  ~ (garnet) = F e M n  _ t (staurolite) (18) 

and the net transfer react ion (balanced for gram-cat ion  un- 
its) 

1.667 anor thi te  + 1.0 annite 
= 0.889 grossular  + 0.889 a lmandine  + 0.889 muscovite  (19) 

may  also be written. 
The thermodynamic  variance of this assemblage is 4; 

however, employing mass balance constraints  and  the as- 
sumption of closed system behavior,  isopleths may  be com- 
puted for any phase as shown in Figs. 5 and 6. Initial  condi-  
t ions for these calculations are from a natura l  schist from 
M t  Moosi lauke,  New Hampshi re  (Hodges and Spear, 1982) 
and are given in Table 3. Isopleths of XAlm in garnet  
(Fig. 5 A) have generally negative slopes, similar to the re- 
sults obta ined for K F M A S H  system, but  there XA~m dis- 
plays a maximum. Contours  of Xsp~ (Fig. 5 D) have similar 
slopes and decrease monotonical ly .  The maximum in al- 
mandine  composi t ion occurs because the temperature  of 
the dominant  net transfer react ion (Eq. 16) in the K F A S H  
system is intermediate  between that  of the K M n A S H  and 
K M A S H  systems, which are lower and higher, respectively. 
Almandine  content  therefore increases largely by virtue of 
F e - M n  equil ibria and then decreases by F e - M g  equilib- 
ria. In fact, the max imum in X A I m  is very near the P - - T  
condit ions of the K F A S H  reaction. 

Isopleths for XA,or (Fig. 5 B) are relatively flat with XA,o~ 
decreasing with increasing P. Contours  of XG~o~ (Fig. 5 B) 
have positive slopes at low pressures, but  become nearly 
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Fig. 5A-D. P - T diagrams depicting isopleths of garnet, biotite, staurolite and plagioclase composition for the assemblage garnet + bioti- 
te + staurolite +muscovite+ quartz+plagioclase + fluid (H20) in the system MnNCKFMASH. Reference conditions (large dot) are given 
in Table 3. A Isopleths of Xv,,Gar; B Isopleths of Xca, Gar and XAnor,Plag; C Isopleths of Xve in biotite and staurolite; D Isopleths 
of XMn in garnet, staurolite and biotite 
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Fig. 6. Mineral abundance isopleths of garnet (solid lines), biotite 
(dashed lines), staurolite (dot-dashed lines) and plagioclase (dotted 
lines) for the system depicted in Fig. 5 and Table 3. Large dot shows 
references P - T conditions 

vertical at high pressures and low temperatures. Both XGros 
and XA,or are controlled only by  reaction 13. However, 
also involved in this reaction are the activities of annite 
and almandine, which also vary with P and T. Isopleths 
of Xv~ and XM, in biotite and staurolite (Figs. 5 C and D) 
have negative slopes and vary monotonically, although the 
slopes are quite different in each phase. 

Four sets of mineral abundance isopleths are shown in 
Fig. 6. Plagioclase contours are relatively fiat with Mm,g 
decreasing with increasing pressure. Inasmuch as net 
transfer reaction 19 is the only reaction governing both 
plagioclase composition and modes, the contours for XA~or 
and Mm,g must necessarily be parallel. Contours for moles 
of biotite and moles of muscovite must also be parallel, 
as must contours for moles of staurolite, quartz and H20, 
because the production and consumption of these phases 
are governed by the stoichiometries of the two net transfer 
reactions. Mineral abundance contours for garnet, biotite- 
muscovite and staurolite-quartz-H20 have relatively steep 
negative slopes that reflect the negative slope of the net 
transfer reaction, equation 16. They are not parallel to any 
composition isopleths because the latter are also governed 
by the exchange equilibria. 

Applications of the reaction progress variable to meta- 
morphic petrology have been discussed by Ferry (1983), 
Thompson et al. (1982), Rice and Ferry (1982), Thompson 
(1982), Kimball et al. (1985) and others. In the above exam- 
ple, reaction progress of the two net transfer reactions may 
be monitored by the changes in the moles of one or more 
phases. Reaction 16 does not involve the production or 
consumption of plagioclase, therefore progress along this 
reaction must be parallel to isopleths of plagioclase abun- 
dance (dashed lines in Fig. 6). Similarly, reaction 19 does 
not involve the production or consumption of staurolite, 
quartz and H20  so progress along this reaction must be 
parallel to isopleths of staurolite-quartz-H20 abundance 
(dot-dashed lines in Fig. 6). With these considerations, the 
direction of reaction progress may be specified as labeled 
in Fig. 6. 

An alternative way of viewing reaction progress is by 
plotting a reaction space, where the reaction coordinates 
have been rendered orthogonal, as shown in Fig. 7 (cf. 

ilil 2##1 II Z I i I111 II 
Q: 0"21 

: , r /  
.... i i / /  

03 ~ . . . . . . .  /' V] 4 01 

/ ~I '~ / /I : 
/ [ I I 

/ / ' 

/ ', 

Rxn 19 -- 

0.2 03 

Fig. 7. Reaction space contoured for P (dotted lines) and T (dashed 
lines) for the system depicted in Fig. 5 and 6 and Table 3. Solid 
line delimits the "reaction polygon", which limits the accessible 
portion of reaction space for this assemblage 

Thompson, 1982; Rice and Ferry, 1982). P - - T  contours 
have been drawn on this diagram by solving the system 
of equations for (dMstau/dMplag)r and (dr/dMstau)MPlag etc. 
It should be noted that isopleths of mineral composition 
may also be contoured on this diagram by derivation of 
quantities such as (dMstau/dMplag)X(Fe,6ar), etc. 

The reaction polygon, as defined by Thompson et al. 
(1982), defines the limit of accessible P - T  space for an 
assemblage. Along each face of the reaction polygon the 
moles of a phase in the assemblage equals 0. In Fig. 7 the 
reaction polygon is shown as solid lines labeled with the 
phase that is of zero quantity along the respective face. 
In Fig. 6, the reaction polygon may be deduced by identifi- 
cation of mineral abundance isopleths where the moles of 
the phase equals 0. It is interesting to note that for the 
assemblage garnet + biotite + staurolite + quartz + musco- 
vite +plagioclase + H20, only the staurolite-out face of the 
reaction polygon plots on the P -  T diagram of Fig. 6 (com- 
pare P and T contours on Fig. 7 with Fig. 6); other faces 
of the reaction polygon plot at either very high pressure 
or low temperature. 

Discussion 

Systems of equations that describe the exact thermodynamic 
constraints among the differentials of intensive and exten- 
sive variables of a system can be a tremendous aid in helping 
to decipher petrogenetic processes. Because the equations 
involve the differentials of the thermodynamic variables, the 
methodology is only suited to the calculations of changes 
in these variables from a reference state to another set of 
conditions. Moreover, because the equations are linear, so- 
lution to the equations can be computed directly'by Gaus- 
sian elimination. 

As the preceding examples indicate, the methodology 
may be applied to the contouring of any thermodynamic 
variable against any others. In addition, it is also possible 
to track the composition and modes of phases along a pre- 
scribed pressure-temperature path, or alternatively to use 
changes in phase compositions or modes to infer changes 
in pressure and temperature. Spear and Selverstone (1983) 
have described such an application where the compositional 
growth zoning preserved in garnet is used to infer pressure- 
temperature paths of crystallization. In that method, only 
the intensive variables of the system (i.e. no mass balance 
constraints) are considered and application of the technique 
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is limited to assemblages of relatively low thermodynamic 
variance (in practice, quadravariant  or lower). However, by 
assuming closed system behavior, or open system behavior 
where mass transfer is characterized quantitatively (e.g. a 
fractional crystallization model), then the number of degrees 
of freedom of any system is two. This approach might have 
considerable application in igneous petrology where com- 
positional trends of melts may be inferred by analysis of 
a suite of igneous rocks and it is desired to know the P -  T 
evolution responsible for these trends. Other applications 
include the calculation of the liquid line of descent or com- 
positional evolution of a zoned garnet along a prescribed 
P -  T trajectory. 

Applications involving reaction progress form an impor- 
tant link between petrographic observations of modal  
changes and chemical changes that occur in phases. Dia- 
grams such as Fig. 6 may, therefore, be a useful aid for 
deciphering the P - T  evolution of a rock. For  example, 
if accurate modal  changes can be measured then a unique 
P - T  path can be inferred. In practice, some phases will 
be better monitors than others; in the example in Fig. 6, 
plagioclase modes in addition to any other phase would 
provide the best resolution of both pressure and tempera- 
ture, but any other pair (exclusive of plagioclase) would 
not because of the low angle of intersection of mineral abun- 
dance isopleths. Combinations of modal  and chemical 
changes would permit evaluation of the degree to which 
a system is open to various chemical species. 

Acknowledgments. This work was supported by National Science 
Foundation grants EAR-8514659 and EAR-8708609. A construc- 
tive review by J.M. Ferry is gratefully acknowledged. 

References 

Berma n RG, Engi M, Greenwood H J, Brown TH (1986) Derivation 
of internally-consistent thermodynamic data by the technique 
of mathematical programming: a review with application to 
the system M g O - S i O a - H 2 0 .  J Petrol 27:1143-1364 

Bohlen SR, Boettcher AL (1981) Experimental investigations and 
geological applications of orthopyroxene geobarometry. Am 
Mineral 66:951-964 

Brown TH, Skinner BJ (1974) Theoretical prediction of equilibrium 
phase assemblages in multicomponent systems. Am J Sci 
274:961-986 

Ferry JM (1983) On the control of temperature, fluid composi- 
tion, and reaction progress during metamorphism. Am J Sci 
283-A:201-232 

Ghiorso MS (1985) Chemical mass transfer in magmatic processes. 
I. Thermodynamic relations and numerical algorithms. Contrib 
Mineral Petrol 90:107-120 

Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary 
and critique of the thermodynamic properties of rock-forming 
minerals. Am J Sci 278A: 1-299 

Hodges KV, Spear FS (1982) Geothermometry, geobarometry and 
the AlzSiO 2 triple point at Mt. Moosilauke, New Hampshire. 
Am Mineral 67:1118 1134 

Kimball KL, Spear FS, Dick HJB (1983) High temperature alter- 
ation of abyssal ultramafics from the Islas Orcadas Fracture 
Zone, South Atlantic. Contrib Mineral Petrol 91:307-320 

Prigogine I, Defay R (1954) Chemical Thermodynamics. Longmans, 
Green and Co., London 

Rice JM, Ferry JM (1982) Buffering, infiltration and the control 
of intensive variables during metamorphism. In: Ferry JM (ed) 
Characterization of Metamorphism through Mineral Equili- 
bria. Mineral Soc Am [Reviews in Mineral] 10:263-326 

Russell JK, Nicholls J (1985) Application of Duhem's theorem to 
the estimation of extensive and intensive properties of basaltic 
magmas. Can Mineral 23: 479-488 

Spear FS, Cheney JT (1986) Yet another petrogenetic grid for pelitic 
schists. Geol Soc Am Abstracts with Programs 18:758 

Spear FS, Ferry JM, Rumble D (1982) Analytical formulation of 
phase equilibria: The Gibbs method. In: Ferry JM (ed) Charac- 
terization of Metamorphism through Mineral Equilibria. Min- 
eral Soc Am [Reviews in Mineral] 10:105 152 

Spear FS, Selverstone J (1983) Quantitative P -  T paths from zoned 
minerals: Theory and tectonic applications. Contrib Mineral 
Petrol 83 : 348-357 

Thompson JB (1982) Reaction space: an algebraic and geometric 
approach. In: Ferry JM (ed) Characterization of Metamorphism 
through Mineral Equilibria. Mineral Soc Am [Reviews in Min- 
eral] 10:33-51 

Thompson JB, Laird J, Thompson AB (1982) Reactions in amphib- 
olite, greenschist and blueschist. J Petrol 23:1-17 

Received July 6, 1987 / Accepted March 14, 1988 
Editorial responsibility: I.S.E. Carmichael 


