A;DRZEJ W.  Universality of the Closure Space
PREOTEEL of Filters in the Algebra of All Subsets

Abstract. In this paper we show that some standard topological constructions
may be fruitfully used in the theory of closure spaces (see [5], [4]). These possibilities
are exemplified by the classical theorem on the universality of the Alexandroff’s
cube for T'j-closure spaces. It turns out that the closure space of all filters in the lattice
of all subsets forms a “generalized Alexandroff’s cube” that is universal for Tj-closure
spaces. By this theorem we obtain the following characterization of the consequence
operator of the classical logic: If % is a counfable set and 0: #(¥)—>Z(¥) is a closure
operator on X, then C satisfies the compactness theorem iff the closure space (&, 0>
is homeomorphically embeddable in the closure space of the consequence operator of
the classical logie.

We also prove that for every closure space X with a countable base such that the
cardinality of X is not greater than 2% there exists a subset X’ of irrationals and & sub-
set X’ of the Cantor’s set such that X is both a continuous image of X’ and a conti-
nuous image of X",

We assume the reader is familiar with notions in [5].

1. Product in the category of (a, d)>-closure spaces and continuous fun-
ctions
Let o be a regular cardinal number or the “power” of a proper class
and let & be an infinite regular cardinal number or the “power” of a pro-
per class.
XNote that:

ProroSITION 1. _Assume that:

— X is a nonempty set,
—  for every i el, X; = (X;, F;> i8 an {a, d)-closure space,
—  for every i € I, f; is a function from the set X into the set X;.

Then there s an {a, d)-closure space X = (X, #> such that:

—  for every i eI the fumction f; is continuous,
—  if X' =KX, F'") is an {a, 6)-closure space such that for every i eI
the function f; is continuous, then F < F'.

Proor. Note that if a family # is such that:
@ ={Z<X| @)@y, Z=[D),

then the closure space X = (X, #) with an {a, §>-base satisfies Pro-
posgition 1. O



2 A. W. Jankowski

From Proposition 1 we have that for every family {X,};,; of <a, 8)>-
-closure spaces there is a product of the family {X;};.; in the category of
all {a, 8>-closure spaces and continuous maps, denoted by

Pex,.

tel
If for every ¢ el the (a, d)-closure space X; =<X, %) =X and
I =m, then let
(X7, = P™X,.

iel
Note that:
PROPOSITION 2. For every infinite cardinal number m and for every

{a, 8)-closure space X the closure space [X )5 is homeomorphic to the closure
space [[XT0slms. O

ProPOSITION 3. Let {X,};.;0{X} be a family of {a, d)-closure spaces
and let {f;}er be a family of continuous functions such that for every i el

fir X—>X,.

Then the diagonal function A f;: X—P**X; is continuous, where
iel iel

li fi@) = {fi@) - O

Let & be a family of subsets of a nonempty set X and for ¢ € I let
fir X=X,

Moreover we assume that for ¢ eI, C; is a proper closure operator for
a closure space X; = (X;, #,> and C is a proper closure operator for
a closure space (X, #)>. We will say that the family {f}.; separates
the family # provided that for every x e X, if for every non-empty set
Re# and for every i €l we have:

fi(@) € C:(f(R)).

then « € C(R).
The family {f};c;r separates points provided that for every x, y € X,

if for every i el
fi(®) = fi(y),

then = = y.
Note that:
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LEMMA 1. A family {f;}r separates points iff 4,1, is a one-to-one
mapping. O

LeMMA 2. A function f is a homeomorphic embedding from a closure
space X, into a closure space X, iff f is a continuous and one-to-one mapping
such that the family {f} separates all closed sets in X;. [J

Moreover we can prove the following:

LeMuaA 3. Let # be an {a, 6>-bas¢ for the closure space X and let
{fi}ier be a family of functions such that for every i el

fir X=X,

where X; is an {a, é>-closure space. If the family {f;};.; separates the family
B, then the family { A f;} separates the family of all closed sets in X.
ieT

1e

ProOF. Put f = Af, and X, = P*X,. Moreover we assume that:

tel iel
() @ ={F|(3R)(% < &R < B&F = VAT < (B, X},
d) B ={F|@ARR<F &F = nR)},
(i) @ ={FIAR)(R < B &R is a s-directed family &F = L))

By Theorem 1 (see [4]) £’ is the set of all closed sets in the {a, é>-closure
space X. To prove Lemma 3 it is sufficient to prove that if 2 € {#', 8", 2"},
then the family {f} separates the family £.

1e Let # = #'. Assume that # ¢ F = U F,, where E< a and for
keK
every ke K we have F, e #.

For every & e K there is an i, € I such that

Fio @) ¢ O (Fi (F).
Hence for every ke K
(@) ¢ O (F(F).
It means that
f@) ¢ U O, (F(F).
keK

Note that:

U f(F) € U ()
keK keK

and the set
v, (f(Fk))
keK
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is closed in the a-closure space X;. Thus

2 ¢0y(U fF,).

keK

2¢ Let & = #"'. Assume that ® ¢ F = n F,, where for every l e L
. leL, ¥
we have F; e 4’. By 1° there is an [, € I and an i, € I such that:

fiu(®@ ¢ € (Fi (7).
It means that:

-

fla) € CL(f(F)-
Hence
f@) ¢ n OL(f(F)).
leL,
Of course
Ol(f( N Fz)) &N Ol(f(Fl))‘
leL leL
Thus
flw) ¢ Oof( 0 Fy).
leL
30 Let # = #'". Assume that {F,},.p is a d-directed family such
that @ ¢ U F, and for every p e P we have F, e %",

peP

By 2° we have that for every p e P
f@) ¢ O:(f(Fy)).

Hence
f@) ¢ U O4(f(F,)).
peP :
X, is a d&-inductive closure space and of course

0, UF(E,) € U G(F(F,).

peP PpeP
Thus

fl@) ¢ ol(k:;j (7)) = 1 (f( U ).

keK

This ends the proof of Lemma 3. [
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We assume that for a eardinal number n, the symbol I(n) denotes the
least cardinal number m such the one can find # < #(n) with 5 =m and
such that for every «,y en there exists an K e # with {m =1,
For example 1(3) = 1(4) =2, I(B) = I(6) =1(7) =1(8) = 3, .,.ete.

PrRoPOSITION 4. For every cardinal number m we have

12m) =m.
Proor. For a family # ¢ 2(X) let

Fap={NRB|B =R}

Of course ; < 2% Moreover if the family & is such that for every z, v ¢ X
there exists an R € # with {#, y} "R =1, then (X, F,0{@, X}> is a T-

-closure space. In this case X< F 2 < 2%, Thus for every cardinal number
nwe have n < 2/, If n = 2™ we obtain that m < 1(2™).
On the other hand note that if for a set T a family £ is such that

R ={F,cPT)F, ={ZcT|tcZ} &teT},

Then # = T and for every U, Ve Tifte U—V,then UeF,and V ¢ F,.
Thus for the set #(T) there exists a family # < #(#(T)) with & =m

and such that for every U, V e 2(T') there exists an B € # with {U, V}nR
== 1. It means that I1(2™)<<m. 3

Let Y be the closure space such that (see [6] pp. 114):
Y = <{0) 0,’ 1, 1’}7 {@7 {1’ 1[}1 {0: Ola 1, 1,}}>'
By Lemma 2 and Lemma 3 we have the following theorem:

THEOREM 1. For every closure space X and cardinal number n the
following conditions are equivalent:

(i) X s an <o, d)-closure space such that w,;(X)<n and Z(E) <1,
(ii) X is homeomorphically embeddable into the closure space [Y]%,.

Proor. By Corollary in [5] the implication (ii)=(i) is obvious.
To prove that (i) = (ii) assume that & is an <a, 6)-base for X and # < #(X)
is su@ tlmjt for every @, y € X there is an R € # such that {m =1
and & s % < n. Without loss of generality we can assume that # = {R,},.,,
# ={B}; and I —n.
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For iel let f;: XY be such that

1 if wzeB,NnR,
1" if zeB;,—R,,
0 if xeR,—B,
0 if x¢B,UR;.

fie) =

By Lemma 3 and Lemma 2 the function™ 4 f; is a homeomorphic embe-

iel
dding of X into [Y]},. O

2. Closure space of filters in a lattice of sets

Let Y, be the closure space such that:
Yo = <{0’ 1}7 {Q, {1}: {07 1}}>

The closure space [Y,];; is homeomorphic to the contraction of the
closure space [YI0, (i.e. [¥o1s, = [Y];,[9D]). Hence every T, {a, 0)-
-closure space is homeomorphically embeddable into the respective closure
space [Y,Ih,. Let B}, = {#(n),#) be the <a, 6)-closure space such
that: :

#(n) is the family of all subsets of n, the {a, d>-base for (#(n), £ is the
set of all complete ultrafilters in the lattice (#(n), =>.

Note that:
PROPOSITION 5. B, = [Y,l5,. O
By Proposition 5, Lemma 2 and Lemma 3 we have

THEOREM 2 (see [3]). For every closure space X and cardinal number
1 the following conditions are equivalent:

(i) X és a Ty {a, 8)-closure space such that w,,(X) <n,
(i1) X is homeomorphically embeddable into the closure space By,. 0O

Let m> o and let P, = <(Z, 7 u{@}) be the closure space such that:

¥ — 1ig the set of all propositional sentences of the classical proposi-
tional calculus with a set of propositional variables of power m.

J  — ig the set of all theories in the language % — for the classical
propositional calculus.

Observe that the proper clogure operator for F,, is the consequence ope-
rator for classical propositional caleulus. Of course the contraction ¥, [@]
is the closure space of all filters in the free Boolean algebra of power m.
By Theorem 2 we have:
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THEOREM 3 (see [3]). For every closure space X the following conds-
tions are equivalent:

(i) X satisfies the compaciness theorem and X is a countable closure
space,
(ii) X is homeomorphically embeddable in F,.

Proor. Note that for every a € F* the set
{#1C({a}) = O({z})}

{where C is the proper closure operator for F,) is infinite. Hence if X[0]
ig homeomorphically embeddable inte the closure space ¥#,, then X is
homeomeoerphically embeddable into the closure space F, too. Thus by
the corollary in [3] if X is a countable closure space which satisfies the
w-compactness theorem then X is homeomorphically embeddablein F,. [

If X is an uncountable closure space and F, is uncountable, then
Theorem 3 is not true. For the proof of this remark let D, be the closure
space such that:

le = {wy, {{t}, {0, t}}tml—m) {9, o,}).

REMARK 1. For every cardinal number m the closure space D, is
not homeomorphically embeddable into the closure space F,,.

Proor. Assume that f: D, —+F, is such that D,, is homeomor-
phically embeddable in F,, by f. Without loss of generality we can assume
that f(0) is an antitautology in F,, (if f(0) is not an antitautology in F,,,
then we can put f'(2) = f(@)—f(0)).

By Theorem b5 (ii) (see [5]) for every x, ¥ € w, — {0} such that © # ¥
the conjunction of {f'(z), f'(y)} in F,, is an antitautology in F,. Thus

the Boolean algebra o’ generated by f'(w,) is isomorphic to the Boolean
algebra of finite and cofinite subsets in the set «,. It means that a’ is
isomorphically embeddable in F,,. But the Stone space of a’ (i.e. the Alex-
androff compactification for the discrete space of power w,) is not a conti-
nuocus image of the Stone space of ¥, [@] — i.e. the Cantor cube (see.
in. o

We can give some modifications of Theorem 3 for uncountable cardinal
numbers. In a way similar to the proof of Theorem 3 we can prove the
following theorems:

THEOREM 4. For every closure space X and infinite cardinal number
m the following conditions are equivalent:

(i) X satisfies the compactness theorem and the power of X[@] is mot
greater than m,
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(il) there is a subset T of F,, such that X[@] is homeomorphically embed-
dable in F [T].

Proor. Of course every Boolean algebra is the image of a free Boolean
algebra. O

THEOREM 5. If we have GCH, then for every infinite cardinal number
m there is a subset T in I, such that for every closure space X the following
conditions are equivalent:

(i) X satisfies the compaciness theorem and the power of X[O] is not
greater than m,

(i) X[@] is homeomorphically embeddable in I, [T].

Proor. If we have GCH, then we can prove that for every cardinal
number m > o there is a Boolean algebra a such that every Boolean
algebra of power not greater than m is isomorphically embeddable in a
and the power of a is m (see [2]). O

REMARK 2. Observe that there are many examples of consequence
operators ¢ for non-classical logics such that the consequence operator
for the classical propositional logic is embeddable into . For example
F, is embeddable into the consequence operator for intuitionistic logic,
modal logic, Post logic etc. (see [7]). Hence we ean give many modifica-
tions of Theorems 3, 4 and 5. O

Let D be the closure space such that
D = <{07 1}? {{0}’ {1}7 {0; 1}’ Q}>

Of course [D]; , is the Cantor space (see [1]) and if a La, 0=, o<n
< n', then the closure space [Y i, is a continuous image of the closure
space [D] ,. Thus by Theorem 1 we have:

THEOREM 6. Assume that o’ >0, § <8 and o < n<n'. Then for

every {a, §>-closure space Y such thal w,,(¥Y) < n and l(—17) < n there is a
subset Y' in the closure space [D1% » , such that Y is a continuous image of ¥'.

In particular for every closure space X such that wy . (X) < o and X <2
there is a subset X' of the Cantor space (irrational numbers, real numbers)
such that X is a continuous image of X'. O

REMARK 3. Note that Theorem 6 is a modification of Theorem II1.9.4
in [6]. Moreover let a closure Boolean algebra be a Boolean algebra o/ with
an operation I which, to every element & € &, assigns an element Ia in
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such a way that the following axioms are satisfied:

Ise < a,
IIa = Ia,
I]‘.SZI = 1#.

if a < b, then Ia<< Id

We can give now a modification of the theory of topological Boolean
algebras (see IIT in [6], VI in [7]) and its application in the algebraic
semantics of modal logic (see X in [6], XIII in [7] and Supplement in
(7). O
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