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Abstract. In this paper we show tha t  some standard topological construct ions  
may be fruitfully used in the theory of closure spaces (see [5], [4]). These possibili t ies 
are exemplified by the classical theorem on the universal i ty of the Alexandrof f ' s  
cube for T0-closure spaces. I t  turns out tha t  the closure space of all filters in the la t t ice  
of all subsets forms a "generalized Alexandroff 's  cube" that  is universal for T0-closure 
spaces. By this theorem we obtain the following characterization of the consequence 
operator  of the classical logic: If ~r is a countable set and C: ~ (ff)-->~ (-~) is a closure 
operator  on X, then C satisfies the compactness theorem iff the closure space <2", G> 
is homeomorphical ly  embeddable in the closure space of the consequence operator of 
the classical logic. 

We also prove tha t  for every  closure space X with a countable base such tha t  the 
eardinali ty of X is not  greater  than 2 ~ there exists a subset X '  of irrationals and a sub- 
set X "  of the Cantor 's  set such tha t  X is both a continuous image of X '  and a conti-  
nuous image of X " .  

We assume the reader is familiar with notions in [5]. 

1. Product in the category of  <a, ~>-closure spaces and continuous fun-  
ctions 
Let a be a regular cardinal number  or the "power" of a proper class 

and let ~ be an infinite regular cardinal number or the "power" of a pro- 
per class. 
~Note that  : 

P/~O]?0SITION :[. Assume that: 

-- X is a nonemp~y set, 
-- for every i e I,  X i  = <X~, ~ }  is an <a, ~}-cDsure space, 
-- for every i e I,  fi is a function from the set X into the se~ X~. 

The% there is an (a ,  5)-clos~re space X = <X,  ~ }  such that: 

-- for every i e I the f~nction f~ is continuous, 
-- i f  X '  -~ <X,  ~ ' >  is an <a, ~>-closure space such that for every i e [ 

the function f~ is conti~uous, then ~ g ~ ' .  

PRooP. ~ o t e  that  if a family  2 is such that :  

< - -  

.~ -~ {Z _c X [ (3i)1 ( 3 E ) ~  Z = f ( F ) } ,  

then the closure space X -  (X~ ~') with an (a ,  O)-base satisfies Pro-  
iposition 1. [] 
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F r o m  Proposi t ion 1 we have  tha t  for every  f~mily {X~}~ z of <a~ ~>- 
-closure spaces there  is a product of the famiby {X~}~z in the category of 
all <a, 6>-closure spaces and continuous maps, denoted  b y  

I f  for every  i e I  the  <a, 6>-closure space X i = <X,~> = X and  

I = m, then  let 

[X]o~ = P"~X~. 

l~ote that: 

PROPOSITION 2. .For every infinite cardinal number m and for every 
<a, 5>-closurc space X the closure space [X].m~ is homeomorphie to the closure 

[ ]  s p a c e  m ra 

I>ROP0SI~ION 3. Let {Xi}~zu{X } be a family of <a, ~>-elosure spaces 
and ~et {fi}i~z be a family of continuous f~netions such that for every i ~ I 

fi: X ~ X i .  

Then the diagonal function A f~: X---> P~'~X~ is continuous, where 
ieI r  

t J  

Let  ~ be  ~ family of subsets  of a n o n e m p t y  set X and for i e I le t  

Moreover we assume tha t  for i e I ,  Gi is a proper  closure operator  for  
a closure space X~ = <X~, ~ i>  and C is a proper  closure opera tor  for  

closure space <X, ~> .  We  will say  tha t  the  family (fi}i~z separate~ 
She family ~t provided  t ha t  for every  x e X,  if for every  non-empty  se t  
/~ e ~t and for every  i e I we have :  

f,(x) c, (s (R)). 

then  x ~ C(R). 
The family {fi}i~z separates points provided  tha t  for every  x, y e X~ 

if for eve ry  i e I 

f (x) = s  

t h e n  x ----y. 
Note  tha t :  
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L E ~  1. A family (fi}i~z separates points i f f  A i~ f  i is a one-to-one 
mapping. [] 

L E ) ~ A  2. A function f is a homeomorphic embedding from a closure 
space X~ into a closure space X 2 iff f is a continuous and one-to-one mapping 
such that the family {f} separates all c~osed sets in X~. [] 

Moreover  we can  p rove  the  fo l lowing:  

LE~I~_ 3. Y~et B be an <a~ 6}-base for the c~osure space X and ~et 
{fi}i~i be a family of functions such that for every i e [ 

f,: X Xi, 

where X ,  is an <a~ 5}-closure space. I f  the family {f~}i~r separates the family 
~ then the family { Af i}  separates the family of all closed sets in X .  

isI  

= P ' X , .  ~ o r e o v e r  we a s s u me  t h a t :  P~ooF.  P u f f  A f t  a n d X ~  = ~" 
iel  {~I 

(i) 2' = 

(ii) N "  = {2 , I (~N)(~  _~ N'  & 17 = nN)}, 

(iii) N ' "  = {2 , I ( ]N)(N _~ N "  & N is a d-directed f a m i l y  & 2, = ~ ) }  

B y  T he o r e m 1 (see [4]) ~ " '  is t he  set  of all  closed sets in  the  <a, 3)-closure 
space X.  To prove  L e m m a  3 i t  is suf f ic ient  to  p rove  t h a t  if 2~ e {~',  ~ " ,  ~ ' " } ,  
t h e n  the  f a m i l y  {f} separa tes  t he  f a m i l y  R.  

1 ~ L e t  ~ = ~ ' .  Assume  t h a t  x r  w 
keK 

eve ry  k e K we h a v e  2,k e ~ .  

F o r  eve ry  k e K there  is an  io e I such t h a t  

H e n c e  for e v e r y  k e ~7 

It menns  that 

:Note that: 

f,o (x) c,o(f,o(2,k)). 

keK 

and the set 

/Tk, where  K < a a n d  for  

k~l~ keK 

u 
k~K 
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is closed in t h e  a-c losure  space  X~. Thus  

2 o 

keK  

L e t  ~ ~-- ~ " .  Assume  t h a t  x C F  = n Fz, where  for  e v e r y  1 e L  
leL 

we h a v e  Lw~ e ~ ' .  B y  1 ~ t he r e  is ~Jn lo e L a n d  an  io e I such t h a t  : 

I t  me a ns  t h a t :  

H e n c e  

Of course  

T h u s  

3 o 

C,o(f,o(F,o)). 

f(x)r 

( ~ l ( f (  ('~ El ) )  -~ ('~ C l ( f ( ~ T l ) )  * 

L e t  ~ = ~ ' " .  Assume  t h a t  {Fp}p~p is a & d i r ec t ed  f a m i l y  such  

t h a t  x r u Fp  a n d  for  e v e r y  p ~ P we h a v e  Fp e 2 " .  
:pep 

B y  2 0 we h a v e  t h a t  fo r  e v e r y  p e P  

H e n c e  

f(x) r C~(~(Fp)). 

._). 
f (x)  u 

peP  

X1 is a 8 - induc t ive  c losure  space  a n d  of course  

p e p  p e p  

Thus  

k~K keK  

This  ends  t he  p roo f  of L e m m a  3. [] 
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We assume t h a t  for a cardinal  number  u, the symbol 5(u) denotes *he 

least cardinal  number  m such the  one can find ~ _~ ~(rt) with ~ = m and  

such t h a t  for every x , y  e u  there  exists an R er with { x , y } n R  = 1. 
:For example 5(3) = 5(4) = 2, 5(5) = 5(6) = 5(7) ----- 5(8) = 3, . . .e tc .  

PBOPOSlT!ON 4.  Pot  every cardinal number m we have 

1(2 m) = m.  

1PBoo~. :For a fami ly  N _c ~ ( X )  let 

~ e  = { c ~  l ~  -~ ~}. 

Of course ~ ~< 2 ~. Moreover if the  family  ~ is such tha t  for every x, y e X 

there exists an R e ~  with {x, y } ~ R  = 1~ then  <X, ~ u { O ,  X}> is a To- 

-closure space. In  this ease X ~< ~ ~< 2 ~. Thus for every cardinal number  
n we have u ~ 2 ~("). I f  u = 2 m we obtain t h a t  m ~/(2m).  

On the  other hand  note t h a t  if for a set T a family  ~ is such tha t  

= {~, _= 9 ( 2 ) I F ,  = { z  _~ T t t  ~ z }  e~t e r } ,  

Then ~ = T a n d  for every U, V ~_ T i f t  ~ U - - V ,  then  U e F t  and  V r  

Thus for the  set ~ (T)  there exists a f~mily ~ __c N(~(T))  with ~ = m 

and such t h a t  for every U~ V e ~ (T)  there  exists an R e N with {U, V}c~R 
= 1. I t  means t ha t  5(2 m) ~<m. [] 

Let  ~Y be the closure space such that (see [6] pp. 114): 

Y = <{o, o;  1, ~'}, {o, {1,1'}, {o, 0', 1, 1'}}>. 

:By L e m m a  2 and L e m m a  3 we have the  following theorem:  

TitEOBE~{ 1. _For every closure space X and cardinal number tt the 
following conditions are equivaSent: 

(i) X is an <a, @-closure spade such that w,,~(X) <~ l~ and /(X) ~ ,  
(ii) X is homeomorphicaSly embeddable into the closure space [l~]~n,~. 

PuooF. By  Corollary in [5] the  implication ( i i )~( i )  is obvious. 

To prove t h a t  (i) ~ (ii) assume t h a t  ~ is an <a~ ~>-base for X and  ~ _~ g ( X )  

is such that for every x, y ~X there is an R e~ such that {x, y}nR ---= I 

and  ~ ~ ~< tt. Withou t  loss of general i ty  we can assume t h a t  ~ = {R~}i~ z 

= {Bi}~e  / and I = it. 
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For i e I let f~: X-+X r be such that {!'1 if X ~ B i t 3 R  i,  

if x e Bi--R~, 

if x e R~--B~, 

if z6B~wR~.  

By Lemma  3 and  L e m m a  2 the  function" LI f~ is a homeomorphic  embe- 
ieI 

dding of X into [lZ]",~. [] 

2. Closure space of  filters in a lattice of  sets 

Let  :Yo be the  closure space such tha t :  

T0 = <{o, 1}, {o,  {1}, {0,1}}>. 

The closure space [Yo]an, o is homeomorphic  to the  contract ion of the  
closure space [17][,~ (i.e. [1To]I, ~ = [lr]~,~[O]). Hence  every  To <a~ ~>- 
-closure space is homeomorphical ly  embeddable  into the  respective closure 

[Xro]~,0. Let  Ba,~ space , " = <~(u),  ~> be the  <a, ~>-closure space such 
that: 

(u) is the  family of all subsets of u, the  <a~ ~>-base for <~(u) ,  ~> is the  
set of all complete ultrafi l ters in the  lat t ice <~(n),  ~_ >. 

Note that: 

IZ " l~orosmo~ 5. Bo~,~ = [ 0L,~. [] 

By Proposition 5~ Lemma 2 and Lemma 3 we have 

THE01~]~t 2 (see [3]). ~or every closure space X and cardina~ number 
u the following conditions are equivalent: 

~,i) X is a To <a~ ~>-elosure space such that w~,~(X) ~ u, 

(if) X is homeomorphicaZIy embeddab~e i~,to the closure space B~,~. [] 

Let  m >f r and  let l~ m --= <2", #-w{O}> be the  closure space such t ha t :  

2 '  -- is the  set of all propositional sentences of the  classical proposi- 
t ional  calculus wi th  a set of propositional variables of power m. 

3" -- is the  set of all theories in the  language 2" -- for the  classical 
propositional calculus. 

Observe tha t  the  proper closure operator  for i ~  is the  consequence ope- 
ra tor  for classical propositional calculus. Of course the  contract ion i ~  [O] 
is the  closure space of all filters in the  free Boolean algebra of power m. 
By  Theorem 2 we have:  
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T~EO~E~ 3 (see [3]). For every closure space X the following condi- 
tions are e~uivalent: 

(i) X satisfies the compactness theorem and X is a countable dosuro 
space~ 

(if) X is homeomorphieally embeddabIe in -F.. 

Pnoo~. Note that for every a ~ -F" the set 

{x 1 r  = 

(whcre C is the  proper closure operator for -F~) is infinite. Hence if X[O]  
is homeomorphical ly embeddable into the  closure space -F~, then  X is 
homeomcrphic~Jly embeddable into the  closure space -F~ too. Thus by 
the corollary in [3] if X is a countable closure space which satisfies the  
~-compactness theorem then  X is homeomorphical ly embeddable in -F~. [] 

If X is an uncountable  closure space and -Fro is uncountable,  then  
Theorem 3 is not  true. For  the  proof of this remark  let D ~  be the  closure 
sp~ce such tha t :  

= {{t}, {o, 

~ n ~ n K  1. For every c~rdinal number  m the closure space D ~  is 
not  homeomorphicully embeddable into the closure space -Fro. 

P~oo~. Assume tha t  f :  D~ -~-F m is such tha t  D ~  is homeomor- 
phically embeddable in -Fro by f .  Without  loss of generality we can assume 
tha t  f(0) is an ~nti tautology in -F~ (if f(0) is not  an ant i tautology in -Fro, 
~hen we can pu t  f ' (x)  = f (x ) - - f (O) ) .  

By Theorem 5 (if) (see [5]) for every x, y ~ ohm{0} such tha t  x ~ y 
the conjunction of { f ' (x) , f ' (y)}  in -~m is an ant i tautology in -Fro. Thus 

the Boolean algebra a' generated by f'(co~) is isomorphic to the  Boolean 
~lgebr~ of finite ~nd eofinite subsets in the  set coz. I t  means tha t  a' is 
isomorphically embeddable in -F~. Bu t  the  Stone space of a' (i.e. the  Alex- 
~ndroff compuctification for the  discrete space of power oh) is not  a conti- 
nuous image of the  Stone space of -Fro[O] -- i.e. the  Cantor cube (see. 
[1]). [] 

We can give some modifications of Theorem 3 for uncountable  cardinal 
numbers.  In  a way similar to the proof of Theorem 3 we can prove the  
following theorems:  

T]~EOR]~ 4. .For every c~osure space X and infinite cardinal number 
m the following conditions are equivalent: 

(i) X satisfies the compactness-]theorem and the power of X[O]  is ~ot 
greater than m~ 
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(if) there is a subset T of F~ such that X [ O ]  is homeomorphically embed- 
dable in / ~ [ T ] .  

PgooF .  Of course every  Boolean ulgebra is the  image of a free Boolean 
~lgebra. [] 

T~E0nEH 5. I f  we have GCH, then for every infinite cardinal number 
m there is a subset T in Fm such that for every closure space X the following 
conditions are equivalent: 

(i) X satisfies the compactness theorem and the power of X [ O ]  is not 
greater than m, 

(if) X [ O ]  is homeomorphically embeddable in F,~[T]. 

PnooF.  I f  we have  GCH, then  we can prove tha t  for every  cardinal 
number  m ~> co there is ~ Boolean algebra a such tha t  every  Boolean 
algebra of power not  greater  than  m is isomorphically embeddable  in a 
and  the power of a is m (see [2]). [] 

I~E~I~K 2. Observe tha t  there  are many  examples of consequence 
operators  C for non-classical logics such tha t  the  consequence operator  
for the  elassica,1 proposit ional  logic is embeddable  into C. For  example 
iF, is embeddable  into the  consequence operator  for intuitionistic logic~ 
modal  logic, Pos t  logic etc. (see [7]). Hence  we can give many  mo4ifica- 
t ions of Theorems 3, 4 and  5. [] 

Let  D be the  closure space such tha t  

l) = <{0,1}, {{0}, {0, o}>. 

Of course [D]~.o~ is the  Cantor space (see [1]) and if a <<. a', ~ >~ ~', o~ <~ vt 
~< n', then  the closure space [Y]~.~ is a cont inuous image of the  closure 
space [I)]~:,,,. Thus b y  Theorem ! we have :  

Ti~EOI~E~i 6. Assume that a' ~/ a, (5' ~ ~ and co ~ n ~ vt'. Then for 

every <a, ~}-dosure space ~ such thai w,,~(:F) ~ n and l(~() ~ ~t there is a 
n, such that Y is a continuous image of ~ ' .  subset I7' in the closure space [D]~,,~., 

I n  particular for every closure space X such that wo,o~ (X)  <~ o and ~[ <~ 2 ~ 
there is a subset X '  of the Cantor space (irrational numbers, real numbers) 
such that X is a continuous image of X ' .  [] 

I~E~lCK 3. ~ o t e  tha t  Theorem 6 is a modification of Theorem II I .9 .4  
in [6]. Moreover let a closure Boolean algebra be a Boolean algebra ~r with 
an operat ion I which, to every element  a e ~r assigns an elemen~ Ia  in 
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such a way  tha t  the  ~ollowing axioms are satisfied: 

I a  ~ a~ 
I I a  = Ia  

if a ~ b, then  Ia  4 Ib 

We can give now a modificat ion ol the  theory  of topological Boolean 
algebras (see I I I  in [6], VI  in [7]) and  its application in the  algebraic 
semantics of modal  logic (see X in [6], X I I I  in [7] ~nd Supplement  in 
[7]). 
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