
A N D R E J A  PRIJATELJ  Bounded Contraction and 
Gentzen-style Formulation 
of Lukasiewicz Logics 

A b s t r a c t .  In this paper, we consider multiplicative-additive fragments of affine propo- 
sitional classical linear logic extended with n-contraction. To be specific, n-contraction 
(n > 2) is a version of the contraction rule where (n + 1) occurrences of a formula may be 
contracted to n occurrences. We show that  expansions of the linear models for (n + 1)- 
valued Lukasiewicz logic are models for the multiplicative-additive classical linear logic, its 
affine version and their extensions with n-contraction. We prove the finite axiomatizabil- 
ity for the classes of finite models, as well as for the class of infinite linear models based 
on the set of rational numbers in the interval [0, 1]. The axiomatizations obtained in a 
Gentzen-style formulation are equivalent to finite and infinite-valued Lukasiewicz logics. 
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1. I n t r o d u c t i o n  

This paper found its origin while investigating the effects of substi tuting 
bounded contraction for full contraction in classical Gentzen systems. 

We here consider two versions of bounded contraction differing in the 
number of occurrences of a formula that  may be contracted. For any n > 2, 
n-contraction and n-copy contraction are versions of the contraction rule 
where (n+  1) and 2n occurrences of a formula respectively may be contracted 
to n occurrences. In the presence of weakening the respective rules for n- 
contraction and n-copy contraction are interderivable. It will be seen, that  
the latter rules are convenient to formulate and prove the central lemmas 
for establishing completeness theorems in section 4. 

Substi tut ing n-contraction for full contraction in Gentzen systems al- 
ready results in splitting of logical operations familiar from linear logic, see 
Girard [6]. Hence, the logics obtained are multiplicative-additive fragments 
of affine linear logic extended with n-contraction. Since the systems with 
n-contraction considered do not have the cut-elimination property (witness 
the counter-example in section 2) it is of vital importance to provide models 
for them. 

In section 3, we specify the class of models based on many-valued seman- 
tics as models for multiplicative-additive fragment of propositional classical 
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linear logic, its aifine variant and their extensions with n-contraction. We 
emphasize that  our models are just  particular examples of MV-algebras in- 
troduced by Chang [4] 

In section 4, we give an axiomatization for each of the classes of finite 
models considered. To prove the corresponding completeness theorems we 
use a suitable generalization of Kalmir  method,  well-known from the com- 
pleteness proof of ordinary propositional logic with respect to 2-valued se- 
mantics. However, due to the fact that  A U B and ~ (~ A + B) + B (with U 
and + denoting the additive and the multiplicative disjunction respectively) 
coincide in the proposed models, the logics obtained are, in fact, equivalent 
to finite-valued Lukasiewicz logics. In other words Lukasiewicz logics in a 
linear Gentzen-style formulation. Thus it is now our interest and duty to 
remind the reader of the previous results obtained in this field and compare 
them with our own contribution. 

The problem of finite axiomatizability of n-valued Lukasiewicz logics has 
at tracted many mathematicians ever since Lukasiewicz introduced these log- 
ics (for n -- 3 in 1920, others in 1922) by the well-known matrix method [9]. 
The best-known solutions of that  question, are given by: Lindenbaum in 
[9], Rosser and Turquette  in [12], Tokarz in [13] and Grigolia in [7]. In par- 
ticular, Grigolia obtained elegant Hilbert-style axiomatizations of n-valued 
Lukasiewicz logics. Moreover, his completeness proof is based on a subclass 
of Chang's MVn-algebras making use of a version of bounded contraction 
and specific conditions for primitive connectives depending on n. 

Two more results by Rosser and Turquette  are listed in the literature~ 
namely in [10] and in [11]. However, the completeness proof given in the 
former article is somewhat obscure due to a defect in the definition of a notion 
of an S-sum. On the other hand, the more elegant axiomatization presented 
in the latter paper is not adequate for Lukasiewicz logics, as observed by 
the authors themselves. We emphasize that  this observation also follows 
from the fact, that  full contraction is derivable in the axiomatic systems 
considered by Rosser and Turquette. As we shall show below, full contraction 
is not admissible in any of many-valued Lukasiewicz logics. Let us conclude 
our brief survey with two more contributions on the finite axiomatizability 
in question. In [3] Cignoli gives an algebraic completeness proof based on 
proper n-valued Moisil algebras. And finally, we emphasize that  Tuziak 
in [15] obtained elegant Hilbert-style axiomatizations where the connectives 
resemble to our linear ones and an equivalent for our n-contraction is present. 
However, his proof is of a different kind, namely by means of the Lindenbaum 
algebra. 

The intuition behind our own method of axiomatization of finite-valued 
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Lukasiewicz logics shares an underlying basic idea with some of the publi- 
cations mentioned above, namely that  of encoding in a formula a certain 
"truth-value" (see [10] and [12]). However, here we consider different primi- 
tive connectives and introduce a new construction of such a formula. More- 
over, due to the derivable n-copy contraction rules in our systems we can 
present a simpler proof yielding different, more perspicuous axiomatization 
in a Gentzen-style formulation with additional axioms. In fact, to the ini- 
tially given affine classical linear logic with n-contraction we add the axiom- 
schemes which encode point-wise definitions of the operations in models cor- 
responding to + and U respectively. Moreover, an additional axiom-scheme 
is an n-valued analogue of the 2-valued classical tautology P V ~ P .  

In section 5, we consider the intersection of all the systems that  are 
complete for the respective classes of finite models. We show that  the inter- 
section is complete for the class of linear models based on the set of rational 
numbers in the interval [0, 1]. We also prove the finite axiomatizability of 
the intersection considered, resulting in a Gentzen-style formulation of logic 
equivalent to R0- Lukasiewicz logic. 

Let us finally mention that  Troelstra's notation [14] for the linear logic 
connectives will be used in this paper. 

2. S y s t e m s  o f  a f f ine  c l a s s i c a l  l i n e a r  l og i c  w i t h  b o u n d e d  c o n -  
t r a c t i o n  

For any n >_ 2, a classical system of affine propositinal linear logic with 
n-contraction, PLn,  is given by the following axioms and rules. 

Axiom scheme 

A ~ A  

Logical rules 

�9 left and right negation rules 

F ; -A,A 
L ~  

F, HA ;- A 
F ,A ',- A 

F ',. HA, A 
R,.., 

�9 left and right disjunction rules 

Lt3 F ,A ',-A F , B ~ A  
F ,A U B ----~ A 

F ',- Ai, A 
RU for i = 1,2 

F '.. A~ H A2, A 
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�9 left and right par rules 

L +  
F i , A  ::> Ai  F2, B '.. A2 

F1, F2, A + B '." Ai ,  A2 

Structural rules 

F ~ A , B , A  
R+ 

F '.- A + B , A  

�9 left and right weakening rules 

L W  
F ~ A  F ' . A  

F,A  '.. A F ~ A , A  
R W  

�9 left and right n-contraction rules 

LCn F, A (n+i) .~- A F ~ A ('~+i) , A 
F, A (n) :. A F '.- A (n) , A 

where A(k) = A, A , . . . ,  A, i.e. k copies of formula A. 

�9 cut rule 

C U T  
Fi '~ A, A1 F2, A ~ A2 

F1, F2 ==~ A1, A2 

Throughout  the above rules F ,A,  Fi ,F2,  A i ,A2  denote finite multisets of 
formulas. 

COMMENT: Due to the restriction on contraction rules a sequent A + B 
A U B is not generally derivable in PL,~ for any n > 2. In other words, 

the usual propositional logic connective V has been split into the additive 
and multiplicative one, i.e. U and + respectively. The following connectives 
can be defined 

�9 A R B : = ~ ( ~ A U ~ B )  

�9 A * B  : =  , ~ ( ~ A + , ' ~ B )  

�9 A ' . . * B : = , . ~ A U B  

�9 A---oB :=  ,-~A + B 

The respective rules for each of these connectives, being the same as in 
classical linear logic, are derivable in P L n  for n _> 2. We shall also use those 
connectives and the corresponding rules. 
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Consider now another possible restriction on contraction rules, namely 
for given natural number n > 2 

F, A(n), A (n) ==* A 
F, A(n) "'. A 

F ==~ A(n) , A (n) , A 

P ' A (•) A r" 

We shall call these rules left and right n-copy contraction respectively. In 
the presence of weakening these rules are interderivable with those intro- 
duced earlier. Thus, we shall, in what follows, use n-copy contraction or 
n-contraction as convenient to show some meta-properties of the system 

PLn. 

To start with 

FACT 2.1 The cut rule can not be eliminated from the system PLn ,  for any 
n>_2. 

PROOF. The following is a counter-example for cut-elimination in the 
system PL2. Consider the sequent 

+ x ,  

where u, z, x are atomic formulas. 
It is easy to check that this sequent does not have a cut-free derivation 
in PL2. On the other hand, witness the derivation of the same sequent 
obtained, as follows: 
First, applying the left rule for --o to 

z - - o u = = V z ~ u  and x ~ x  

yields: 
z - o u ,  ( z ~ u ) - o x  '. x. 

Further, applying twice the left rule for --o to the last obtained sequent and 
to the axiom 

Z----o~t ,'- Z- - -oU 

gives: 

x .  

Next, using left 2-contraction rule results in: 

x .  



442 A. Prijatelj 

And finally, applying cut rule to the latter sequent and to the, clearly, PL2- 
derivable sequent 

U ;- Z---o?s 

yields: 
~ , ~ - ~ ,  ( z - ~ ) - ~ ( ( z - o ~ ) - ~ ( ( ~ - ~ ) - o x ) )  :-x. 

However, the reader is invited to check, that  for any n > 2 the sequent 
given below provides a counter-example for cut-elimination in PLn:  

~, (z--o~)(~-~), ( ~ - o ~ ) - o ( ( ~ - - o ~ ) - o . . . - o ( ~ ) - - o ~ ) . . . )  :. x, 

where (z--ou) occurs (n + 1)-times in the indicated subformula of the an- 
tecedent. �9 

3. M a n y - v a l u e d  s e m a n t i c s  

We now give a particular many-valued semantics for the systems considered 
in section 2 .  

Given a natural  number n > 2~ we shall define a model for PLn,  called 
Mn(v), a s  follows. 

1. Take the following set of values: 

8~ : { k / n  I k = 0 , 1 , . . . , ~ -  1 ,~} .  

A valuation function v assigns to each propositional letter an element 
of Sn. 

2. Extend v to arbitrary PLn-formula inductively, as follows: 

v(~A) = 1 -  v(A) 

v(A U B) = max{v(A), v(B)} 

v(A + B ) =  m in{v (A)+  v(B), 1} 

v(A ~ B) = min{v(A), v(B)} 

v(A*B) --- max{v(A) + v(B) - 1,0} 

v(A ~.z B) = max{1 - v(A), v(B)} 

v(A-oB) = rain{1 - v(A) + v(B), 1}. 
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3. v is extended to any PLn-sequent  A1,..., Am '; BI,..., Bj putting: 

v ( A 1 , . . . ,  Am ~" B I , . . . ,  B j )  = v(~A1 + ' "  + ~Am + B1 + " "  + Bj). 

We shall say that  a given sequent F ',- A is true in the model Mn(v) 
if and only if v(F ~ A) = 1. Moreover, a sequent F ~ A is n-valid 
if and only if v(F ;. A) = 1 for all valuation functions v, i.e. if the 
sequent under consideration is true in every model Mn(v). The class 
of all models Mn(v) will be denoted by him. 

REMARK. Note that  v(A LA B) = v (~(~A + B) + B). 

PROPOSITION 3.1. [Soundness] Given a natural number n > 2 and a P L n -  
sequent F ~ A, if P L n  F F ~ A, then F ',. A is n-valid. 

PROOF. By induction on the length of a derivation. 
As an example, we will consider the case where the last applied rule 

within a given derivation is right n-copy contraction: 

F ;- A('~) , A(~) , A 
F ~ A(n), A 

First, observe that  v(A1 + . . .  + Am) = min{v(A1) + . . .  + v(Am), 1}. 
Hence, we get v(A1 + . . .  +Am) = 1 if and only ifv(A1) + . . .  + v ( A m )  > 1. 
Now, by induction hypothesis the following holds for all v: 

p r 

~ ( 1 - v ( v i )  ) + 2nv(A)+ ~ v ( ~ j )  > 1, 
i=1 j = l  

where F =-) ,1 , . . . ,7p  and A = ~1, . . . ,5r .  
And we are going to show that,  then also: 

p r 

~ ( 1  -v (Gi ) )  +nv(A) + ~ v(hj) > i, 
i=1 j = l  

for all v. 

In fact, one only has to observe, that  for a given v: 

�9 either v(A) = O, then the two considered inequalities coincide and we 
are done; 

�9 or v(A) > 1/n, thus, nv(A) > 1, and a fortiori ~i=l(lP - -  V(~i) ) q- 
nv(A) + E;=I v(hj) > 1. 
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Since v was arbitrary, our  claim is justified. [] 

LEMMA 3.2. Given a natural number n >_ 2, neither left nor right ( n -  1)- 
copy contraction is admissible in PLn. 

PROOF. Let Ap denote  a PLn- fo rmula  P r7 ~ ( n  - 1)P,  where P is a 
proposi t ional  let ter  and (n - 1)P  = P + . . .  + P wi th  (n - 1) copies of P .  

Note that :  
1/n i f v ( P ) = l / n  

v(Ap) = 0 otherwise 

Further ,  consider (,.~Ap) ~, where X n = X , . . .  * X wi th  n copies of X.  
Clearly, 

/ 0 i f v ( P ) =  1/n V((NAp) n) 
1 otherwise 

And  finally, the following sequent presents a counter-example  for admis- 
sibility of right (n - 1)-copy contract ion rule: 

,. A(/-1) A(/-1), (~Apr.  
More precisely, observe tha t  the  given sequent is n-valid. But ,  
v(P) = 1/n is a refuta t ion valuat ion for n-validity of the sequent 

;. A(p n- l )  ' ( ~Ap)  **, 

clearly, 

obta ined by applying the right (n - 1)-copy contract ion rule to the sequent 
above. 

Similarly, one can find a counter-example for admissibil i ty of the  left 
(n - 1)-copy contract ion rule. [] 

4.  A x i o m a t i c  c o m p l e t e n e s s  f o r  f i n i t e  m o d e l s  

In this section, our intent ion is to find an axiomatizat ion of all n-valid P L n -  
sequents,  for any n _> 2. We shall s tar t  wi th  the  case n = 2. 

Consider  the sys tem PL2 extended by the following 

axiom-schemes 

(i) 2(B n ~ B )  r7 (~C)  2 :- 2((B W C) r7 .-~(B LJ C)) 

2(B Cl ~ B )  ~ 2 ( 6  ~ ~ C )  :- 2((B U C) R ~ ( B  U C)) 
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(ii) 2(B • ~ B ) .  2(C R ~C) ~ B + C 

2(B [1 ~ B ) ,  (~C) 2 ~ 2((B + C) [-1 ~ ( B  + C)) 

(iii) ~ p2 U (2(P m ,,~p))2 [J (~,p)2 for P atomic 

where 2X = X + X and X 2 = X * X for any PL2-formula X. This system 
will be referred to as CPL2. 

We are going to prove that CPL2 is complete for the considered class 
of models M2. Later on, it will become clear to the reader that the axiom 
schemes stated in (i) and (ii) are, in fact, forced by the proof of lemma 4.2 
and the axiom scheme in (iii) by the proof of lemma 4.3. For that purpose, 
we have to elaborate first the necessary prerequisites. 

DEFINITION 4.1. Let FPL2 denote the set of all P L  2 formulas and V2 the 
set of all extended valuations on FPL2.  We define a function [., . ] : FPL2 • 
V2 > FPL2,  as follows: 

{ ,,~A 
[A,v] = 2(A q ,,~A) 

A 

if v ( A ) = 0  
if v(A) = 1/2 
if v(A) = 1 

A E FPL2,  v E V2. 

LEMMA 4.2. Given A E FPL2 containing exactly P1, . . .  ,Pro distinct propo- 
sitional letters and given v E V2 , then 

CPL2 t- [P1, v](2),... ,  [Pro, v] (2) ~ [A, v]. 

PROOF. By induction on the complexity of A. 
We shall here consider only one typical case for the connective +. Assume 

A = B + C, and v(B) = v(C) = 1/2. By induction hypothesis we have: 

CPL2 t- [R1, v](2),.. . ,  [Rk, v] (2) > 2(B R ~B)  

and 
CPL2 I- [Q1, v](2),.. . ,  [Q,~, v] (2) ,. z ( c  n ~ c ) .  

And from that by the right rule for *: 

CPL2 F- JR1, v](2),.. . ,  IRk, v] (2), [Q1, v](2),. . . ,  [Qn, v] (2) 
2(B R ~ B ) , 2 ( C  • NC) 
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If {R1,. �9 �9 Rk} A { Q I , . - . ,  Qn} # ~, then a number of left 2-copy contraction 
rule is to be applied, yielding: 

C P L 2  F- [P1, v](2) , . . . ,  [Pro, v] (2) '- 2(B [3 ,-~B) * 2 (6  N ~ C )  

where P 1 , . . . ,  Pm are precisely all distinct propositional letters occurring in 
B and C, hence in A. 

Finally, an application of the rule cut to the last obtained sequent and 
to the CPL2  axiom 2(B [3 ~ B ) .  2(C [3 ~ C )  :- B + C yields: 

CPL2  ~- [P1, v](2),. �9 �9 [Pm, v] (2) ~ B + C, 

what  was to be shown, since v(B + C) = 1 for the given v. �9 

LEMMA 4.3. Given a PL2-formula A, if v(A) = 1 for all v E 1/'2, then 

C P L 2  F- ==~ A. 

PROOF. Assume that  A E FPL2 contains exactly P 1 , . . . , P m  distinct 
propositional letters and that  v(A) = 1 for all v C 112. Take, now, arbitrary 
v',v", v'" E V2 such that  v ' (Pi)  = 1, v"(P1) = 1/2, v'"(P1) = 0 and v' = 
v t~ = v III = v on { P 2 , . . . ,  Pro}. By lernma 4.2 we get: 

CPL2  t- p(2), [P2, v](2), . . . ,  [Pro, v] (2) '.~ A, 

CPL2  ~- (2(P1 [~ ,'~P1)) (2), [P2, v](2) , . . . ,  [Pro, v] (2) '- A 

and 
CPL2  ~- (~P1) (2), [P2, v](2), . .- ,  [Pro, v] (2) '.- A. 

Next, applying left rules f o r ,  and [5 respectively yields: 

CPL2  ~- P~ [5 (2(P1 r3 ~P1))  2 [A (~P1) 2, [P2, v](2), . . .  , [Pro, v] (2) > A. 

Finally, an application of cut rule to the last obtained sequent and to the 
axiom: 

'. u (2(P1 n ~ p l ) )  2 u ( ~ p l )  2 

yields: 
CPL2  L- IF2, v](2),. �9 �9 [Pro, v] (2) ~ A, 

where, clearly, v is arbitrary and the number of propositional letters in the 
antecedent of the sequent is reduced to ( m - 1 ) .  Repeating the above strategy 
gives: 

CPL2  ~- ~ A, 

what  was to be proved. �9 

We need one more 
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FACT 4.4 C P L 2  ~- A 1 , . . . ,  Ak .~ B 1 , . . . ,  Bm if and only if 

C P L  2F- ~ A I + . . . + ~ A k + B I + . . . + B m .  

Finally, we are well equipped to prove the main  

PROPOSITION 4.5. [Completeness] If a PL2-sequent F 
then C P L 2  ~ F ;. A. 

'.~ A is 2-valid, 

PROOF. Assume a PL2-sequent  A 1 , . . . , A k  '.- B1 , . . . ,Bm to be 2- 
valid, i.e. v(~A1 + . . .  + "~Ak -~ B1 + . . .  ~- Bin) = 1 for all v E V2. Then,  by 
l emma 4.3 we get: 

C P L 2  ~- ~ ~A1 + . . .  + ~Ak + B1 + ... + Bin. 

Using fact 4.4 yields: C P L 2  ~- A1,.. .  ,Ak ~ BI , . . .  ,Bin and we are done. 

In what  follows, we are going to generalize the results just  obtained.  In 
other  words, we shall below present an axiomatizat ion of all n-valid P L n -  
sequents for an arbi t rary na tura l  number  n > 2. 

We first in t roduce 

DEFINITION 4.6. Given a natura l  number  n _> 2, let A be a P L n -  formula. 
We shall define a PLn- fo rmula  (k : n)A for k = 1 , . . . ,  (n - 1) wi th  the  
property:  

1 i fv(A)  = k/n 
v( (k :  n)A) = 0 otherwise 

where v E Vn. 
The  const ruct ion of (k : n)A is given inductively as follows: 

(a) for n = 2 put  (1:  2)A = 2(A R HA). 

(b) Assume, now, tha t  (k : i)A has already been defined for all i = 
2 , . . . , ( n - I )  and  k = l , .  .. , (i - 1 ) .  

�9 P u t  (1:  n)A = n(AN. .~(n-  1)A) and ( ( n -  1) :  n)A = (1:  n),~A. 

, Assume, further,  tha t  (m : n)A has already been defined for all 
m =  1 , ( n - 1 ) , 2 , ( n - 2 ) , . . . , ( k - 1 ) , ( n - ( k - 1 ) ) ,  where k _< [n/2J. 
Now define 

(k : n)A = ~ ((1:  rn)A) k i f n  = mk 
( ( n - l ) : n } ( m A )  i f n = r n k + l ,  1 < / < ( k - i )  ( 
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REMARK. It is a mat ter  of patient, but  straightforward, checking to see 
that  the above construction is well-defined. Note however, that  other pos- 
sible constructions of PLn-formula  with the distinguished property would 
yield equivalent formulations of the axiomatization in question. 

Consider now the system P L n  extended by the following 

axiom-schemes: 

(i) f o r 0 < k _ r n < n :  

<k: n)B n <~: n)C ~ <~: n>(B u C) 

(ii) f o r 0 < m < n :  

(~B) n n <.~: n>C ~ <.~: n)(B U C) 

(iii) for 0 < k, rn < n: 

( k : n ) B * ( m : n ) C  > ( ( k + m )  n } ( B + C ) ,  i f k + m < n  

(k : n)B * (m : n)C > B + C, i f k + r a _ > n  

(iv) f o r 0 < m < n :  

(~B) ~ .  <.~: n)C ,:. <.~: ~)(B + C) 

(v) for P atomic formula: 

~-i  n}P) n U pn :- Uk= 1 ((k:  U (~p)n  

The system just  introduced will be called CPLn .  

REMARK. The axiom-schemes given above are, again, forced by the proofs 
of lemmas analogous to those for the case n = 2. Moreover, to match the 
intuition given in the introduction, consider the axiom-schemes in (iii). Note, 
that  the considered sequents are trivially true in all the models Mn (v) except 
for those where v(B) = k /n  and v(C) = m/n .  But, clearly in these cases, 
the valuation of the formula in succedent is 1 by definition. Hence, the 
axiom-schemes in (iii) correspond to the following statements: 
if v(B) = k /n  and v(C) = re~n, then v (B+C)  = (k +m) /n ,  when k + m  < n 
and v(B + C) = 1, otherwise. 

In order to show that  C P L n ,  for any n >_ 2, is indeed an axiomatization of 
all n-valid PLn-sequents,  we proceed as follows. 
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DEFINITION 4.7. Given a natural  number n > 2, we define a function [. ,  . ]n : 
F P L n  • Vn ~ F P L n  by: 

/ ~ A  

[A,v]n = (AV(A)n:n)A 

if v(A) = 0 
otherwise 
if v(A) = 1 

A E FPLn ,  v E Vn. 

We state the central 

LEMMA 4.8. Given A E F P L n  containing exactly P 1 , . . . ,  Pm distinct propo- 
sitional letters and given v E Vn, for some n >_ 2, then: 

C P L n  k [/'1, v](n) , . . . ,  [Pm, v] (n) ~ [A, Fin. 

PROOF. By induction on the complexity of A. []  

REMARK. The rest of the story, omit ted here, proceeds similarly to the 
case n = 2, establishing the following 

PROPOSITION 4.9. [Completeness] Let n > 2. I s a PLn-sequent F ==~ A is 
n-valid, then C P L n  F F :. A. 

5. A x i o m a t i c  c o m p l e t e n e s s  fo r  i n f i n i t e  m o d e l s  

In this section, we consider the intersection of the systems C P L n ,  for n > 2, 
denoted by nn~2 CPLn.  We emphasize that  Nn~__2 C P L n  refers to the set of 
theorems, i.e. to the sequents derivable in every system C P L n ,  for n > 2. 
First, we are going to show soundness and completeness of oc An=2 C P L n  with 
respect to the class of infinite models, based on the set of rational numbers 
Q in the interval [0, 1]. Models based o n  Q n[o, 1] are defined in the same 
way as the finite models in section 3, only that  the set of values, Sc~, is 
now Q N[0,1]. Moreover, if a given sequent is t rue in every model based on 
Q N[0,1] we shall say t ha t  this sequent is Q n[0,1]- valid. 

PROPOSITION 5.1. A given sequent F '.. A is a theorem of N~=2 CPLn iS 
and only iS F ,./x is Q N[0, 1]-valid. 

PROOF. 
(i) soundness 
Assume that  a sequent F '.. A is a theorem of Nn=2 C P L n  �9 We want to 
prove that  v(F ==~ A) = 1 for every valuation v based on Q N[0,1]. 
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Observe first, that  there are only finitely many propositional letters in 
F '.- A, say: P1 , . - - ,  Pj. Consider a valuation v based on Q [7[0,1] such that  
v(Pi) = ki /mi,  for i = 1 , . . .  , j .  Let m _> 2 be the least common multiple 
of { m l , . . .  ,mj} .  Then, for every i = 1 , . . .  , j  there is some s~ such that  
v(P~) = si /m.  Now, we can see that  v l { P l , . . .  , Pj} is in fact the restriction 
of some valuation Vm E Vm. Since F ~ A is by assumption a theorem of 
C P L m ,  for all m > 2, and moreover, soundness, see proposition 3.1, implies 
m-validity, we get: 

v(F ,.~ A ) =  vm(r ,. A ) =  1. 

And this was to be proved, after having realized tha t  the remaining case for 
m = 1 is trivial. 

(ii) completeness 
Suppose that  v(F '.~ A) = 1 for any v based on Q A[0,1]. Given arbi t rary 
n >_ 2, clearly any v E Vn is also a valuation based on Q N[0, 1], hence v(F ~. 
A) = 1 for all v E Vn. This means that  the sequent under  consideration is 
n-valid and by completeness, see proposition 4.9, we get: C P L n  ~- F '.- A. 
Since n was arbitrary, it follows that  F '.~ A is a theorem of Nn=2 C P L n .  
This completes the proof. �9 

It is a routine of universal algebra to provide the following by-product  

FACT 5.2 A given sequent F ==a A is Q N[O, 1]-valid if and only if F ~. A 
is valid for the class o/models 1-In~=2 Mn. 

A natural  question, which arises at this point, is whether  there exists a 
finite axiomatizat ion of Nn~__2 C P L n .  The answer is positive. Clearly, the 
maximal  deductive subsystem contained in every PLn ,  and thus, also in 
every C P L n ,  for n _> 2, will be taken as the base of the axiomatization in 
question. Since there are no contraction rules left in the considered subsys- 
tern, we shall call it PL .  

Moreover, we claim that  the system P L  extended by the axiom-scheme: 

~ ( ~ A + B ) + B  '.~ A U B, 

presents an axiomatization of Nn~=2 C P L n .  We shall refer to this system as 
C P L .  

In what  follows, we reduce the proof of this assertion to the well-known 
result of Wa]sberg [9] who presented a Hilbert-style axiomatization of ~0- 
valued Lukasiewicz logic in the language ~ ~ ,  -o ~,  using our notation. (An 
algebraic proof of the considered axiomatization, based on linearly ordered 
MV-algebras, was obtained by Chang in [5].) 
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(1) 

(2) 

(3) 

(4) 

Wajsberg's axiomatization is as follows: 

axiom-schemes: 

A - - o ( B ~ A )  

(A- -oB)- -o( (B-~C)-~(A~C))  

((A--~B)--~B)--~((B--~A)--oA) 

( ~ A ~  ~B)-o(B- -oA)  

with the single rule of inference, modus ponens. 
We shall refer to the above deductive system as H W .  

From now on, we shall think of H W  as a one-sided sequent calculus with 
axioms given by (1)-(4) and modus ponens having the form: 

',- A ~ A - o B  
~.B 

Further, we shall show that omitting the logical rules for the connective 
U from PL,  but adding to the resulting system the axiom-scheme: 

~ ( ~ A  + B) + B ',. ,-~(~B + A) + A, 

yields a Gentzen-style formulation of H W ,  called G W .  
In other words, we want to show that G W  is complete for the same class of 
models as H W ,  i.e. for models based on Q N[0,1]. Witness the next 

PROPOSITION 5.3. The system G W  is complete for the class of models based 
Q N[0,1]. 

PROOF. Our proof will be based on the following simple observations: 

(i) H W  is a subsystem of GW;  

(ii) G W  is sound with respect to models based on Q N[0, 1]; 

(iii) in G W  a given sequent A1, A2 , . . . ,  Ak 
ably equivalent with 

',- B 1 , . . .  , B in- l ,  Bm is prov- 

==~ AI -~ (A2-@. .  (Ak--~("~B1--~(... (~Bm-1--~Bm) . . .) . 
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Assume now, that a given sequent A1,A2,. . .  ,Ak ~ B1,. . .  ,Bin-l ,  Bm is 
Q N[O, 1]-valid. Then, from (iii) and (ii) it follows, that also the sequent 

'.. A I ~ ( A 2 ,  -o( . . .  (Ak--o(~Bl-o(. .  . (,,~Bm_l--oBm) .. .) is Q N[O, 1]-valid. 
Thus, by completeness, the latter sequent is derivable in H W  and hence, 
also in G W  by (i). Finally, due to Off), we get: 

G W  F- A 1 , A 2 , . . . , A k  " B 1 , . . . , B m - I , B m  , 

what was to be proved. 

To continue with: 

LEMMA 5.4. G W  is a subsystem of CPL.  

PROOF. It is easy to see that: 

CPL ~- ,-~(,-~A + B) + B :  :-,-~(,-~B + A) + A. 

DEFINITION 5.5. A mapping s from CPL-formulas into GW-formulas is 
given inductively, as follows: 

(i) s(P) := P ,  for any propositional letter P 

(ii) s (~A)  := ~s(A)  

(iii) s ( A U B )  := ~(,,~s(A) + s(B)) + s(B) 

(iv) s(A + B ) : =  s(A) + s(B) 

LEMMA 5.6. A given CPL-formula A is equivalent to s(A) in the following 
sense: C P L  F- A '.- s(A) and C P L  F- s(A) '.. A. 

PROOF. By induction on the complexity of A. 
To illustrate the proof we shall work out the crucial case: 

CPLS s(CUD) :.CUD. 

First, by induction hypothesis we have: 

CPL ~- s(C) ~ C 

and 

C P L  ~ s(D) '.-D. 
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Applying twice RU we get: 

and 

And from tha t  by LU: 

CPL F- s(C) ;. C U D 

C P L  F- s(D) '. C U D. 

C P L  [- s(C) U s(D) ~ C D D. 

Finally, an applicat ion of C U T  to the C P L - a x i o m  

, .~( , , , s (C)+s(D))+s(D) ' .s(C) Us(D) 

and to the last obta ined sequent above yields: 

~(~s(C)  + s(D)) + s(D) '.- C U D. 

Since s( C U D) = ~(,,,s( C) + s( D ) ) + s( D ) by definition, we are done. �9 

Finally, we are prepared to prove the claim ment ioned  earlier, and now 
s ta ted by 

PROPOSITION 5.7. A given PLn-sequent F '.. A is a theorem of 
[~n~_-2 C P L n  if and only if C P L  [- F :. A. 

PROOF. First,  assume tha t  a sequent A 1 , . . . , A m  )" B 1 , . . . , B n  is a 
theorem of Nn~176 C P L n .  Thus,  by soundness,  see proposi t ion 5.1, the  given 
sequent is Q N[0, 1]-valid. Using the fact tha t  v(AUB)  = v (~ , , (~A+B)+B)  
for all v based on Q N[0,1], we know tha t  the sequent 

s ( A 1 ) , . . . ,  s(Am) :- s ( B L ) , . . . ,  s(Bn) 

remains Q N[0, 1]-valid. Hence, by proposi t ion 5.3, 

G W  t- s (A1) , . . .  ,s(Am) 

And therefore, by l emma 5.4, also 

C P L  F- s(A1), . . .  ,s(Am) 

, .  8(B1),..., 

> s(B1) , . . . , s (Bn) .  

Due to l emma 5.6, we can now successively apply C U T  to the last ob ta ined  
sequent and to one of the C P L - t h e o r e m s  Ai :. s(Ai) and s(Bj) :. Bj 
for all i = 1 , . . . , m  and j = 1 , . . . , n ,  which yields: 

C P L  F- A I , . . . ,  Am ~ B I , . . . ,  Bn. 

One direction of the proposi t ion has thus been verified. 
The  other  direction is left to the reader. 
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6. C o n c l u s i o n  

The t ime has come to offer the reader a final discussion. First, observe, 
that  our last proposition has been established essentially due to the fact 
that  A U B and ~ ( ~ A  + B) + B coincide in the proposed models. This, 
moreover, shows that  U can be defined in terms of + and ~ within the 
systems that  are complete for the indicated class of models. Thus, the above 
introduced systems C P L n  (n >_ 2) and C P L ,  in fact, present Gentzen-style 
formulation in a linear setting of logics equivalent to finite and infinite- 
valued Lukasiewicz logics respectively. As far as we know, only Grishin [8] 
and Avron [1] obtained a Gentzen-style formulation for the 4-valued and the 
3-valued Lukasiewicz logics respectively. It might be interesting to recall 
that  Grishin's axiomatization includes restricted contraction rules, as well. 
In particular, in his system, but in our notation, only the formulas in one of 
the following forms: X 3, ( X + X 2 )  2 or X + X  2 + 2 ( ~ X )  2 may be contracted. 
On the other hand, Avron's cut-free axiomatization is based on a calculus 
of hypersequents due to the fact that  the usual full contraction rule is not 
valid for the consequence relation introduced there. 

Let us mention a particular perspicuity of our formulation of the logics 
under consideration. In Lukasiewicz, Tarski [9], the authors especially era- 
phasized that  the introduced systems, nowadays referred to as Lukasiewicz 
logics, are only proper subsystems of propositional logic. From the formula- 
tions obtained in this paper and the fact that  LJ is definable in terms of + 
and ,-~, the following becomes evident. These logics are fragments of purely 
multiplicative propositional logic where essentially in the (n + 1)-valued case 
n-contraction is subst i tuted for full contraction, while the infinite-valued 
Lukasiewicz logic is contraction free. 

To sum up, the main contribution of this paper is to present a sim- 
ple proof of the finite axiomatizability of Lukasiewicz logics resulting in a 
Gentzen-style formulation. 
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