
ISTVAN N]~METI Algebraizat ion  of Quantifier 
Logics ,  an Introductory  
Overview 

A b s t r a c t .  This paper is an introduction: in particular, to algebras of relations of various 
ranks, and in general, to the part of algebraic logic algebraizing quantifier logics. The 
paper has a survey character, too. The most frequently used algebras like cylindric-, 
relation-, polyadic-, and quasi-polyadic algebras are carefully introduced and intuitively 
explained for the nonspecialist. Their variants, connections with logic, abstract model 
theory, and further algebraic logics are also reviewed. Efforts were made to make the 
review part relatively comprehensive. In some directions we tried to give an overview of 
the most recent results and research trends, too. 
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1. I n t r o d u c t i o n  

The research reviewed in this paper has been going on for approximately 
130 years, but here we will almost completely ignore the historical aspects, 
because instead we wanted to concentrate on making the paper easily read- 
able for the beginners. The historical aspects are treated e.g. in [HMTII], 
[TG87], Anellis-Houser [AH89], [Gi89], and [JSL]. The subject of this paper 
could be called, perhaps, first (and higher) order algebraic logic, or perhaps 
trans-proposit ional algebraic logic (or algebra of relations of various ranks). 

This paper was written for a variety of readers ranging from the beginner 
to the specialist. In particular, no familiarity with algebraic logic is pre- 
supposed, moreover, we tried to avoid relying on familiarity with logic itself 
as much as we could. The reader not familiar with logic should be able to 
understand the paper modulo ignoring certain remarks. He/she is advised 
to view the paper as a study of relations of various ranks, and as that of 
algebras whose elements are such relations. Familiarity with the basics of 
naive set theory and some basic concepts of universal algebra should suffice. 
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A pleasant, richly motivated introduction to the subject is found in Halmos 
[Ha85] pp. 206-215, which seems to be complementary to the present paper3 

When discussing the algebraizations of logics, we treated the semantic as- 
pects (models, meanings of formulas in models etc.) of logics as primary, and 
the syntactic aspects (provability etc.) as secondary. This does not represent 
value judgment, nor does it mean that the syntactic aspects will be ignored, 
but instead it has two purposes. (1) We had to choose a unifying principle 
making the paper coherent and easy to read for the nonspecialist. (2) This 
way the main bulk of the paper will be understandable and appreciable for 
readers not too familiar with logic, we hope. 

In w167 we gradually introduce, and carefully explain the most frequently 
used algebras of this area: Cylindric algebras, relation algebras, and (quasi-) 
polyadic algebras (not necessarily in this order). At the same time, but 
in less detail, we discuss other algebras suitable for algebraizing unusual 
quantifier logics, e.g. fragments 2 of L ~ ,  higher order logic, many-sorted 
logic etc. In w we begin to speed up, and discuss algebraic counterparts of 
infmitary logics, and other abstract model theoretic logics with an emphasis 
on polyadic algebras. w is a quick overview of other approaches, where the 
change comes either from the method of algebraization, or from the choice of 
logic to be algebraized (roughly speaking). This overview also touches upon 
connections with computer science, and category theoretic logic. w is also 
intended to be a continuation of the similar overview at the end of [HMTII]. 
w (Appendix) deals with the algebraic counterparts of the syntactic aspects 
of logic. (These are the very abstract cylindric (etc.) algebras which need 
not be isomorphic with any kind of concrete algebras of relations.) In the 
paper, there is a further item (describing a special topic, and) running across 
the various sections, beginning with Remark 2 in w and recurring in each 
subsequent section. This item is devoted to an area full of intriguing famous 
problems which might be rather rewarding to work on. The area is known as 
'~finitizability problem" or '~finitization" for short, and became quite active 
recently. (The beginner may safely omit the parts dealing with fmitization, 
at a first reading.) 

Finally we should point out that because of the introductory character of 
this paper, there are several central areas of trans-propositional algebraic 
logic which are not even mentioned here. Therefore, having read this paper, 
it is advisable to leaf through [HMTII] and then [TG87]. From now on, 

1For completeness, we note that the up-to-date basic source book for "first-order (and 
related) algebraic logic" (i.e. for the subject matter of this paper) is [HMTII] supplemented 
with [HMT] and [TG87]. ([HMTII] serves ~lso as the standard reference monograph.) 
2E.g. the positive fragment also called coherent fragment in category theoretic logic. 
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we will simply write algebraic logic instead of trans-propositional algebraic 
logic. 

2. G e t t i n g  a c q u a i n t e d  w i t h  t h e  s u b j e c t  

The algebraization of classical propositional logic, fielding Boolean alge- 
bras (BA's), was immensely successful. It is fairly well understood how to ex- 
tend this algebraization to other propositional logics (Blok-Pigozzi [BP89]). 
These new algebraizations were also very successful. What happens then 
if we want to extend the original algebraization yielding 8A's to first-order 
logic? 

What are BA's? They are algebras of unary relations. I.e. the elements 
of a BA ~B are unary relations and the operations of ~B are the natural oper- 
ations on unary relations e.g. intersection, complementation. The problem 
of extending this approach to predicate logics boils down to the problem 
of expanding the natural algebras of unary relations to natural algebras of 
relations of higher ranks, i.e. of relations in general. The reason for this is, 
roughly speaking, the fact that the basic building blocks of predicate logics 
are predicates, and the meanings of predicates can be relations of arbitrary 
ranks. Indeed, already in the middle of the last century, when De Mor- 
gan wanted to generalize algebras of propositional logic in the direction of 
what we would call today predicate logic, he turned to algebras of binary 
relations. 3 That was probably the beginning of the quest for algebras of re- 
lations in general. Returning to this quest, the new algebras will, of course, 
have more operations than BA's, since between relations in general there are 
more kinds of connections than between tmary relations (e.g. one relation 
might be the converse, sometimes called inverse, of the other). 

The framework for the quest for the natural algebras of relations /s uni- 
versal algebra. The reason for this is that universal algebra is the field which 
investigates classes of algebras in general, their interconnections, their fun- 
damental properties etc. Therefore universal algebra can provide us for our 
search with a 'knap and a compass" to orient ourselves. There is a further 
good reason for using universal algebra. Namely, universal algebra is not 
only a trollying framework, but it also contains powerful theories. E.g. if 
we know in advance some general properties of the kinds of algebras we are 
going to investigate, then universal algebra can reward us with a powerful 

3De Morgan i l lustrated the need for expanding the algebras of unary relations (i.e. BA's)  
to algebras of relat ions in general (the topic of the present paper) by saying that  the 
scholastics, after two mil lennia  of Aris totel ian tradit ion,  were still unable to prove that  if 
a horse is an animal~ then a horse's tail is an animal 's  tail. ("v0 is a tail of v l "  is a binary 
relation.) 
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machinery for doing these investigations. Among the special classes of al- 
gebras concerning which universal algebra has powerful theories are the so 
called discriminator varieties and the arithmetical varieties (cf. the text- 
books ~$81],  [MMT], [W78]). At the same time, algebras originating from 
logic turn out to fall in one of these two categories, in most cases. More 
concretely, more than half of these algebras are in discriminator varieties 
and almost all are in arithmetical ones. Certainly, all the algebras studied 
in the present paper are in arithmetical varieties. Therefore, awareness of 
these recent parts of universal algebra can be rewarding in algebraic logic. 
In order to preserve the introductory character of this paper, we will not 
assume familiarity with these theories of universal algebra. From time to 
time we will point out places where these theories can be usefully applied 
but these parts can safely be ignored. 

Let us return to our task of moving from BA's of unary relations to ex- 
panded BA's of relations in general. What are the elements of a BA? They 
are sets of "points". What will be the elements of the expanded new al- 
gebras? One thing about them seems to be certain, they will be sets of 
sequences. Why? Because relations in general are sets of sequences. These 
sequences may be just pairs if the relation is binary, they may be triples if 
the relation is ternary, or they may be longer - -  or more general kinds of 
sequences. (There is another consideration pointing in the direction of se- 
quences. Namely, the semantics of quantifier logics is defined via satisfaction 
of formulas in models, which in turn is defined via evaluations of variables, 
and these evaluations are sequences. The meaning of a formula in a model 
is the set of those sequences which satisfy the formula in that model. So 
we arrive again at sets of sequences.) So, one thing is clear at this point, 
namely that the elements of our expanded BA's of relations will be sets of 
sequences. Indeed, this applies to all known algebraizations of predicate log- 
ics or quantifier logics, e.g. for cyhndric algebras, quasi-polyadic algebras, 
polyadic algebras, Craig's algebras, modal- cylindric algebras, algebraic coun- 
terparts of nonclassical predicate logics, higher order logics, abstract model 
theoretic logics, see [HMTII] w pp. 263-271. 

At this point it might be useful to point out that the most obvious ap- 
proach based on the above observation (that the elements of the algebra 
are sets of sequences) does not seem to work, at least not without some 
fine-tuning. So, what is the most obvious approach? Consider some set U; 
let <~U denote the set of all finite sequences over U, and consider the BA 
7~( <~ U) (the powerset of <o~ U conceived as a BA the standard way). Now if 
we are given any finitary relation, say, R _C U •  over U, then R E 7~(<~U). 
So :P(<~U) contains all relations over U independently of their ranks. There- 
fore it might be a candidate for being the universe of an algebra of relations. 
Before thinking about what the new, so called extra-Boolean operations on 
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:P(<"~ U) should be, let us have another look at its Boolean structure: ff R 
is a binary relation, we would like to obtain its complement (U • U) \ R 
as a result of applying a Boolean operation to R. However, in our algebra 
0o(<~ U) the complement of R is not (U • U) \ R but something infinitely big- 
ger, so this approach does not seem to work very smoothly without put t ing 
some extra effort into it. With further work it can be turned into a fruitful 
approach to algebraizing logic, see w (2-4) and the section containing Facts 
2, 3 at the end of w herein; see also w survey).3 on p. 265 of [HMTII] 
and the references therein. The approach originates with Craig, but already 
the algebras in Qtfine [Q36] consist of sets of finite sequences. 

3. B i n a r y  r e l a t i o n s  

The above difficulty with 7)(<~U) motivates our concentrating first on 
the simplest nontrivial case, namely that of the algebras of binary relations 
(BRA's). Actually, BRA's will be strong enough to be called a truly first- 
order (as opposed to propositional) algebraic logic, namely [TG87] w shows 
that the logic captured by BRA's is strong enough to serve as a vehicle for 
set theory and hence for ordinary metamathematics.  

The full BRA over a set U is defined to be the algebra 

<~(U x U) ,o , -1)  

where ~ ( U  • U) is the BA with universe P(U • U), R o S is the usual 
composition of the binary relations R and S, while R -1 =- {(b,a): (a,b) e R} 
is the converse of R. Throughout this paper, 7)(V) denotes the powerset of 
V, and ~3(V) denotes the BA with universe 7'(Y) for any set Y. By a full 
BRA we tmderstand the full BRA over some set U. By a BRA we understand 
a subalgebra of a direct product of fifll BRA's up to isomorphism. Formally, 

BRA = SP((~3(U • U ) , o , - 1 ) :  U is a set}. 

Throughout,  we use abbreviations like BRA also for denoting the correspond- 
Lug class itself, e.g. BRA also denotes the class of all BRA's. Throughout,  
S and P are the operations of taking isomorphic copies of subalgebras and 
direct products respectively (as usual in universal algebra). It is not hard 
to see that  to any BRA 91 there is an equivalence relation E (over some set) 
such that 91 ~ 91+ C_ (~ (E) ,  o , -1)  for some 4 91+. Whenever 91 is embed- 
dable into (~ (E) ,  o , - 1 )  then we say that 91 is representable by 7)(Z) or /s 

aWe note that ( ~ ( E ) ,  o, - t  } would be a subalgebra of ( ~ ( U  x U), o, -1} with E an equiv- 
alence relation on U ff we would disregard the Boolean operations " - "  and "1" (comple- 
mentation and top element). 



Algebraization of Quantifier Logics... 491 

representable with top E. Note that ff 92 is representable this way, then 92 
is isomorphic to a Boolean algebra consisting of binary relations and closed 
under the operations o and -1. So, every BRA /s representable by an algebra 
consisting of binary relations. 

The reason for this representability of the direct products is that, if we 
think about the Stone duality theory of BA's, then we will realize that a 
product 92 • ~3 of set algebras corresponds to taking the disjoint union 1~0 1 ~ 
of their top elements 1 ~ and 1 ~. I.e.: 92 • ~ is embeddable into ~3(1~0 1~). 
But then if 91 and f13 are representable with tops U x U and V x V then 92 • ~B 
will be representable with top (V • U) 0 (V x V) which is an equivalence 
relation. This simple fact, that direct products preserve representability, is 
used throughout all branches of algebraic logic, and accordingly it will be 
used here. So when defining new kinds of algebras of relations, we will first 
define the simplest version (e.g. the one with top element U • U x . . .  x U), 
and then take all Subalgebras of all direct products of these. 

REMARK 1. Let us return to universal algebra as a unifying frame- 
work. If 92 C_ (~3(E), o,-1} as above, then the similarity type or signature 
of 91 consists of the function symbols V , - ,  o,-1 where the first two are 
Boolean join and complementation. Homomorphisms, equations etc. are de- 
fined accordingly; e.g. homomorphisms should preserve all four operations, 
and (~Vy)  o z =  ($ oz) V ( y o z ) ,  ( x V y ) - I  = ~ - 1  Vy-1 are typical equa- 
tions. The same convention applies to algebras of relations introduced later 
in the paper. The important thing to remember is that if 92 = (~3, fi)ieI is 
a BA ~3 expanded with additional operators f~ (a BAO from now on), then 
the algebraic language of 92 is that of BA's expanded with the extra-Boolean 
operation symbols fi (i E I). So in particular, a homomorphism h : P2 ~ 92 
is a Boolean homomorphism preserving all the fi's. The same applies for 
equations, subalgebras, and other universal algebraic concepts. The litera- 
ture of BAO's is quite extensive, see e.g. [HMT] w J6nsson-Tarski [JT51], 
J6nsson [J84], Henkin [HT0], Goldblatt [G88, G89], Sain [$84], Andr6ka- 
:16nsson-N6meti [AJN], and w (10) herein. 

Every variety of BAO's is arithmetical by [MMT] Thm.4.43 or [BSS1] 
Thm.II.12.5. Hence the powerful theory of arithmetical varieties, cf. e.g. 
[MMT], [BS81] is applicable to practically all the algebras discussed in the 
present paper. Moreover, BRA's generate a discriminator variety. 5 This is 
proved in the proof of Thin.3 in w below. | 

5Moreover, BRA's ,  as well as all the other discriminator algebras studied in this paper, 
generate a doubly pointed discriminator variety in the sense of [BP89b]. This is useful 
e.g. because in any doubly pointed discriminator variety V, to any universally quantified 
formula ~ there is an equation e~ such that ~0 and e~ are equivalent in the subdirectly 
irreducible members of V. Hence this is true for the varieties BRA, BRA 0, RA, CAn, 
RPAa etc. in this paper, see Theorem 14 below. 
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Having a fresh look at our BRA's with an abstract algebraic eye, we notice 
that they should be very familiar from the abstract algebraic literature. 
Namely, a BRA 

(3.1) 91 consists of two well known algebraic structures, an involuted semi- 
group (A, o,-1 ) and a BA (A, V , - / s h a r i n g  the same universe g. Fur- 
ther, the semigroup operations o and -1 distribute over the Boolean 
join V. 

Property (3.1) defines a nice variety V+ containing BRA and is a reasonable 
starting point for an axiomatic study of the algebras of relations. Postulates 
in (3.1) already appear in De Morgan [D1864], and since then investigations 
of relation algebras have been carried on for almost 130 years. 

THEOREM 1 (Tarski). BRA is a variety, i.e. is definable by a set of 
equations. 

For the p r o o f  see that of Theorem 3 in w herein. 
We will return to historical remarks and references for this theorem and 

its proofs in this section, below the end of Remark 2. 

Theorem 1 indicates tha t  BRA is indeed a promising start for developing 
a nice algebraization of (at least a part of) first-order logic, or to put it more 
plainly, for developing an algebraic theory of relations. After Theorem 1, the 
question comes up naturally if we can strengthen the postulates in (3.1) to 
obtain a finite set E of equations describing the variety BRA, i.e. such that 
BRA = M o d ( Z )  would be the case. The answer is 

THEOREM 2 (Mon_k). BRA is not finitely axiomatizable, s for no 
finite set E of  first-order formulas is BRA = Mod(E) .  

See Monk [M64], and also [HMTII] 5.1.57, 4.1.3 for p roofs  (in slightly dif- 
ferent settings). 

Theorem 2 was strengthened by Andr6ka, J6nsson, and Maddux. Mad- 
dux [Ma89] proved that the set of equations containing only one variable and 
valid in BRA is not finitely axiomatizable, either. This result is reported in 
the book [TG87] where it turns out to be essential for applications in alge- 
braizing metamathematics .  J6nsson [J84] proved that no set E of equations 
containing only finitely many variables can axiomatize BRA. Andr6ka proved 
that no subreduct of BRA containing V and o among its operations can be 
axiomatized by a set of universally quantified formulas containing finitely 
many variables, or by a finite set of first-order formulas ([A89a]); where by 
a subreduct of a class K we mean the class of subalgebras of a reduct of K 
(to some language). 

As a consolation for Theorem 2, by Monk [M69], one can obtain an exam- 
ple of a recursive (i.e. decidable) infinite set E of equations characterizing 
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the variety BRA. Lyndon [Ly56] outlines another recipe for obtaining a dif- 
ferent such E which may work for BRA. However, the structures of these 
E's are rather involved. Cf. [HMTII] pp. 112-119 for an overview. In this 
connection, we note that the following is still one of the most important open 
problems of algebraic logic: 

PKOBLEM 1. Find simple, mathematically transparent, decidable sets 
of equations characterizing BRA. (A solution for this problem has to 

be considerably simpler than, or at least markedly different from the E's 
discussed above.) 

Compare Problem 4.1 in [HMTII] p. 179, Henkin-Monk [HM74] Probl.5, 
[M77] p. 853, [TG87] p. 24016-13, [AGN77] p. 21, [W88], Venema [V89] 
Def.1,4.1, Thins 1.4.16, 3.3.5, Simon [Si90]. 

One can get very far in doing algebraic logic (for quantifier or predicate 
logics) via BRA's. ff we want to investigate nonclassical quantifier logics, we 
can replace the Boolean reduct f13 of 9.1 = (~3, o,-1 / E BRA with the algebras 
(e.g. Heyting algebras) corresponding to the propositional version of the 
nonclassical logic in question. By Amdr~ka's above quoted resnlt, if ~B is (an 
expansion of, like Heyting algebras) a distributive lattice, then Theorem 2 
carries over. We will return to this direction later. At a first reading, some 
parts of Remark 2 below might be too technical for the nonspeciaIist. They 
may be skipped safely, but it is advisable to come back to them, sometime. 

Throughout, w is the set of natural mtmbers, and it coincides with the 
least infinite ordinal. 

RV.MAP~K 2 (Finitization). The efforts of trying to get rid of Theorem 
2 became known as finitizability investigations. Why would we want to get 
rid of Theorem 2? The class of BA's of unary relations, i.e. S P ( ~ ( U )  : 
U is a set} admits a nice finite axiomatization. Theorem 2 says that the 
same is not possible for BRA's of binary relations. Since we are in the 
middle of the search for the right notion of algebras of (not only unary) 
relations, the question naturally comes up whether Theorem 2 was perhaps 
only a consequence of an unfortunate choice of the basic operations o and 
-1 of BRA's. 6 

Apparently, it is hard to get rid of Theorem 2 by moving to reducts 
of BRA's (eft Andr~ka's result mentioned below Theorem 2, Schein [Sc89], 

6ttenkin pointed out during the 1987 Algebraic Logic conference in Asilomar that a pos- 
itive solution for this problem would imply positive results for pure (non-algebraic) logic 
too; see Sain [$87a] w largely based on Henkin's suggestions. According to Henkin, on 
his own part, this was the main reason for including this "goal" as Problem 1 in [HM74]. 
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Andr~ka [A89, A89a]). It is a second central open problem 7 of algebraic logic 
to find out whether we can get rid of Theorem 2 by moving in the direction 
opposite to taking reducts. This would mean to expand BRA's by new, "set- 
theoretically defined" operations on relations such that the new class would 
become finitely axiomatizable. This quest is motivated by the fact that there 
are many known examples for a non-finitely axiomatizable class K of struc- 
tures such that an expansion K + of K is finitely axiomatizable. An example 
for such a K and K + are the elementary classes generated by the structures 
(w, O, succ) and (w, 0, succ, <_) respectively. Another example is set theory. 
ZF is not finitely axiomatizable but its conservative extension known as 
Gbdel-Bernays set theory is such. s A drawback of these examples is that rep- 
resentability of members of K + (as some kinds of algebras of relations) do not 
enter the picture. To alleviate this, we quote an example due to Bredikhin: 
Subalgebras of (7~(U • U), o, -1) for all U form a non-finitely axiomatizable 
quasivariety while substructures of their expansions (~(U • U), o, -1, C_, dom) 
where dom(R) = Id I Domain(R) = {{a,a) : (3b)((a,b) e R)} form 
a finitely axiomatizable universal Horn class (Bredikhin [Br77, Br77a]). 9 
(Both classes are understood up to isomorphisms, of course.) 

The problem was raised in various forms by Jbnsson, Henkin-Monk [HM74] 
Problem 1, Monk [MT0] p. 20, Tarski-Givant [TG87] lines 9-11 of p. 62 (the 
first sentence of the paragraph preceding 3.5.(ix)), and the first page of 
[TG87] w (p. 56), whether 

(3.2) one can add to the operations of BRA finitely many new set-theoretic- 
ally defined operations s  fn on relations such that K + = { (~ (U•  
U ) , o , - 1 , f l , . . .  , f ~ ) :  U is a set} would generate a finitely axiomati- 
zable variety. 

A perhaps even more important  version of the problem asks whether 

(3.2) + statement (3.2) is true in such a strong form that for K + in it, its 
closure S P K  + is a variety, or at least is a finitely axiomatizable class. 

7This is not really a single problem; it is ra ther  a large circle of problems motivated (and 
"punc tua t ed" )  by many  deep results. In a sense it is a rich theory built around a deep, 
open, almost  philosophical  question. 
8Fa~t 1 below is a third,  rather  general motivat ing example. Actually Fact  1 seems to 
imply that  what  we want to do is always possible. The only question is whether we can 
do it in such a way that  the new operat ions remain "representable as natural  set-theoretic 
operat ions on relations (like N, -1 ,  and o were)".  It is this la t ter  (vague) requirement  
which was referred to above as "set- theoret ical ly  definable". 
9Bredikhin 's  dorn(~) is the same as Craig's T[~/o](x ) to be discussed in w here. 
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What  does it mean  in (3.2) that  f~ should be set-theoretically defined? 
The intuit ive idea is that  it should be somehow "concretely specified" like 
the operations of BRA. Namely, in the latter e.g. R N S or R o S are defined 
by set-theoretical means in a very strong sense, which entails, among other 
things, tha t  the results of these operations depend only on the choice of R 
and S, independent ly  of the choice of the algebra in which we execute them. 
So in a sense, these operations are "concrete" (as opposed to the abstract  
algebraic operations of fields for example). The most  generally accepted 
precise version of this condit ion says that  f~, i _< n, should be invariant 
under the permutations of U. This means that  whenever p : U ~-~ U is a 
pe rmuta t ion  then p( f i (R))  = f~(p(R)) where 1~ p(R) is defined the natura l  
way for R C U • U. The following is still open. 

PROBLEM 2. Is (3.2) + above, or if  not then at least (3.2) true, when 
"set-theoretically defined" means permutation invariant in the above sense? 

The problem in this form was raised among others by Bjarui :J6nsson 
sometime before 1983; see e.g. [$87, $87a], the part  of [Bi89] coming after 
Corollary 10, and the parts  of [TG87] indicated just before formulating (3.2) 
above. Bit6 [Bi89] proved that  f l , . . - ,  f~ cannot all be '~first-order defin- 
able" in a certain sense of the te rm we will not recall here 11 . Sain [S87a] 
contains a positive solution but  for a different kind of algebras of relations 
to be discussed later. [Bi89] and [Ma89b] showed that  the requirement of 
pe rmuta t ion  invariance is essential (i.e. without this requirement there is 
a solution but  the logical counterpart  of this solution does not satisfy the 
axioms of abstract  model  theory or general theory of logics). 

Possible choices of the f~'s are: the identity relation Id on U as a new con- 
stant (dist inguished element),  transitive closure trc( R ) = R U (R o R) U ( R o 
R o R) U . . . ,  and a choice function picking out a singleton {(a, b}} C R from 
R, i.e. ch(R) C R such that  [ch(R)[ = min(1,[R[). Of these, Id is first-order 
definable, trc is not,  but  bo th  are permuta t ion  invariant; ch is not permu- 
tat ion invariant (hence it is not allowed in Problem 2). Actually, Maddux  

1~ w herein we will describe a category theoretic (functorial) version of this condition 
excluding the operation .f(R)="0 if 0 E U else R". According to the present (non- 
categorical) definition, this f is permutation invariant, but from the point of view of 
algebraizing arbitrary quantifier logics in the abstract model theoretic sense, f violates 
one of the axioms of abstract model theory; cf. Barwise-Feferman [BF85]. Cf. w ) herein. 
11The definition can be found in J6nsson [J84] or Bir6 [Bi89], but using cylindric algebras 
to be introduced later, basically, an operation on relations is '~first-order definable" iff it 
is term definable in cylindric algebras (of w-ary relations, i.e. in RCA~). We note that 
cylindric algebras axe basically expansions of BRA's as shown e.g. in [HMTII] w and 
sketched in w below. 
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([Ma89b] Thm's 8, 9) showed that adding ch makes BRA finitely axioma- 
tizable. A further example for a permutat ion invariant but not first-order 
definable operation is fin(R) = "0 if R is finite, else R". (This operation 
will be relevant in w Adding all the permutat ion invariant ones of these 
four operations to BRA does not make the class finitely axiomatizable. (The 
case of {trc, Id} is in [M89b] Thm.3, but see also [AGN87], Ng [N84], IN81], 
and Prob.7 in [M77] for investigations of trc.) 12 

Throughout ,  R d  is taken to be the operation forming appropriate reducts. 
In particular, K1 = RdK2 means that we can identify the operation symbols 
of K1 with some of those of K2 such that after forgetting the rest of the 
operations of K2, the two classes become identical, up to isomorphisms. 
(Beginning with w below, we will ase R d  in a shghtly more general sense, 
namely we will allow the operation symbols of K1 to correspond to term 
functions, i.e. derived operations of 1~2 instead of only operation symbols 
of K2. However, in the present section the narrower definition suffices.) 
K1 = S R d K 2  is defined in the same fashion. Now, (3.2) above implies that  
BRA = S P R d ( K  +) for K + as described in (3.2). The following is a variant 
of (3.2) + :!~ 

(3.3) There are set-theoretically defined operations f l , . . .  , fn ca binary 
relations, such that  

K + = S { ( ~ ( E ) ,  f l , . . . ,  f~}:  E is an equivalence relation} 

a finitely axiomatizable variety and BRA = SRd(K+) .  

The main difference between (3.3) and (3.2) + is the replacement of U• U in 
(3.2) + by an equivalence relation E; without this change we cannot expect 
K + to be a variety (closure under P is the problem). This U • U ~ E 
substitution was used to the same effect immediately below the definition of 
BRA. 

Variants of Problem 2 ask if (3.3) is true but again in formulating these 
problems, one has to make the adjective "set-theoretically defined" concrete 
and precise. 

The condition K + = SK + in (3.3) is important because, by [HMTII] 3.2.5, 
there is a finitely axiomatizable K + such that BRA = SK +. (Cf. also 

12[MS9b] proves the "BRA + {trc, Id}" case for equations containing only one variable, 
too. Further~ Andr~ka proved that  (i) "RRA 4- trc" is not finitely axiomatizable o v e r  

RRA, and (ii) n o  expansion of "BRA 4- t r c "  is finitely axiomatizable.  So if in (3.2) we 
would replace " % - 1 ,  with " o , - 1 , t r c , ,  then the answer to all parts of Problem 2 would 
be NO~ even if the condi t ion "set-theoretically definable" were completely omitted. 
13To avoid misunders tandings ,  we are not saying that  (3.3) would be true; we only for- 
mulate  it as a "s ta tement"  to be discussed later.  
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JSnsson-Tarski [JT51] Thm.4.31.) This also yields a kind of a character- 
ization of the equations valid in BRA, namely all the equations derivable 
i~om the single formula axiomatizing K + in [HMTII] 3.2.5. This illustrates 
what kinds of answers are no longer acceptable as solutions for Problem 1, 
making the vague adjectives like "simple", "transparent" in the formulation, 
hopefully, more tangible. 

In (3.2) and (3.3) above (hence in Problem 2), the condition saying that 
f l , - . - ,  f,~ should be "set-theoretically defined" (whatever concrete meaning 
the latter will receive later) is very important,  because without this condition 
a version of the problem seems to receive a trivial solution by a result of 
Kleene from 1951 improved by Craig and Vaught [CV58]. Namely: 

FACT 1. For any quasivariety K axiomatizable by a recursively enumer- 
able set E of first-order formulas, there is a finitely axiomatizable K + = SK + 
such that K = S R d ( K + ) .  

PROOF. We will show how Fact 1 follows from Thin.2.1 of [CV58], 
which says that if Mod(r) consists of infinite models and r is recursively 
enumerable, then Mod(r) = Rd(K +) for some finitely axiomatizable class 
K +. Let E be as above. Form Eoo by adding to E postulates stating that "if 
there are at least two elements, there are at least n different elements" for 
each n E w. Then K = SMod(E~) and each model of E~  is infinite (except 
for the one-element trivial one which may be safely ignored). By Thin.2.1 
of [CV58], there is a finitely axiomatizable K + with Uod(Eoo) = Rd(K+).  
But then K = S R d ( K + ) .  Finally, the predicates in K + are easily coded 
by their characteristic functions, so K + can be transformed into a class of 
algebras. By introducing Skolem functions, we can achieve K + = SK + (note 
that only finitely many Skolem functions are needed because only finitely 
many axioms are needed for describing K+). Fact 1 has been proved. | 

We conjecture that Fact 1 can be improved to conclude that K + is a finitely 
axiomatizable quasivariety. 

Fact 1 immediately yields that version of (3.3) from which the condition 
"set-theoretically defined" is omitted, and in which "variety" is replaced by 
"universally axiomatizable class". 

Sain [$87] proved that version of (3.3) in which "set-theoretically defined" 
is made precise as follows: fi is set-theoretically defined fit we can write 
down a concrete set-theoretical formula T~ ( z l , . , . ,  z,~, y) containing bounded 
quantifiers only such that for any binary relations X1, . . .  , X n , Y  we have 
[f i (X~, . . .  ,X,,)  = Y r 9 i (X1 , . . .  ,Xn,Y)] .  This immediately ensures 
that f~(R) depends only on R and not on the choice of the algebra in which 
f i(R) is computed. 
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We note that ,  in a sense, Sain's result improves Maddux's and Bir6's choice 
function ch because ch is not definable in general in set theory, especially not 
by an absolute 14 formula like ~i above. All these leave Problem 2 open since 
there "set-theoretically defined" is interpreted as meaning invariant under 
permutation.  

In passing we note that Tarski and Givant [TG87] p. 62 raise a perhaps 
easier version of Problem 2. Namely, they ask for a finitely axiomatizable 
variety K0 containing K + of (3.2) such that BRA = SRd(K0) .  Here, the 
point is that not all members of K0 have to be "representable" by SPK + 
or even by H S P K  + (but still K + _C K0 /s required and fi of K + has to 
be permutat ion invariant) 15 . This problem, at least in principle, is indeed 
easier than Problem 2, by the following example. Andr~ka proved that ff 

= {V, o} and F = flU{A} then S R d ~ B R A  and S R d r B R A  are not finitely 
axiomatizable, but there is a finitely axiomatizable variety K0 2 S R d r  BRA 
with S R d e B R A  = SRda (K 0) .  Here R d a  denotes taking reducts to the 
similarity type f~. This "easier" version of Problem 2 is also open. 
E N D  of  R e m a r k  2 

The natural  logical counterpart of BRA's is classical first-order logic re- 
stricted to three individual variables vo,vl ,v2 and without equality. As 
shown in w of [TG87], this system is an adequate framework for building 
up set theory and hence metamathematics in it. One can illustrate most of 
the main results, ideas and problems of algebraic logic by using only BRA's. 
(An illustration of this is the result just quoted from [TG87] w We do 
not know how far BRA's can be simplified without losing this feature. In this 
connection, let the class BSR of Boolean semigroups of relations be defined 
as 

BSR = S P  { (~ (U x U),o) : U is a set}. 

14The ~i ~s are known to be absolute in a very strong sense used in set theory, see Barwise 
[B75]. Note, however, that Sain's result does not give us a permutation invariant Opera- 
tion. Actually, the two properties are independent: there are absolute operations which 
are not permutation invariant, and also permutation invariant operations which are not 
absolute. Sain has a permutation invariant result too~ but for that, relations of higher 
ranks are also needed as elements of the algebra. Therefore this result will be stated as 
Theorem 16 in w176 
lS Their wording of the problem is different from the present algebraic one, since they 
formulate the problem in its logical form. (The same remark applies to our quoting 
[TG87] in connection with Problem 2 above.) In logical form, the presently discussed easier 

question does not require the expanded logic L + corresponding to K + to be complete, but 
L + still has to be sound. (And of course, L + has to be complete w.r.t, the old formulas.) 
Strangely enough, this soundness requirement (together with permutation invariance) 
seems to keep the problem on the tough side. [M89b] proved that adding {Id,~rc} does 
n o t  solve this easier problem either. 
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So we require only one extra-Boolean operation "o". Further, we do not re- 
quire closure under any other operations. The question is, how far could BSR 
replace BRA as the simplest, "introductory" example of Tarskian algebraic 
logic. We conjecture that the answer will be "very far". 

We know tha t BSR is a discriminator variety, and is not finitely axiom- 
atizable. Thus Theorems 1, 2 remain true if BRA is replaced with BSR in 
them. Further, the equational theory of BSR is undecidable. (BRA's being 
a discriminator variety implies e.g. that the simple members of BSR form a 
universally axiomatizable class.) We conjecture that, following the lines of 
[TG87] w set theory can be built up in BSR instead of BRA with basi- 
cally the same positive properties (e.g. finitely many axioms) as the present 
version [TG87] has. (Perhaps here [N85a], [N86] can be useful, because 
an analogous task was carried through there. The last 12 lines of JSnsson 
[J82] p. 276 seem to be also useful here.) It would be nice to know if this 
conjecture is true, and, more generally, to see a variant of algebraic logic 
elaborated on the basis of BSR. We do not know what natural fragment of 
first-order logic with three variables corresponds to BSR (if any). It certainly 
is difficult to simulate substitution of individual variables using only o. The 
converse operation, -1, is the algebraic counterpart of substitution because, 
intuitively, R(vo ,vl )-1 = R(vt ,vo). One can simulate quantification by o, 
and it is easily seen that o is stronger than quantification but without -1 it 
is not clear exactly how much stronger. Curiously enough, these issues are 
better understood in the case of cylindric algebras to be discussed later. 

BRA's also play an important rble in theoretical computer science (cf. e.g. 
Hennessey [H80], Bednarek-Ulam [BU77], Imieli~ki-Lipski [IL84], Bergham- 
mer-Zierer [BZ86], Hoare-Jifeng [H386], [SS89], van Benthem [vS90a, vB90], 
and w (7) herein). J6nsson [J89], [J90] call a finitely axiomatizable variety 
BRA ~ approximating BRA Program Specification Algebras. Here, by saying 
that the finitely axiomatizable BRA ~ approximates the not finitely axioma- 
tizable BRA we mean that BRA ~ _ BRA and BRA ~ is fairlY close to 16 BRA. 

�9 If we want to algebraize first-order logic with equality, we have to add an 
extra constant Id representing equality to the operations. RRA denotes the 
class of subalgebras of direct products of algebras of the form 

(q3(U x U), o , -1 , Id)  

teThese BRA~ approximations of BRA-like "non-finitizable" classes are quite charac- 
teristic of algebraic logic~ and they are relevant e.g. to algebraizations of syntactic aspects 
of logic like proof theory. For more on this see the Appendix (w and the subsection "The 
axiomatic approach. . . "  in the middle of w 
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where Id = Id ~ U = {(u, u) : u ~ U} is a constant of the expanded 
algebra. 1T As in the case of BRA's, the definition of RRA is lmderstood to be 
up to isomorphisms. RRA abbreviates representable relation algebras. RRA's 
have been investigated more thoroughly than BRA's; actually, Theorems 1,2 
above were proved first for RRA's. For historical notes on Theorem 1 for 
RRA's see Thm.S.3(v) on p. 240 of [TG87]. A detailed, fairly simple, direct 
proof is Case 1 in the proof of Thin.3.1.103 on p. 43 of [HMTII] (elaborated 
for a slightly different but basically equivalent form of the statement); but 
see also the proof of Theorem 3 here. 

We note that BRA = S R d R R A ,  where R d  is the operator of taking appro- 
priate reducts (cf. Remark 2). We also note that RRA is f initely axiomatizable 
over BRA, which means that by adding finitely many equations to the equa- 
tional theory of BRA, we can obtain an axiomatization of RRA. is Moreover, 
RRA is finitely axiomatizable over its -1 and Id-free subreduct BSR, where 
a subreduct of K is a class of the form S R d K ,  cf. the convention for using 
S R d  above i tem (3.3) (in Remark 2). This is in sharp contrast with the 
cylindric algebraic situation; see Andr6ka's negative solution for Problem 5.4 
of [HMTII] to be mentioned later in this paper. 

In connection with algebraization of logic, we note that the so called Leib- 
niz law ofequali ty which says that equals cannot be distinguished, translates 
into the algebraic condition that Id is the neutral element of the sernigroup 
operation "o". 

Some special classes of RRA's (RRA's with pairing fimction elements, al- 
gebras in which below every relation there is a nonempty one which is a 
function, pair-dense RRA's) turn out to be finitely axiomatizable, cf. Mad- 
dux [Ma78a, Ma87], Givant [Gi88]. 19 The elegant, purely algebraic proofs in 
these papers of Maddu_x are examples for significant applications of algebra 

17In Pra t t  [Pr90], the class RBM of representable Boolean monoids is obtained from 
our BSR's by adding Id as an extra dist inguished constant.  So BSR's are the Id-free 
subreducts  of RBM's .  All the results ment ioned above for BSR's carry over to RBM's; e.g. 
RBM is a d iscr iminator  variety, hence the simple RBM's form a universally a0domatizable 
class, Theorems 1, 2 above apply to RBM etc. Some of the proofs (both for RBM and 
BSR) are analogous to that  of Theorem 3 below. (These properties of RBM do not seem 
to be ment ioned in [Pr90]). 
18For issues concerning finite axiomatizabil i ty of a class over another one cl'. [HMTII] p. 
273 (Problems 5.4, 5.8). As a contrast  we note tha~, let t ing oo RRA denote the class of the 
infinitely representable RRA's (i.e. where in ( ~ ( U  •  "/, [U[ ~ w is required), Andr~ka 
proved that  oo RRA is not axiomatizable over RRA by any set of universal formulas con- 
taining finitely many  variables, solving Problem 8 from [Gi89]. The notat ion oQ RRA is 
taken from [HMTII] p. 6. 
19 The possibility of extending Maddux~s approach to algebras of relations of higher ranks 
was investigated in [AN88]. Further ,  Givant  generalized the positive results concerning 
pair-dense algebras to a broader class he calls locally small RA's, cf. [Gi88]. 
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to logic, via connections between algebra and logic indicated in [TG87], in 
the Thm.13 through Prop. 16/a in w of [ANS84], and [HMTII] 4.3.29 
(p. 161). Another fruitful direction for obtaining finite axiomatizability re- 
sults for algebras of relations was initiated in cylindric algebra theory by 
Diane Resek in 1969; the binary relation oriented counterpart of which are 
the finite axiomatizability results for '~relativized" RRA's in [Ma82] and in 
Kramer [K89]. For Resek's fundamental result a useful reference is Andr~ka- 
Thompson [AT88]; but see also [HMTII] pp. 101, vi, 300. 

The relevance of RRA's to predicate logic has been elaborated in the book 
[TG87], but see also [Ma83] and w in conjunction with w of [HMTII]. 

RRA's are also relevant to what is known as category theoretical logic. 
Namely, every RRA 9.1 C_ (~3(U x U) , . . .  ,Id) is equivalent with a category 
C whose objects are the subsets of U and whose morphisms are the binary 
relations between these sets. This C is actually more than a "plain" category, 
it is an enriched category, but it is exactly the enriched categories which play 
a central rble in category theoretical logic, cf. e.g. Daigneatflt [D69], Zlatos 
[Z83,Z84]. The objects of C can be recovered from ~ as those elements of 9.1 
which are below the constant Id. The morphisms of C are the elements of 
9/ in  general, the domain of R is computed by the term Id A (R o 1) where 1 
is the greatest element (in our case U x U) of any BA or BAO. Further, any 
homomorphism between two RRA's 91 and ~ '  gives rise to a functor between 
the corresponding enriched categories C and C I (and vice versa). 

4. A l g e b r a s  fo r  l o g i c s  w i t h  e q u a l i t y  

By this point we might have developed some vague picture of how alge- 
bras of binary relations are introduced, investigated etc. One might even 
sense that they give rise to a smooth, elegant and very exciting, powerful 
theory. However, our original intention was to develop algebras of relations 
in general, which should surely incorporate not only binary but also ternary, 
and in general n-ary relations. 

Let us see how to generalize our RRA's and BRA's to relations of higher 
ranks. As we said, we would like the new algebras to be expansions of RRA's 
(and BRA's), or something like this. However, defining composition of n-ary 
relations for n > 2 is complicated. Therefore the following sounds like a 
more attractive idea: We single out the simplest basic operations on n-ary 
relations, and hope that composition will be derivable as a term-function 
from these. Let us see how we could generalize our generic or full RRA's 
(~3(U x U), o,--1,Id) to relations of rank n, for n E w. The obvious part 
is that these algebras will begin with (~3(U x U x . . .  x U) , Id , . . . ) ,  where 
Id = { ( u , u , . . .  ,u) : u C U} is the n-ary identity relation. Again, Id is a 
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constant, jus t  as it was in the RRA case. Let ~U denote U x U x - . .  x U, e.g. 
3U = U x U x U. The new operations (besides the Boolean ones and Id) we 
will need are the algebraic counterparts of quantification 3vi, for i < n. So, 
we want an operat ion that  sends the relation defined by R(vo, vl ) to the one 
defined by 3voR(vo,vr),  and similarly for 3vl. For R C U x U let Dora(R)  
and Rng (R) denote the usual domain and range of R. For n = 2 we define 
c0(R) = U x R n g ( R )  and q ( R )  = D o m ( R )  x U. Now (~3(U x U ) , c 0 , q , I d )  
is the full cylindric set algebra of binary relations over U, for short the full 

C$ 2 . 

'l 

..! 

F I G U R E  1 

0 

Before turning seriously to n-ary relations, we need the following: 

CONVENTION. Throughout we will pretend that Cartesian products 
and Cartesian powers are associative such that e.g.: 2 U x 3 U = 5 U, n U x 
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m U=~+mU, and if R C 3 U  then 
~U x R C S U  D R x 2 U .  

The full Csn i.e. the full cylindric set algebra of n-ary relations is the 
natural  generalization of Cs2 as follows. 

Let R C_ "U. If Rng(R) = {(b~ ...bn_~l : (bob~ ...b~_~} �9 R for some b0} 
then c0(R) = U x Rng(II) considered as a set of n-tuples. Similarly, let 
Dora(R) = {(b0 ...b,~-2) : (bo ...b~_2b~_t) �9 R f o r  some bn-1}, and let 
c~_t (R) = Dora(R) • U. Generalizing this to ci with i < n arbitrary, we 
obtain 

c i (R) - -  {(bo, . . . ,b i - l ,a ,  bi+l, . . . ,bn-1) : (bo,... ,bn-1) �9 Rand  a � 9  U} �9 

ci is one of the most natural  operations on relations. It simply forgets the 
i-th argument of the relation, or in other words, deletes the i-th column. 
However, since deleting the i-th column would leave us with an (n - 1)-ary 
relation, Dom(R)  if i = n - 1, we replace the i-th column with a dummy 
column i.e. in the i = n - 1 case we represent Dom(R) with the "pseudo 
n-ary relation" Dom(R)  • U. The "real rank" of an R C_ ~U is always easy 
to recover, namely it is A(R)  = {i < n :  ci(R) ~ R}. So ci is the natural  
operation of removing i from the (real) rank of a relation. 

For example, c~ther when applied to the ffather, mother, child" relation 
gives back the "mother,  child" relation coded as "anybody, mother,  child" 
(in which the anybody argument carries no information i.e. is dummy).  
If U = {a,b,c} then Cl{(a,b,c}} = {(a,a,c),(a,b,c},(a,c,c}} and Id = 
{(a,a,a},(b,b,b},(c,c,c}}. By afu l l  Cs~ we understand an algebra 

aj (V(.u), c0,... ,c._l,id) 

for some set U. By a Cs~ we understand a subalgebra of a full Csn. By a 
representable cylindric algebra of n-ary relations (an RCAn) we unders tand 
a subalgebra of a direct product of full Csn's (up to isomorphism), formally: 
RCAn = SP( fu l l  Csn) = SPCsn .  By the same argument as in the case of 
BRA's, every RCAn is directly representable as an algebra of n-ary relations 
(with the greatest relation a disjoint union of Cartesian spaces). RCAn is one 
of the '2eading candidates" for being the natural  algebra of n-ary relations. 
The abstract algebraic picture is simple, an RCA~ is a BA together with 
n closure operations (in the usual abstract algebraic sense defined on the 
Boolean ordering) and an extra constant. Recall that a closure operation c on 
a partially ordered set (P, <-/is an order preserving and idempotent  function 
c : P ~ P such that  c(~) >_ ~. Boolean orderings with closure operations 
on them are one of the central concepts of abstract algebra, for example 
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topological spaces or subalgebras of an algebra are often represented as such 
(e.g. if 92 is an algebra, consider (:P(A), c), where c(X) is the subalgebra of 92 
generated by X for X C_ A). A natural  question comes up: Can these simple 
RCA,,'s recapture the power of RRA's? To answer this question, consider the 
dummy representation Dr : 7~(U x U) ~-+ 7)(U x U x U) of binary relations 
with ternary ones discussed above, i.e. Dr sends R to R • U. Then it is 
not hard to define terms v ~ and r -1 in the language of RCA3's such that  
Dr(R o S) = T~ and D r ( R - l ) =  T- l (Dr(R))  (see [HMTII] 
w 2o . So in a sense RRA's form a kind of a reduct of RCA~,'s for n ___ 3. 
Thus the answer is that  RCAn's, n > 2, recapture the power of RRA's. 
(On the other hand, RCA2's do not.) This was a natural  requirement we 
expected to meet,  namely that  the theory of n-ary relations should be an 
extension of that  of binary relations. 

At this point we can state the counterparts of Theorems 1, 2. 

THP.OItEM 3 (3.1.103 on p. 43 of [HMTII]). RCA,~ is a variety for all 

ON THE PROOF. Our Theorems 1, 3 are proved in [HMTII] without 
relying too much on universal algebra. Therefore it is not mentioned there 
that these theorems are almost immediate consequences of a well known 
universal algebraic property  of the so called discriminator varieties [BS81] 
w Namely for any class K = SK of algebras with a discriminator term, if 
K is closed 1ruder ul t raproducts  then S P K  is a variety. Now, the choice K = 
Cs,~ is easily seen to satisfy these conditions as follows. Clearly Cs,~ = SCs,~. 
To see that Cs, has a discriminator term, let r (~ ,y )  = co . . .  Cn-l(~ @ y) 
where @ is Boolean symmetric difference. Let t(a:, y, z) = (~ A T(x, y)) V (z - 
T(~,y)),  where ( z - y )  abbreviates ( x A - y ) .  Then t is a discriminator term in 
Csn. See e.g. Example 2 below Def. 9.3 in [BS81] w and [AJN88] for more 
on CA's being discriminator algebras. Cs, is closed under ultraproducts (up 
to isomorphisms of course) because it is a pseudo-elementary class, i.e. if 
we add the base sets U as an extra sort to our Csn's obtaining two sorted 
structures like (92, U,c~,Id, E) where 92 c_ ~ (nu) and ec_ ~U x A is nil 
n + 1-ary relation between sorts U and A, then this enriched class becomes 
first-order axiomatizable, as it is easy to see. This proves Theorem 3. 

The proofs for BRA and RRA in place of RCAn are practically the same 
since co and cl are te rm definable in BRA. This proves Theorem 1. | 

2~ C2[Cl(X A CoId) A C0(y A ClId)] is one possible choice for 7-~ (~, y). 
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TttEORBM 4 (4.1.3 on p. 111 of [HMTII]). The variety RCA~ is not 
finitely axiomatizable if n > 2. 

Theorem 4 above, due to Monk [M69], was refined by Andr~ka and Comer 
(but see also [Bi89], [Ma89], [J69], [ST89]). Andr~ka proved the following 
three results for n > 3. RCAn cannot be axiomatized by any set Z of 
universally quantified formulas if E contains only finitely many variables. 21 
RCA~ is not finitely axiomatizable over (the full first-order theory of) its Id- 
free subreduct  (i.e. over the variety generated by the (V(nV),  c o , . . . ,  c~_1 )'s). 
Neither is it finitely axiomatizable over its RRA subreduct.  To formalize the 
latter,  let the terms r ~ and r -1 discussed above be chosen such that  their 
effect is the following: for R,S  C_ U • U • U, T~ = [Dom(R) o 
Dora(S)] • U and r - I ( R )  = (Dom(R) -1) • U (where recall that  Dora: 
7)(U • U x U) ~ 7)(U • U) ). Then RCA~ is not finitely axiomatizable 
over the tmiversally quantified theory of the algebras of the form ( ~ ( U  x 
U • U ) , T ~  -1 ,c2 , Id ) .  The latter of course is the reduct obtained from 
RCA3's by adding the t e rm functions r ~ and r -1 as new basic operations, 
and forgett ing Co and cl. A similar result applies for n > 3. As a by-product ,  
Andr~ka obtained a ra ther  simple proof for Theorem 4. Comer ([Co89a]) 
proved that  no generalized subreduct K of RCA~ containing all the cylindric 
algebraic operations except complementat ion is finitely axiomatizable for 
n > 2. 22 (The point  in talking about generalized reducts is that  derived 

0 operations of RCA~ like c i = - c i -  may occur in K.) The question is open 
for n = 2. 

CONV~,NTION. An algebra !~ is defined to be a generalized reduct of 
91 iff their universes coincide (R=A),  and the operations of !R are term 
functions of at. I.e. iff !~ is of the form (A,r~)iEz, where r~ is a te rm'  
function of 91. A class K1 is a generalized reduct of K2 (formally K1 = R d K 2 )  
iff there is a uni form choice of the term functions (ri : i E I) along which 
each member  of K1 is a generalized reduct of one of K2, and all such reducts 
from K2 are in K]. A generalized subreduct is defined to be a subalgebra of 
a generalized reduct.  From now on we will drop the adjective "generalized". 
So from now on, by a reduct we will unders tand a generalized reduct (unless 
otherwise specified explicitly). More importantly,  by a subreduct we will 
unders tand  a generalized subreduct.  We will use the convention for S R d ,  

21This solves a problem on p. 342s-4 of Monk [M69] (there the problem was credited to 
W. Craig). In passing we note that Andr~ka also solved the problem preceding the quoted 
one in [1Vi69] asking if SNruCAu+k  is finitely axiomatizable. The rest of the problems in 
[M69] are still open. 
22As a contrast, Andr~ka proved that the equational theories of RCA,~ and RRA without 
complementation are decidable. (Using the terminology of [I-IMTI] 2.7.14 p. 439, validity 
of positive equations in RCAn or RRA is decidable.) Cf. Andr~ka [A90a]. 
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S P R d  as introduced in Remark 2, but with the understanding that R d  
meaxts the generalized reduct. In particular, RdK2 is ambiguous because 
we must rely on context to specify the language (or similarity type) of R d  K2. 
An example for such a context is K1 = RdK2,  as explained in Remark 2. 

EXAMPLES: (~(3 U), 7 "~ 7 "-1 , c2,Id) discussed above is a reduct of the full 
Cs3 (q3(3U),c0,cl,c2,Id} in the new sense, but it was not such in the old 
sense. T h u s  RRA's are subreducts of RCA3's in the new sense (but were 
not such in the old one). Further, RCA2's became subreducts of RRA's now, 
but they were not such before (hint: el(z) = z o l ,  where 1 = U •  U). A 
third important example of generalized subreducts of RCAz's will be Pinter's 
substitution-cylindric algebras obtained by introducing the term functions 
s~ = c0(~ A c~(Id)) (and s i~lar ly  for s~(,) with i , j  < 3, i # j), and 
considering the reducts (~3(aU),c0,cl,c2,s~ : i , j  < 3 and i ~ j). These 
algebras will be suitable for algebraizing logic without equality (so we will 
meet them in w 

The ambiguous (or "context sensitive") nature of the notation S R d  is 
illustrated by RCA2 = SRdRRA and RRA = SRdRCAz (especially when 
compared with RCA2 = SRdRCAz and RCA2 ~ RRA). II 

Recursive sets of equations characterizing RCAn are given and discussed 
on pp. 112-119 of [HMTII], the first of these originating with Monk [M69]. 
Venema [V89] Def.3.3.3 gz Thm.3.3.5 contain a new result in this line. The 
situation is analogous to the 13RA case described below Theorem 2. Finding 
mathematica].ly transparent, simple sets of equations defining RCAn is one 
of the central open problems, cf. Problems 4.1, 4.16 of [HMTII]. We should 
point out the important result of Diane Resek that a slight generalization of 
RCAn denoted by CAn fq ICrsn in [HMTII] p. 101 is finitely axiomatizable; 
see Andr~ka-Thompson [AT88] for a simple proof. 

([NIa89d] and Resek-Thompson [RT89] are also in this line.) 
The following is an important digression. 

The  ax ioma t i c  a p p r o a c h ,  " a b s t r a c t "  (not  necessar i ly  r ep re sen tab le )  
cy l indr ic  a lgebras  (CA's), r e l a t ion  a lgebras  (RA's) etc. 

By Theorems 2, 4, the varieties RCAn, BRA, and RRA, whose elements 
consist of concrete relations (up to isomorphism of course) are not finitely 
axiomatizable (non-finitizable, for short). Let us take the example of, say, 
RCAn. Because of the above non-finitizability property of RCAn, there is a 
conventional agreement in the literature for studying a fixed finitely axiom- 
atizable variety CAn approximating RCAn. The members of CAn are called 
"(n-ary) cylindric algebras". By saying that CAn approximates RCAn we 
mean that CAn __D RCAn and that CAn is as close to RfiAn as we can get 
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without loosing attractiveness and mathematical transparency of our axioms 
describing CA,~. For example, the equations expressing that ci is a closure 
operator are transparent enough, so we include them into the axiomatiza- 
tion of CAn. Similarly for the equation c~cj = cjci expressing that the c~'s 
commute. On the other hand, consider the following statement (.)  about 
relations. For any R C_ ~U, let Dom(R) = {so :s E R}, i.e. Dora(R) is the 
smallest H such that  R C_ H • n-1 U. Now, 

(,) If R C nu  and 0 < IDom(R)l = m < n then it is impossible to have 
disjoint relations R0, . . .  ,R,~ C_ R such that (Yk <_ m)coRk = c0R. 

( , )  is translatable into a cylindric algebraic equation e(.) using m § 2 
variables (standing for R0, . . .  ,Rm, and R). This translation is based on 
the fact that IDom(R)l = m can be expressed by using Id. This equation 
e(.) has been considered not elegant enough for being added as an axiom of 
CA n's.23 

If besides RCA~ we would like to see another example, then (3.1) is a 
transparent enough property of RRA such that it is postulated as an axiom 
of the finitary variety RA (relation algebras) approximating RRA. ( A "not 
transparent enough" equation can be obtained from the above e(,) by choos- 
ing n = 6 and instead of expressing IDom(R)l < 6 by Id which is impossible 
in RRA, letting 2(Dom(l~)) = S @ T @Id with S, T symmetric, autirefiexive 
relations such that T -- (S o S) \ Id and S -- (T o T) \ Id.) 

The above circumscription of when we say that a fmitizable variety V 
approximates a non-finitizable one, say RV, is not a precise mathematical 
definition, but we hope it may have some heuristic value. The name of the 
approximated variety begins with an R (like RV, RCAn, or RRA) to remind 
the reader that these are the members of V which can be represented as 
algebras of real relations (it is left to the reader to decide which of the three 
"r"-s should the R in RV stand for). 

To each of the distinguished varieties like RRA, RCA~, RPAn etc. discussed 
in this paper, there corresponds in the literature a fmitiz~ble approximation 
RA,  C A n ,  PAn etc. respectively, analogously to the approximation of RCAn 

23ActuaUy~ from t ime to t ime some hesi tat ion comes up concerning the status of this par- 
ticular equat ion e( . ) ,  and perhaps sometime in the future some reinforced hyper-strong 
subvariety HCAn of CAn,  satisfying e( .) ,  might  be introduced,  but  there are more com- 
plicated versions of e(.) which, very probably~ will not be added to HCAn either.: Let 
IDom(R)l -- m and assume n < m < w. Then there are more complicated ( than using 
Id) ways of equat ional ly '%rc ing"  IDom(R)l = m by introducing new relations which 
"count"  the size of Dora(R). The so obtained variant of e(.) is a typical example of a 
known validity of RCAn which does not count as t ransparent  enough to be added as an 
axiom of the approximat ing  variety CAn.  
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by CAn. We will discuss these approximating varieties CA~, RA etc. in the 
Appendix (w where we will also give references for their filrther study. 

While the concrete algebras of relations like RCA~ or RRA provide the 
central tool for algebraizing the semantic aspects of logics, their finitary 
approximations like CAn or RA are useful in algebraizing proof theoretic 
concepts, see [HMTII] w (and implicitly in [TG87]). From a different an- 
gle, the relationship between RCAn, RRA etc. and CAn, RA etc. seems to be 
somewhat analogous to that between the standard model ~ = (w, +,  • 0, 1) 
of arithmetic and Peano's Arithmetic~ E.g. both the theory of Peano's Arith- 
metic and CAn (or RA) devote considerable effort to developing methods for 
constructing nonstandard models (i.e. non-representable algebras), cf. e.g. 
[HMTII] pp. 85-100. Since much of the intuition behind the theories of 
Peano's Arithmetic, CAn and RA derives from the standard models (i.e. 9~, 
RCAn and RRA), we will concentrate on the representable algebras RCA~, 
RRA etc., and will deal with their finitary approximations CA,~, RA etc. only 
very briefly, in the present paper. For completeness, full definitions of CAn, 
RA etc. as well as filrther information on these abstract (or "approximating") 
classes are available in the Appendix (w of this paper. 

* * * * *  

Let us return to the connections between RCA. and alqebraization of loqic. 
Let ff)~ be a model of a finite language (or signature). We may treat 

all symbols of the language as relation symbols as it is well known, cf. Bell- 
Slomson [BS69] w pp. 97-100. So ffJ~ is of the form ff)~ = (M, Ro,... ,Rk). 
Let n be a strict upper bound of the ranks of R 0 , . . . , R k .  We may safely 
treat each Pq as if it were of rank n by using our dummy representation 
Dr(R~) = R~ • U • U if the rank of R4 is, say, n - 2 .  Now, R 0 , . . . , R k  
are elements of the full Csn ~eI.n(M) = ( ~ ( n M ) , c 0 , . . . , I d / .  Let C be the 
subalgebra of ~ReIn(M) generated by {R0, . . .  ,Rk}. Now, C is the algebraic 
counterpart (consisting of n-ary relations) of ~Yt as a result of the standard 
algebraization of logic described in w of [HMTII] (where r was denoted 
by Cz!~ ) ). One can check that r consists of exactly those relations over 
M which are definable in fffi with using at most n variables. It is natu- 
ral that the algebraic counterparts of models (i.e. of the semantic part of 
first-order logic) should be algebras consisting of those relations that are 
definable in the original models. Indeed, it is these definable relations which 
provide meanings for the formulas of first-order logic; hence by using them 
we can arrive at Lindenbaum-Tarski  algebras of equivalence classes of for- 
mulas (which are the so called formula algebras of theories), i.e. algebraic 
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counterparts of syntactic notions of logic. Moreover, along these lines we 
can arrive at algebraic counterparts of not only syntactical and semantical 
notions of logic, but also at an algebraic counterpart of the syntax-semantics 
duality in logic, including the notion of axiomatizable classes of models. 24 Of 
course, one can repeat the same process of algebraization with the same key 
ideas (algebras consisting of general relations conceived of as meanings of 
formulas) for different quantifier logics, e.g. first-order modal logics, higher 
order logics, logics with new quantifiers like "for many vi T", abstract model 
theoretic logics from Barwise-Feferman [BF85]. The details are worked out 
explicitly in w of ~MTII]  for classical first-order logic in particular, and 
in w for logics in general. See also Appendix C of Blok-Pigozzi ~P89] 
and N6meti [N89]. 

Let us have a concrete look at RCA~. The logic naturally corresponding 
to RCA,, is first-order logic Ln restricted to the first n individual variables. 
Besides [HMTII], see also [TG87] w167 7.3, where L n is denoted as /:n, 
and sometimes as s P~. To illustrate the correspondence with logic, we n ,  

note that Theorem 4 above implies a strong incompleteness theorem for Ln. 
Roughly speaking, this logical corollary of Theorem 4 says that no inference 
system given by a finite set of schemata of axioms and derivation rules 2~ can 
be complete and sound for L~. Similarly, an algebraic theorem in [ACN] 
implies that L~ does not enjoy the Beth definability property. In passing we 
note that following suggestions and questions from Leon Henkin, Sain [$89] 

2~In this connection we note that, roughly speaking, the algebraic counterparts of the 
basics of logical syntax (i.e. of the sets of logical formulas with the logical connectives 
acting on them) are the free algebras, cf. e.g. [AS78]. Accordingly, the free algebras of 
RCA,~, RRA, and of their finitizable approximations CAT~ and RA (discussed above and 
in w have already received some attention. See e.g. Pigozzi's results concerning free 
algebras in [HMT, IIMTII]; [N86], [N85a] for free cylindric algebras (and free RCA,~'s), 
and Andr@ka-J6nsson-N6meti [AJN88] for free relation algebras, free RRA's, and free 
algebras in other forms of algebraic logic (but see also Blok [B176], Urquhart [U73] for the 
latter). The field of free algebras is difficult to develop, and therefore this area is far from 
being closed, there are many open problems, and unexplored territories here. 
25Here we use these words in the traditional sense, which was formalized e.g. on p. 5 of 
Blok-Pigozzi [BP89]. Inference systems of this kind are sometimes called Hilbert-style 
ones. An almost Hilbert-style complete inference system for L,~ was recently obtained 
in Venema IV91]. This is given by a finite schema (but the notion of an inference rule 
is different from ours or from that of [BP89]). For completeness we note the following. 
Let [-n denote provability by one of the standard tIilbert style axiomatizations of Ln (of. 
e.g. [HMTI1] or [TG87]). Basically, F- u is obtained by restricting the usual axiomatization 
of L ,~  to Lu. If we take the syntactic version of the Lindenbaum-Tarski algebra of L,~ 
induced by b,~. then we obtain the free CA,~ discussed in the preceding subsection ("The 
axiomatic approach. . .")  and in w If we take all F-,~-consistent theories of L,~ and their 
Lindenbaum-Tarski algebras (modulo F-u and not semantically) then we get exactly the 
members of CA,~. 
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discovered tha t  the weak Beth proper ty  (considered the more impor tan t  in 
Barwise-Feferman ~3F85]) still might  hold for L~, because the corresponding 
algebraic question is still open for RCAn's (and also for RRA's). This alge- 
braic question asks whether  for every epimorphism f : 92 -~ ~3 w.r.t, which 
all full Cs~'s are injective, f is onto ~3 (here 92, ~3 are arbitrary REAm's). Re- 
cently, an even weaker version of the Beth proper ty  was proved to hold for 
Ln in a collaboration of K. A. Kearnes and I. Sain using algebraic logic. (For 
more on the algebraic counterpar ts  of logical properties like Beth's definabil- 
ity and Craig's interpolat ion see e.g. Maksimova [IVis77, Ms88], [HMTII] pp. 
259-260, [HMT] pp. 356-357, p. 178, [ANS84], [CoS4], [TRST], [WS4], [OS6], 
Goranko [G85].) 

How far did we get in obtaining algebras of relations in general (binary, 
ternary, . . ,  n-axy, . . .  )? RCA~ is a smooth  and satisfactory algebraic theory 
of n-ary relations. So, can our theory handle all finitary relations? The 
answer is bo th  yes and no. Namely, since n E w is arbitrary, in a sense, we 
can handle all fiuitary relations. But ,  we cannot have them all in the same 
algebra or in the same variety. For any finite family of relations, we can 
pick n such that  they are all in RCA,~. But this does not extend to infinite 
families of relations. To alleviate this, we could try working in the system 
(RCAn : n E w / of varieties instead of using just one of these. To use them all 
together,  we need a strong coordination between them. This coordination is 
easily derivable f rom the embedding function Dr sending R to R • U for R C 
nU defined above. Let 92 C_ ~e[,~(U) = ( ~ ( ~ U ) . . . )  be a CSn and let ~ be the 
Esn+l generated by the Dr image of 91, i.e. % C ffte[n+l(U) --- (~3( n+l U)."  ") 
is generated by {Dr(R)  : R E A}. The biggest 92 yielding the same ~3 is 
called the n-ary neat-reduct of ~3, formally 92 = Nrm(~3). It is easy to extend 
N r n  in a na tura l  way to all elements of RCAn+I. Intuitively, Nr,~(%) is the 
algebra of n-ary relations "living in" the algebra ~3 of n + 1-ary relations. 
It is not hard  to see that  N r n  : RCA,.+I ~ RCA~ is a functor, in the 
category theoretical  sense, for every n. Now, we cart use the collection of 
varieties RCA,~ for all n E w, synchronized via the functors ( N r ~  : n E w), 
as a single ma themat i ca l  enti ty containing all fmitary relations. 

Another  possibility is to insist that  we want all fmitary relations over U 
represented as elements of a single algebra. In other words, this goal means 
that  instead of a system of varieties we want to consider a single variety that  
in some sense incorporates  all the original varieties taken together.  Indeed~ 
each REAm can be viewed as incorporat ing all the RCAk's for k < n, since 
the lat ter  can be recovered from REAm by using the functors Nrm-1 ,  Nr,~_2 
etc. So as n increases~ RCA,~ gets closer and closer to the variety we want. 
Indeed,  we take the limit of this sequence. There are two ways of doing 
this, the naive way we will follow here and the category theoretical way we 
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only briefly mention. It is shown in the textbook Adamek-Herrl ich-Strecker 
[AHS] that the system or "diagram" 

RCA1 N ~  RCA2 Nr2 . . .  RCA,~ N~,~ RCA,~+I " ' "  

is "convergent" in the category theoretic sense, i.e. that it has a limit k. 
Indeed, it is this class k of algebras that we will construct below in a naive 
way that does not use category theoretic tools or concepts. 

We first extend our Convention, stated at the beginning of the present 
section concerning associativity of Cartesian products and powers. In the 
sequel ~ is the set of w-sequences over U. Furthermore, nU • ~ = ~U, 
and if R C_ nU then R • ~U C_ ~U, for n < w. We will also have to 
distinguish the constant Id of RCA3 from that of RCA4. Therefore we let 

Id,~ deJ { ( a , . . .  ,a} : a C U} denote the n-ary identity relation on U. 

How do we obtain an algebra containing all finitary relations over U? If 
R is binary, but  we want to treat it together with a 5-ary relation then 
we represent R by R • U • U • U = R • 3U in a Cs~. Similarly, if we 
want to have R together with (n q-2)-ary relations then we represent /~ with 
R • '*U in a Cs~+2. Taking this procedure to the limit, if we want to treat R 
together with relations of arbitrary high ranks, then we can represent R with 
R • o~ U. This way we can embed all finitary relations into relations of rank 
w, and relations of different ranks become "comparable" and "compatible"; 
in particular we avoid the problem we ran into at the end of w in connection 
with the Boolean algebra ~ ( < ~  U). Instead of trying to tame the Boolean-like 
algebra {R : R C_ ~U for some n} C 79( <~ U), we simply represent R C ~U 
by R •  ~U which / s  an element of the BAO (Boolean _algebra with operators) 
( q 3 ( ~ U ) , c 0 , . . . , c n , . . . ) ~ < ~ ,  where q3(~U) /s a BA, and ci is defined exactly 
the same way as in the Csn case. We still haven't obtained the definition of 
Cs~,'s from that of Csn's because we do not know what to do with the constant 
Id. More specifically, we want to be able to use the neat reduct functor N r n ,  
as the inverse of R ~-~ R • ~U for R C__ nU, in order to recover the original 
Cs~'s from the new Cs~. This means that for Id~ C_ ~U we want Ida • ~U 
to be a derived constant (distinguished element) in our algebra. Adding 
Id~ = { (a , . . .  ,a, . . ) : a  e U} as an extra constant does not ensure this any 
more. One of the most natural  solutions is letting Idij = {q E ~ U : qi = qj } 
and defining a full Cs~, as 

Ne~(U) doj (N(~ U), c~,Id~j)~,j<~ , 

where the Id~j's are constants. The price we had to pay for replacing the 
finite bound n on the ranks of relations we can treat with the infinite bound w 
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is that  we had to break up our single constant Id to infinitely many  constants 
Idij (i, j E w). 

RCA~ is defined to consist of all subalgebras of direct products  of full 
Cs~'s (up to isomorphisms).  Again, as it was the case with BRA's and 
RCAn's, RCA~'s are directly representable as algebras whose elements are 
w-ary relations. 

THEOREM 5 ([HMTII] 3.1.103, p. 43). RCA~ is a variety. 

ON THE PROOf'. The proof  is harder than those of Theorems 1, 3. The 
reason for this might  be the fact that  RCA~ is not a d iscr iminator  variety 
unlike RfiA,,  RRA, and BRA, which are discriminator varieties. In this 
connection we note that  despite of this, many  of the results of the theory of 
discriminator varieties carry over to RCA~ because of the following. RCA~ 
is '~educt-locally discriminator" in the sense that  for any finite part  to of 
the similarity type  tl of RCA~, there is a to < t < tl such that  S R d t R C A ~  
is a discriminator variety. 

Let ~ E RCA~ and 91 = ~ / O  for some congruence 0 of ~ .  For n E w, let 
R d , 9 1  be the reduct  of 91 to the language of RCA~'s. It is not hard to see 
that  R d , ~ D  E RCA~. By Theorem 3 then Rd~9.l  = ( R d . ~ D ) / O  E RCA~. 
To prove Theorem 5, it is enough to prove that  

(,) (Vn E w)Rd~91 E RCAn implies 91 E RCA~ 

for any 2t E H S P R C A ~ .  
It is not very easy to prove (*), but  it is not hopelessly hard either. E.g. 

one can use u l t raproducts  in "pasting together" the representations of the 
(Rd,~91)'s in order to represent 91. For this the basic lemma [ttMTII] 3.1.92 
(p. 36) discussing u l t raproducts  of Cs~,'s and their generalizations fis~'s is 
sufficient. | 

For completeness,  we note that  [HMTII] 3.1.103 p. 43 gives a direct proof  
for Theorem 5 not using discriminator varieties or other special tools of 
universal algebra. Further ,  it is useful to keep in mind that  though RCA~ 
is not a discriminator  variety, it is an ari thmetical  (congruence distributive 
and congruence permutable)  one. For the rather strong theory of the latter 
see [MMT] p. 247, [BS81]. Actually, every variety o f  BAO's is ari thmetical  
by [MMT] Thm.4.143 or [BS81] Thm.II.12.5 due to Pixley. 

We note  tha t  RCA~ is the variety generated by the class k which was the 
limit of the RCAn's above, see [AHS]. Can we actually recover the algebras 
of fmitary relations f rom the huge fifll Cs~'s? 

Le t  Rf(U) = {R • "~U : R C '~U for some n}. Then Rf(U) C ~(~U);  
moreover it is a subalgebra of the full Cs~ ~e[~(U)  with universe P(~U);  
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see [HMTII] Deft3.1.130 on p. 55, where this subalgebra was denoted by 
N f ( V , w ) .  We will use the notation Nf(U). (The letters Rf (and 9~f) refer 
to 'Tinitary relations".) Now, for the above mentioned class L we have 
L = S{~f(U)  : U is a set} .2a In a sense, L is the narrowest reasonable class 
of algebras of fiuitary relations. The class L and its relationship with RCA~ 
was systematically investigated in Andr~ka [A73], Andr~ka-Gergely-Nfimeti 
[AGN73], [AGN77], [HMTAN], [HMTII]. In the first three works the class 
was denoted by Lv or Lr, while in the last two by Cs~ g NLf~, the latter being 
the standard notation today. Cf. e.g. Shelah [Sh89], Monk [M89], Serdny 
[Se86], for recent results not in [HMTII]. RCA~ = H S P L  is Thm.3.1.123 
of [HMTII]. [HMTAN] proves that the smallest quasivariety containing L is 
also RCA~ but RCA~ r SPL,  i.e. the infmitary quasivariety generated by L 
is strictly smaller than RCA~,. 

We return briefly to aIqebraization of loqic: RCA~ is the true algebraic 
counterpart of full first-order logic (with equality). Within REA~, the al- 
gebraic counterparts of models of first-order logic are the members of L. 
Indeed, let 932 = (M, R~}~ez be a first-order model. Then the subalgebra of 
9~f(M) generated by {R~ • ~M : i E I} is the algebraic counterpart of 97t. 27 
This is not very surprising after having seen that the logicM counterpart of 
RCA,~ was first-order logic Ln restricted to the first n variables. It is naturM 
to expect that removing the bound n on the ranks of the relations will re- 
sult in removing the bound on the number of variables, in the corresponding 
first-order logic. 

The algebraic counterparts of the logical connectives are operations of 
RCA~. (This is standard in algebraic logic; see [H.MTII] w or Blok- 
Pigozzi [BP89], or Andr~ka-Sain [AS78]). The algebraic counterpart of 3vi 
is ci, and that of vi = vj is Idij. With these, substitution of variables is 
expressible; namely the result of substituting vj for all free occurrences of 
vi in the formula ~ is equivalent to ~vi(vi = vj A ~); cf. [HMTII] w 
In particular, R(vl ~1 ) is 3v0(v0 = vl A R(vovl )), R(vl Vo ) is 3v2 Iv2 = Vo A 
3v0 (v0 = vl A3vl Iv1 = v2 AR(v0vl )])]. Therefore we do not need to introduce 
an algebraic operation to represent substitutions of individual variables as 
we did in the case of BRA's, by means of -1 

26For this equality to be literally true, when forming the category theoretic limit L, instead 
of the varieties RCAn we have to start out from their subdirectly irreducible members, 
which are nothing but Cs~,'s. So / is the limit of the sequence C s t , . . . ,  Csn, . . . .  
27For certain purposes the algebraic counterparts of models are not elements of the class l ,  
but rather homomorphisms from free algebras (namely, free RCAw's over various generator 
sets) into elements of l ;  cf. [HMTI1] pp. 256, 2579; [AS78] pp. 46-48, where connections 
with Init ial  Algebra Semantics of Computer Science are explained; and Halmos ~-Ia85] p. 
208 lines 6-7. 
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So, we know what the algebraic counterparts of logical connectives and 
of individual models are. The algebraic counterparts of classes of models 
(especially of axiomatizable classes) are certain elements 2s of SPI., cf. p. 
168 of [HMTII] and N~meti [N78]. The algebraic counterpart of a class K of 
models was denoted by r K in [HMTII]. 

Moving in the opposite direction, the logical counterparts of cylindric 
equations (i.e. equations in the language of RCA~'s) are not concrete first- 
order formulas, as one would expect, but instead they are schemata of formu- 
las, see N&neti [N87] 29 . A typical example for a schema is T ~ 3vi T, where 

is a variable ranging over formulas. The corresponding cylindric equation 
is �9 _< cir.  'Examples for logical investigations where schemata of formu- 
las play a central r6le are the recent Bernarducci [B89], [BS9a], Vardanyan 
[V86], Smorynski [Sm85], [Sm84]. 

In more detail, the connection between first-order logic (also some of its 
generalizations) and RCA~ theory (including its generalizations) is elabo- 
rated in w of [HMTII], N&neti [N89], [N78], Blok-Pigozzi [BP89] Ap- 
pendix C. (M. Rubin has results concerning decidability etc. of equational 
theories of RCA~'s associated to various theories of logic.) 

The theory of RCA~ is extensively developed (cf. [HMT] Chapters 1-4, 
and [HMTAN]). The few results we can mention here are very far from 
forming even a representative sample. The lattice of subvarieties of RCA~ 
together with their decision problems is investigated in [N87], [N85]. Open 
problems (about subvarieties etc.) that might be rewarding to work on are 
in [HMTAN], and [HMTII] pp. 179-180. E.g. Problem 4.2 in the latter asks 
if there are 2 ]~j many subvarieties of RCAa for lal > w, where RCA~ is 
the natural generalization of RCA~ to be defined soon. (A list indicating 
the status of the problems raised in [HMT], [HMTII], ~IMTAN] is available 
from Monk, and has been published in [AMN].) Sain [$89] contains, besides 
recent results, important and natural open questions. One of them asks for a 
universal algebraic (or category theoretic) characterization of the full Cs~'s 
as members of the variety RCA~. The analogous problem is also open for 
RCAn and RRA. An important recent direction is taken in Monk [M89]. 
There is a Galois theory of RCA's, see e.g. Comer [Co84], Daigneault [D64], 
Driessel [Dr68], Reyes [RT0], [M89], Plotkin [P188, P189]. We should also 

2SThis c la im migh t  puzzle some readers  because  classes of models  are "big" when  com- 
pared  to single mode ls  (so how come they b o t h  t r ans la t e  to single a lgebras) .  In this  
connec t ion  we would like to po in t  out  t h a t  in a cer ta in  algebraic sense the  e lements  of 
SPI_ are big when  c o m p a r e d  to those  of L (The  e lements  of [- are subdi rec t ly  i r reducible  

while those  of S P [  are not . )  
29At least  this  is the  case in m a n y  s i tua t ions .  A case when the logical coun te rpa r t s  can 
be t r ea ted  as concre te  formulas  is Thm.4 .3 .57  of [I-IMTII~. 
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mention the works of Ser6ny [Se85], [Se86], Ferenczi ~F89, F89a], Shelah 
[Sh89], Bir6--Shelah IBIS88]. 

Theorems 2 and 4 above,which say that BRA, RRA, and RCAn are not 
finitely axiomatizable, carry over to RCA~ too, but to avoid triviality, instead 
of non-finite axiomatizability we have to state something stronger, because 
RCA~, has infinitely many operations and finitely many axioms can speak 
about only finitely many operations anyway. Taking this into account, when 
trying to axiomatize RCA~, one could still hope for a finite "schema" (in some 
sense) of equations treating the infinity of the RCA~-operations uniformly. 
A possible example for a finite schema is (E0-7) in the proof of Proposition 
8.3 in w (Appendix). The following theorem, generalizing a very important 
result of Monk ([HMTII] 4.1.7), implies that it will be hard to find such a 
schema, and that certain kinds of schemata are ruled out to begin with. 

TttEORI~M 5.1 (Andr~ka). The variety RCA~ is not axiomatizable by 
any set ~ of universally quantified formulas if ~3 contains only finitely many 
variables. 

This theorem was proved for RCA~, to be introduced soon, for any ordinal 
a > 2. Andr4ka found a rather simple proof for Theorem 5.1 in January 
1986. This way she also found a simple proof for Monk's important non- 
finitizability theorem ([HMTH] 4.1.7). Andr~ka's simple proof is available 
in [A91],  91]. 

Returning to the problem of finitization first discussed in Remark 2, the 
infinite number of basic operations of RCA~ presents itself as a new kind of 
obstacle. Of course, one could try to alleviate this by changing the language 
of RCA~ such that ell the old operations {ci,Idij : i , j  E w} would become 
term definable in a new finite language and then one would search for a 
finite axiomatization. However, this approach to the problem belongs to 
a relatively big and central project, called true finitization, of mainstream 
algebraic logic. This project is in the spirit of Remark 2 way above, cf. Sain 
[$87a], and we will return to it at the end of this section, and in w167 In 
the next paragraph, we will aim for axiomatizability with a finite schema 
only. 3~ We will need the following operations on relations expanding RCA~. 

Let R C wU and r : w ~ w. Then St(R) def: {q E ~U : qo~" C R}. The 
logical counterpart of the operation S~ is substitution of variables along T, 
e.g. S~.(Rl(vovl))is intuitively R1 (v~-(0),v~.(1)). 

3~ finite schema means something like (Ell-7) in w (Appendix)  herein. There are 
precise definitions of a finite schema in [HMTII] pp. 110, 261 but it is not necessary to 
look these up in order to unders tand the present paper;  it is enough to know that  a finite 
schema may contain only finitely many variables~ in the sense of [HMTII]. 
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A d v a n c e d  t o p i c s  in RCA- theory  

Now we can turn  to .finite schema axiomatizability as a continuation of 
Remark 2. From now on, a finite schema is allowed to contain only finitely 
many variables. By Theorem 5.1, RCA~ is not axiomatizable by a finite 
schema. W. Craig expanded RCA~ with the two operations Ssucc and Spred, 
where the indices are the usual successor and predecessor functions on w. 
Craig proved that  the equational theory of the so expanded version of RCA~ 
is axiomatizable by a finite schema. However, the price for this is that 
Craig's algebras do not form a variety; in fact they are not closed under ul- 
t raproducts ,  so they do not form an axiomatizable class, cf. [HMTII] p. 265 
or Craig [Cr74]. The most active proponents of Craig's approach at present 
are, among others, I. Sain and R. J. Thompson, but see also the references on 
p. 265 of [HMTII], and w (2-4) herein. Continuing Craig's work, Sain has 
obtained a class of algebras which is an adequate algebraic counterpart of 
first-order logic without equality. (In Sain's algebras, for every finite trans- 
formation T of w, and for every i E w, S~ and ci are term definable, but Idlj 
is not.) Sain proved that  her variant of RCA~ is a variety axiomatizable by 
a finite schema of equations. 31 (This is related to but not identical with the 
results in the current version of Sain [$87a].) There are several intriguing 
open problems in Sain's works on Craig's approach, the solutions of which 
could provide considerable insight into the basic questions of algebraic logic. 
Most of these problems admit very simple purely semigroup theoretic for- 
mulations. (The main bulk of these is stated either in the June 1987 version 
or in the current version of Sain [$87a].) 

CONVENTION. Throughout, both w and n E w are regarded as ordi- 
nals. Further, n = { 0 , . . . ,  n - 1} for n E w, and more generally a = {j3 : 
fl is an ordinal and ~ < a} for any ordinal a. For any ordinal a, ~U b the 

set of  a-sequences of members  of U. Formally, 
~U = { f  : f is a funct ion mapping  a into U}. 
The definition remains the same i f  a stands for an arbitrary set (and is not  
necessarily an ordinal). 

To treat RCA. and RCA~ in a Lmified manner,  we replace w in the deft- 
nition of RCA~ with an arbitrary but fixed ordinal a, obtaining RCA~ (here 
a = n and a = w are of course permitted).  This generalization will also be 

31This resul t  appea r s  as Thin .1  on p. 3 of the June  1987 version of Sain [$87a] (a version 
of [$87a] t h a t  differs s u b s t a n t i a l l y  f rom the  cur ren t  one). Thm.1  is proved on pp. 34-37 
in w and  R e m a r k  10.1 on p. 37 conta ins  a simplified finite schema defining her version 
of R C A ~ .  Th i s  schema  is indeed  simple.  Page and  i tem number s  in this  footnote  refer to 

par t s  of op. cit. 
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useful in algebraizing various quantifier logics different from classical first- 
order logic L ~ .  In particular, a full Cs~ is of the form (~(~U), c~,Id~j)~,j<a 
defined analogously to RCA,~ and RCA~. 

An important and natural generalization of RCA~ is obtained by relaxing 
the condition that the top (i.e. largest) element of a full Cs~ is of the form ~ U. 
Namely, let V C ~U. By a full relativized Cs~, or a full Crs~, we understand 
(~(V),  c~,Idij)~,j<a, where the operations ci and Idij are now relativized to 
V, e.g. Idij = {q E V : qi = qj}. (In the abbreviation Crs, the '~r" refers 
to "relativized".) Subalgebras of fifll Crs~'s are called Crs~'s, and the class 
of isomorphic copies of Crs~'s is denoted by ICrs~ (see [HMTII] w The 
elements of Crs~ are still natural algebras of a-ary relations. The elements 
of a Crsa 9/are  obviously a-ary relations, the only difference with RCA~'s 
is that now the greatest relation (i.e. the top element of 91) is an arbitrary 
a-ary relation and not necessarily a Cartesian space or a disjoint union of 
such spaces. This flexibility will be useful in algebraizing quantifier logics 
different from L ~  (like higher order, many-sorted, and nonclassical logics); 
cf. e.g. [N78]. Before looking into different quantifier logics, we mention some 
algebraic results. 

THEOREM 6. ICrs~ is a variety whose equational theory is not axiom- 
atizable by a finite schema (for a > 2), but is decidable. 

For a p r o o f  see Thm's 5.5.10, 5.5.13 of [HMTII] and [N86]. 

Related results for RRA's are in Maddux [Ma82] and N~meti [N87a]; see 
also Kramer [K89]. The equational theory of BRA is already undecidable, 
moreover so is that of any variety containing as a subreduct either the Id- 
free subreduct of RfiAa or the -1 -free subreduct of BRA (a result of Maddux; 
see [HMTII] 5.1.66). As a contrast, the equational theory of RfiA2 is both 
decidable and finitely axiomatizable ([HMTII] Thm's 4.2.9, 3.2.65 pp. 136, 
84). 

An important positive result concerning the finitization problem for al- 
gebras of relations (see Remark 2, and the discussion not too far above) is 
based on the following breakthrough by Diane Resek. In the sequel, 1 is the 
Boolean constant denoting the top element of the algebra. 

THEOREM 7 (Resek-Thompson). The elements of Ctsa satisfying cildij= 
1 (for all i, j E a) form a variety V~ axiomatizable by a finite schema of equa- 
tions. (If a is finite, V~ is finitely axiomatizable.) 

Note that a Crs~ at satisfies ciId~j = 1 iff its top element satisfies a very 
simple set theoretic condition. For a relatively simple proof  of Theorem 
7' see Andr6ka-Thompson [AT88]. (Improvements and discussions of some 
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of the conditions in [AT88] and similarly simple proofs of results related to 
Theorem 7, with an emphasis  on relativization, are in [Ma89d].) 

The subvariety V~ of ICrs~ in Theorem 7 has a decidable equational theory 
if a < w (N6meti [N86]). It is art open problem whether this carries over  to 

Let us turn  to applying Crsa to a lqebraizations of different quantifier loqics. 
Let us consider many-sorted logic first (as shown in Barwise-Feferman [BF85] 
or [$87b], many-sor ted  logic is a good unifying framework for abstract model  
theoretic logics, nonclassical, and various unusual  logics). Let U and W be 
two disjoint sorts in the logic we want to algebraize. Let V = ~ g  • ~W. 
Then,  according to our Convention concerning associativity of • and Carte- 
sian power, V C ~'+w(U 0 W). Then ~ = (~3(V), ci. . .)i , j<w+w is a Crs~+~. 
Here ci corresponds to quantifying over variables of sort U or W, depending 
on whether  or not i < w, and similarly for Id~j when i and j are "in the 
same copy of w". The fact that  Id0~, = 0 corresponds to the logical fact that  
equality is not defined between elements of different sorts. Now, we could 
repeat,  with appropria te  changes, what we said before about the connection 
between RCA~ and L ~ , .  The  idea extends to an arbitrary muvtber of sorts, 
in the obvious way. See N~meti [N78], LeBlanc [L59, L62], [AGN75], Plotkin 
[P189, P188], for more detail. Now, many-sorted logic is a natural  stepping 
stone for higher order logic. 

To treat  second-order logic, for example, we can take V = ~U • ~:P(U) 
and expand the Crs~+~ (~3(V), c~.. .} with the new constant E = {q E V : 
q0 E q~} to represent algebraically the "element of" relationship between 
the first-order and second-order objects. One cart do the same for higher 
order logics, see e.g. [AGN75, AGN75a], LeBlanc [L59], Venne [V65, V66], 
Salibra [Sa89]. 

It is also indicated in N~meti [N78], Freeman [F76], Georgescu [G79a], 
Monk [M60] how Crsa can be used for algebraizing nonclassical quantifier 
logics like first-order modal logic or first-order temporal logic. The use of 
Crsa's as a unifying framework is more explicit in the first citation, while 
more details are available in the others, especially in [F76]. Roughly speak- 
ing, a Kripke model  for first-order moda l  logic consists of a universe U of 
individuals,  and a set W of possible states or "worlds" or t ime instances 
together  with some further  structure.  In this case we choose the top element 
V of our Crsa to be W x ~U. Intuitively, (w,qo,... ,qi,...} E R means that  
(q0--. q i . . . )  is in the relation R when viewed from the possible world or 
state w. 

The  point  we are trying to make here is that  algebraizing non-classical 
(say modal)  first-order logics again leads naturally to an algebra of fmitary 
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relations. The choice of the logic introduces some peculiarities into the 
relations, e.g. in the case of modal or temporal logics the first argument 
of the relations comes from a different 'kmiverse" (namely, that of possible 
states or time instances) than the rest of the arguments. This, however, does 
not seem to diminish the importance of the fact that we are dealing with 
relations. This is why Crs~ seems to be a reasonable unifying framework for 
the algebraizations of these logics. 

Let us return briefly to RCA~, and to the quest for finding natural  algebras 
of finitaxy relations (we mean the quest we tried to illustrate by the "obvious" 
considerations in connection with 7~(<~U) in w and which admitted one 
possible satisfactory solution by our defining 9~[(U), and the class I_ below 
Theorem 5). 

L e t  Frl(U) = {R : R C_ nU for s o m e n  E w}. That is, Frl(U) is the 
collection of all _fmitary relations over the set U. A relation R C '~U is 
essential if either R = O or for no S C_ (n-1)U is R = S X U. So, an n- 
dry relation is essential if it is not a "dummy embedding into rank n" of 
another relation of some smaller rank. We let Ref(U) = {R E FrI(U) : 
R is essential}. We define a partial ordering <_ on Frl(U) as follows: For 
any R ,S  C Frl(U) we let R <  S i f f e i t h e r  S C _ R x k U ,  or S x k U  C_ R f o r  
some k E w (i.e. if we level out the rank differences between S and R by 
using "dummy embedding" then S becomes a subset o f / / ) ,  Note that for 
all R, 0 < R and R < ~ {0} = {()}) because R C '~U = ~ x nU for 
some n. 

FACT 2. < is a complemented distributive lattice ordering on Ref  (U). 

We let (Ref(U),  A, V , - )  be the Boolean algebra induced by this ordering 
<. Note that  to every R E Frl(U), there is a smallest (according to <) upper 
bound ess(R) o f R i n  Ref(U).  For R C'~U a n d i <  n l e t  ci(R) C_ nUbe  
defined as in RCAn. Let R e Ref(U) and i < n. Then c+(R) = e88 (c~(R)). 

For i > n we let c/+(R) = R. Finally, for j < i, let //j = Iji = {q E 
i+1 U : q~ = qj}. So in particular I01 = {(a, a} : a  C U}, I12 = U x I01, and 
Z,,n+~ nU x I0~ Now, 9~ef(V) (Re/(U),A,V,  + = ' = - ,  c~ ,Iij)~,j<~. 
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FACT 3. 

(i) roof(u) RCA , moreover RCA  variety generated by the 
K = { ~ r  : g is a "set}. 

(ii) For L as introduced below Theorem 5, we have K = L up to isomor- 
phism , becan e roof(U) mr(u). 

The above ideas are described in more detail in Andr6ka [A77] w and p. 
37. We note that  ~ c f ( U )  seems to be related to Craig's algebras of sets of 
finite sequences, with tmiverse 7~(<~ U), in w below and in [HMTII], p. 
265. The nature  of the relationship is not clear to us however (except that 
Ref (U)  C_ :P(<~U)). We included the algebras ~e f (U)  here to show that the 
generators of the variety RCA~ can be built up as algebras whose elements 
are truly finitary relations in the most concrete possible sense. Further the 
extra-Boolean operator  ci + when applied to an ( i+ l ) - a ry  relation R results in 
literally deleting the "last column" of R, which is one of the most natural  and 
most widely used operations on n-ary relations. E.g. c + {(a, b, c) } = {(a, b) }. 

As we mentioned above Theorem 6, in our first extension of Remark 2 
(finitization) to RCA~'s i.e. in our discussion of the search for finite schema 
axiomatizable expansions of RCA~'s, there exists a more ambitious approach 
aiming at true finitization of expansions of RCA~'s and their variants, see e.g. 
Monk [M70], Problem 1 in Henkin-Monk [HM74], and Sain [$87a]. Roughly 
speaking, we are searching for an expansion V1 of RCA~'s such that V1 would 
be te rm definably equivalent (polynomially equivalent in sense of p. 125 of 
[HMTI]) to a finitely axiomatizable variety V2. This search is one incarna- 
tion of the general question, playing a central rble in algebraic logic, which 
asks whether the choice of the fundamental operations of the algebras RCA~ 
of relations was the best possible, or whether a different choice of the fun- 
damental  operations could improve the situation. Certainly we made some 
very quick decisions when passing from RRA's to RCA~'s, e.g. we decided to 
drop "o" and -1 from the list of fundamental  operations and derive them as 
term functions. We will re turn to the issue of these decisions in general in 
w but the subject of finitization that recurs throughout the paper is also 
an investigation of possible alternatives to these decisions. Next we briefly 
return to fmitization. 

Generalizing our definition that preceded Problem 2, we now define, for an 
arbitrary ordinal a,  an operation f : 7)( ~ U) ---* :p(a U) to be permutation 
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invariant iff for any permutat ion p of U and R C_ c~U, we have p ( f ( R ) )  = 

f(p(R)). Consider the fonowing statement. 
(4.1) There are permutat ion invariant operations fi : P(~U) ~ 7)(~U), 

(i < n) for each set U, such that, if 92(U) = (9~(~U) , fo , . . .  , fn)  
and K + = {ffl(U) : U is a set}, then the following holds. The RCA,, 
operations ci and Idij are term definable in K +, i.e., there are terms 
7i and 5ij ( i , j  C w) of K + such that in 91(U), 7~ and 5ij define the 
usual ci and Idij. 

Note that (4.1) implies RCA,, = S P R d K  +. 

PROBLEM 2.1. IS (4.1) above true in such a strong form that for K + in 
it, SP(K +) / s  a finitely axiomatizable variety or at least such a quasivariety? 

Problem 2.1 is the RCA~ counterpart of the stronger, (3.2) +-part of Prob- 
lem 2 in Remark 232 . The variant of Problem 2.1 corresponding to the 
slightly weaker, (3.2)-part of Problem 2 was solved by Sain (compare [$87a]), 
who proved the following. 

T H E O R E M  8 . 1  (Sain). (4.1) is true in such a strengthened form that 
K + /n it generates a finitely axiomatizable variety. 

This result indicates that there really is a difference between the two 
versions of Problem 2. Further, Sain exhibited easier (than the proof of 
Theorem 8.1) solutions for the counterpart of the weaker variant of Problem 
2 quoted from [TG87] at the end of Remark 2. Namely, she provided easier 
proofs for the following: 

PROPOSITION 8.2. (4.1) /s true in such a form that to K + in it there 
is a finitely axiomatizable variety K0 _D K + such that RCA,, = SRdK0.  
Furthermore, R d  is taken using the terms 7i and 5ij fixed in (4.1). 

Sain also suggested several attractive simple choices of K + and K0, and 
raised the problem whether these choices also satisfy the statement of Propo- 
sition 8.2. (The only problem she left open is to check if the severn cylindric 
postulates, like c~cj = cjci, in [ttMT] p. 162 are satisfied i n  K0.)  33 Compare 
the June 1987 version of [$87a]. 

The fact that Sain's proof for Proposition 8.2 is easier than her proof for 
Theorem 8.1 points in the direction that the variant of Problem 2 at the end 
of Remark 2 might turn out to be easier (than even the (3.2)-part of the 

32 P rob l em 2.1 is a concre t ized  ins tance  of the similar one in Monk [M70] and  H e n k i n -  
Monk  [HM74] m e n t i o n e d  in R e m a r k  2. It is closer to the problem in these papers  t h a n  
P rob l em 2 in R e m a r k  2 was. 
33Tha t  this  migh t  be a non t r iv ia l  task  is ind ica ted  by Corollary 3.6 on p. 654 of Demaree  
[D72], as will be discussed below T h e o r e m  16 herein.  
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original Problem 2). A finite schema version of Proposition 8.2 above was 
obtained by Craig before Shin proved her result, cf. Craig [Cr74] and our 
discussion of finite schema axiomatizability above Theorem 6. 

PROBLEM 2.2. What is the answer to Problem 2.1 i f  we replace each 
occurrence o f  w wi th  n (for some n > 2) in it? This means replacing RCA~, 
~U with RCAn, ~U respect ively  everywhere in Problem 2.1 and in i tem (4.1). 
This amoun t s  to asking the same question that  was asked in R e m a r k  2 but  
n o w  for RCA~ ins tead o f  BRA. 

We will ret~Lrn to finitization in w beginning with Theorem 16, and also in 
w (9). (However, a ra ther  strong negative finitization result, due to Andr6ka, 
will be mentioned in a footnote at the beginning of w 

5. Algebras for logics without equality 
So far we have extended RRA's (with extra-Boolean operations o, -1, Id) to 

algebras of relations of higher ranks. Let us see how to extend BRA's whose 
extra-Boolean operations were only o and -1 to higher ranks. When extend- 
ing RRA's to higher ranks, we were able to drop the algebraic counterpart -1 
of substi tution because by using ci and Id one can express -1 as a derived op- 
eration. (This was shown in the paragraph discussing the rble of RCA~ in the 
algebraization of first-order logic in the remarks following Theorem 5.) But 
when extending BRA's we do not have Id; hence we cannot express -1, and 
thus shouldn't  drop it. To discuss the counterpart of -1 for n-ary relations, 
we will use the operations S~ : :P(~ U) ~ 7~( ~ U) for r :w ~ w intro- 
duced in w immediately above the subtitle "Advance topics in RCA-theory". 
We use the notat ion n = { 0 , . . . , n -  1}. Let n b e  fixed, and let i , j  < n. 
Then [i, j] : n ~ n denotes the permutat ion of n interchanging i and j, 
and leaving everything else fixed. [i/j] : n - ~  n ~sends i to j and leaves 
all else fixed. (To be unambiguous we should write [i,j],~ and [i/j],~ but we 
rely on context to make things clear.) For r E nn, S~: 7~(nU) - -~  7~('~U) 

def 
is defined the same way as it was for the r E ~w case. We let Pij = S[i,j] 

i def and sj = S[~/j]. So in particular p o l ( { ( a , b , c . . . ) } )  = {Ib, a , c . . . ) }  or more 
generally pro(R) = {(qlqoq2q3 ...~ : (qoqlq2 . . . )  e R} .  Clearly for n = 2 
we have R -1 = P m  (R), and hence we may consider p,j as (an economical) 
generalization of -1 to higher ranks. The logical counterpart of P01 is the 
"substitution" sending the formula R(vovlv2 . . . )  to R(vlvove . . .  ). I f  we 
want to algebraize first-order logic, we also need the substitution sending 
R(VoVl ) to R(v l  vl ). Strangely enough, we cannot express this by using the 
p~j's and the c~'s in themselves. Therefore we also need s ~ We could stop at 
this point, but for aesthetic reasons we add all the i, s j s  for i, j < n. These are 



Algebraization of Quantifier Logics... 523 

not essential however, and the reader is invited to develop his/her version of 
algebraic logic having only one of the ~' sjs.  

The full polyadic set algebra of n-ary relations (the full Psi) over U is 
defined to be 

U), c~, sy, Pij)~,~<n. 

By a representable polyadic algebra of n-ary relations (an RPA~) we un- 
derstand a subalgebra of a direct product of full Psn's up to isomorphisms. 
Formally, RPA. = sP( fu l l  psi). (cf. the sentence above Remark 1 in w 

THEOR]~M 9. RPAn is a variety axiomatizable by a decidable set of 
equations. 

The proof of Theorem 3 also proves that RPA~ is a variety. See also the 
references in w of [HMTII]. The second part of Theorem 9 is proved by 
the methods in [tIMTII] pp. 112-118. | 

THEOREM 10 (Johnson [J69]). RPA,~ is not finitely axiomatizable if 
n > 2 .  

This result can, perhaps, be improved, since Andr~ka, has a construction 
that might be suitable for proving that RPA~, for n > 2, is not finitely 
axiomatizable over its p~j-free subreduct, i.e. over the variety 34 generated by 
the (~3(nV), - i Cz,Sj)i,j<n'S. 

We can put cylindric algebras and polyadic algebras together obtaining the 
so-called RPEA.'s (representable Eolyadic equality _algebras), and we can ask 
ourselves if we get essentially more than RCAn's. In a sense, Andr6ka gave 
an affirmative answer, solving Problem 5.8 of [HMTII]. We give more detail: 
RPEA~ is obtained by expanding RPA~'s by the constants Idii of RCAn's. 
Then RCA~'s become subalgebras of reducts of RPEA~'s. By the proof of 
Theorem 3, RP EA~ is a variety. 

34These are P in te r ' s  subst i tu t ion-cyl indr ic  algebras (of n-ary relations) (RSC,~'s); they 
will recur a few more  times below. Andr~ka also proved that  RCA,~, for n ~ 2, is not 
finitely axiomatizable over RSCT, either (s i is an RCAn-term; hence RSCn~s are also 
subreducts  of RCA,~'s). Andr~ka systematically generalized these kinds of results of hers 
to schemas for o~ > w, in analogy with Monk's  non-finit izabili ty result for RCA~ quoted 
from [HMTII] 4.1.7 above Theorem 6. She further strengthened most of these to stat ing 
non-axiomat izabi l i ty  by any set Y. of universally quantified sentences such that ~ contains 
only finitely many  variables. This way she does not have to introduce schemata. 
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THEOREM 11 (Andr~ka-Tuza,  Andr~ka). 

(i) RPEA,~ is not  finitely axiomatizable over Rs for n > 2. 
(ii) RPEAn is not finitely axiomatizable over RPAn either, for n > 2. 

(iii) Both  (i) and (ii) remain true i f  we replace finite axiomatizability by 
axiomatizabit i ty  with a set ~ of  universally quantified formulas such 
that }3 uses only fmitely  many  variables. 

For (i) see Andr~ka-Tuza  [ATu88]; the n = 3 case of (i) is their joint result. 
The rest of Theorem 11 is due to Andr~ka. 

(ii) above is in contrast  with the finite axiomatizability of RRA's over 
BRA's. Fur thermore ,  Theorem 11 (i) is in contrast with the finite axiomati- 
zability of RRA over its -1_free subreduct  ment ioned just before beginning 
of w 

In analogy with the relationship between RCA~'s and RRA's, BRA's are 
subreducts  ~ of reducts of RPAn's, for n > 2. In particular,  if R , S  C_ 
U • U and if D r ( R )  = R • U C_ 3U, then D r ( R  o S) = c2[p12(Dr(R)) N 
po2(Dr(S))] .  So, analogously to the remark following our definition of 
RCA~'s, we can observe that  the algebras of relations of higher ranks without  
equality (RPA, 's)  are expansions of the analogous algebras of binary rela- 
tions (BRA's). We already noted in w that  RCA2's are subreducts of RRA's. 

S o  RRA's are in between RCA3's and RCA2's. (When algebraizing proof the- 
ory as opposed to the present  emphasis on model  theory - -  i.e. when dealing 
with the "axiomatic" classes CA~, and RA approximating RCA~ and RRA, 
discussed in the middle of w and in w - -  these mEmbers increase by one, so 
instead of 2 and 3, we get 3 and 4; see Maddux  [Ma78, Ma83], [HMTII] w 
[TG87].) Strangely enough,  RPA2's are not subreducts of BRA's because s o 
is not a derived operat ion of BRA's. It would be nice to see a theory of BRA 
expanded with s o . (Probably it would be somewhere halfway in between 
BRA's and RRA's.) 

In RPAn, the operat ion S~- : 7)(nu) ~ ?v(nU) is term definable, for 
each ~- : n ~ n. These S~'s are quite impor tant  in RPA~-theory. In this 
connection, recall f rom the subsection in the middle of w (cf. also w that  
in the l i terature there is a traditional,  finitely axiomatizable variety PA~ of 
n-ary polyadic algebras approximating RPA~. The classical axiomatizations 
of PAn use all the S~'s and not only the sji's and p~j's, see [HMTII] Def.5.4.1 
p. 225. Therefore the tmiversal algebraic approach in [HMTII] pp. 260- 
263 based on the concept of a fmite schema as defined in [HMTII] was 
not applicable to PA-theory. However, in Sa in-Thompson  [ST89], a single 
natura l  finite schema ]Co of equations was found, such that  ~0 involves only 

35Recall our Convent ion tha t  subreducts  ave subalgebras of generalized reducts .  
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the s~'s and pij 's (and does not involve the S~'s in general) besides the 
Boolean operations. It is proved there that  PAn = Mod(Eo). In particular,  
the t radi t ional  polyadic axioms like S~o~(~) = S~ o S~(x) for all v ,~  E 
'*n follow from Z0. In other words, E0 is eqtfivalent with the tradit ional  
axiomatizat ion of PAn, and at the same time E0 has certain advantages. 
An impor tan t  point  here is that  the same ~'0 works for all n (and even 
for "n = w" but  that  comes later). The key part of their E0 consists of 
J6nsson's seven defining relations in 3.2.17(B) on p. 68 of ~IMTII] for the 
semigroup ~n as generated by the [i, j] 's and [i/j]'s transcribed to the Pij's 
and s ~'js. E.g. :I6nsson's defining relation [i, j] o [i, j] = Id translates to the 
axiom p~jp.ij(~) = ~ in Eo. 

From now on, we will freely use the derived operations or term functions 
S~ of RPA,~'s, for ~- E "n ,  without  recalling them. 

Generalizing RPA,. to RPA~ with a an arbitrary ordinal (especially for 
a = w) goes exactly as in the RCA~ case. However, for historical reasons, 
the resulting algebras are called quasi-polyadic algebras instead of polyadic 
algebras ( though it was these algebras which were introduced first, cf. t talmos 
[Ha54], and originally they were called polyadic; but later the terminology 
changed). In part icular ,  for finite a, polyadic and quasi-polyadic algebras 
coincide 36 . 

c~,sj,p~j)c,j<~ is called the full quasi-polyadie set algebra (full 
Qpsa) of a-ary relations over U for any ordinal a and set U. A quasi- 
polyadic set algebra (a Qpsa) is a subalgebra of a full Qps~. Let a > w. 
Then by a representable quasi-polyadic algebra of a-ary relations (an RQAa) 
we unders tand  an isomorphic copy of a Qps~. (Note the difference with the 
previous definitions!) 37 RQA~ = IQps~, where I is the operator of taking 
isomorphic copies. We define RQA~ = RPA~, for n E w. 

THEOREM 12. 

(i) RQA~ forms a variety if a >_ w. 
(ii) For countable a, RQA~ /s axiomatizable by a decidable set of equa- 

tions. 

36The distinction between polyadic and quasi-polyadic will be useful later at the alge- 
braization of infinitary logics. 
37BRA, RRA, RCA,:,, RPA. were all defined by applying SP to algebras of the form 
(~p(~' V),.--). 
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The weaker form of Theorem 12 (i) saying that  SPRQA~, is a variety is 
proved by repeat ing the proof  of Theorem 5 with the obvious changes. 

Note the striking difference with cylindric algebras: by Theorem 12 (i), 
IQps~ is a variety for a _> w, but  ICs~ is not. This result was perhaps known 
earlier, but  the proof  can be found in Shin [S89], Thm.3. 

r E ~w is called a finite transformation of w iff {i E w : ~'(i) ~ i} is finite. 
For every finite t ransformat ion 7" of a, the operation S~- is term definable in 
RQA~. 

In connection with the elegant finite schema E0 of equations in Shin- 
Thompson  [ST89] ment ioned  between Theorems 11 and 12 above, we note 
that  E0 works for a _ w; namely E0 implies all the distinguished quasi- 
polyadic axioms like Sro~ = S~- o S~ for finite transformations T, ~ of a. For 
a fist of all these axioms see [HMTII], i tem 9, p. 266; cf. also [HMTII] Def. 
5.4.1. I.e. for a _> w, QPAa = Mod(Eo), where QPA~ is the fmitizable 
variety of a-ary  quasi-polyadic algebras approximating RQA~ in the sense 
outl ined in the middle of w and in w 

For any finite subset r = { i l , . . .  ,in } of a we can introduce the derived 
operat ion (or t e rm function) C(r)(~) = % . . .  %~ (~). To see that  this works, 
it is enough to recall that  cicj = cjc~ is valid. An equivalent and frequently 
used way of in t roducing RQA~'s is to start out from the algebras 

(~(~  U), C(r),  S~- : F C_ a is finite, and r E ~a is a finite t ransformation).  

Indeed, this approach was taken in [HMTII] p. 266, Halmos [Ha62], [DM63], 
Andr~ka -Gerge ly -N~met i  [AGN77] etc. 3s 

The algebraic theory of RQA~'s for a _> w is practically the same as that  of 
RQA~'s, so we will concentrate  on the latter. Their algebraic theory is not as 
extensively developed as that  of RCA.'s ,  but  see Halmos [tIa62], Daigneaul t -  
Monk [DM63], [AGN77], Shin [$89], Sh in-Thompson  [ST89], Pinter [P73], 
the end of Pinter  [P73a]; R. J. Thompson  also has results in this fine. The 
next theorem is a generalization of a result of J. S. Johnson, namely of 
Theorem 10 above. 

38The reason for the popula r i ty  of this more complicated similarity type containing all 
the S=,'s and C( r  ) 's might  have been that  the simple schema S0 quoted above from [ST89] 
implying all the dis t inguished axioms like S.oa = S.  o S~, was not available. (Another  
reason might  be that  when Halmos [Ha54] introduced quasi-polyadic algebras, awareness 
of universal algebra as a desirable unifying framework for all branches of abstract  algebra 
in the sense ment ioned  in w and Remark  1 herein, was almost nonexistent.  We note that  
the same problem seems to keep popular i ty  below the deserved level in the case of the 
unbelievably rich treasure J6nsson-Tarsk i  [JT51] of knowledge on BAO's.) 



Algebraization of Quantifier Logics... 527 

THEOREM 13 (Sain-Thompson [ST89]). RQA~ is not axiomatizable 
by any finite schema a9 of equations in the sense of [HMTII]. 

As in the case of RCAa, RRA, and BRA, it is an important open problem 
to find simple, mathematically transparent, decidable sets E of equations 
axiomatizing RQA~ (a > 2). 

We could define the RQA~-theoretic versions of the class L and algebras 
~Rf(U) as the algebraic counterparts of the models of first-order logic L,,~ 
without equality as in the RCA~ case. Denoting these by kp and ~fp(U) 
(where p stands for Eolyadic), we have that RQA~ is the variety generated 
by Lp = S{~fp(U)  : U is a set}; see 4~ [AGN77] w Coroll.3.18 p. 28. 

We conjecture that the lattice of subvarieties of RQA~ will turn out to be 
considerably simpler than that of RCA~ described to some extent in N6meti 
[N87] w p. 245. It appears to us that developing the theory of RQA~'s 
would be quite an important and rewarding task. 

In aIqebraizinq quantifier Ioqics, the rSle of RQA~ is entirely analogous to 
that of RCA~. Namely, RQA~ is the true algebraic counterpart of classical 

i first-order logic without equality. The logical counterparts of sj o r  Pij send 
the formula ~ to ~(vi /vj)  or ~(vi /v j ,v j /v i )  obtained by replacing vi by vj 
or interchanging vi and vj as free variables of 9~ respectively. Perhaps the 
connection with logic on this syntactical level is not as elegant as in the 
cylindric case, because the operations ~ ~ ~(vi/vj)  are not logical connec- 
tives like "3vi" and "v~ = vj" were in the cylindric case. One possible way of 

i and pij as logical connectives, avoiding this problem would be to introduce sj 
restricting atomic formulas to R(vo,v l , . . .  ,v~), and treating R(v~vo) as a 
convenient abbreviation of polR(VoVl). Of course, this yields an equivalent 
formulation of L ~  without equality. The connections between RQA~-theory 
and logic without equality, including kp and ~fp(U) as algebraic counterpart 
of models, can be worked out analogously to w of [HMTII] keeping in mind 
w therein, [AGN77], Monk [M71], and Johnson [373]. At least this is what 
we conjecture, but this work has not been done yet, at least not in the detail 
of [HMTII], w and N~meti [N89]. As in the case of cylindric algebras 
outlined in the remarks after Theorem 4, RPA~ (=RQA~) is the algebraic 
counterpart of the version of L~ without equality; see Monk [MT1], [J73]. 
These algebraic counterparts proved rather useful in studying both versions 
of L~, cf. e.g. the relevant parts in [TG87]. 

39A set of i nd iv idua l  s c h e m a t a  like { c i c j x  -~ c / c i $ ,  ciId~j ---- 1} is called again  a schema 
for simplicity.  If t he  set is infini te  then  we say t ha t  this  schema is infinite.  T h o u g h  here 
we use the  def ini t ion of a schema in ~IMTII]  wi thou t  recalling it, we note  t h a t  it is the 
n a t u r a l  genera l i za t ion  of the  schema (]~0-7) in the present  Append ix  (w 
4~ some reason,  RQA~'s were called represen tab le  substitution algebras (and deno ted  
as R-sa)  in [AGN77] and  its 1974 version. Our  present  Lp was denoted  by s there .  
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Advanced topics 

If we expand RQA~ with the constants Id~i representing equality then we 
obtain RQA~'s with equality, RQEA~'s, exactly as RPEA~'s were obtained 
from RPA~'s. Actually, RPEA~ = RQEAn for n E w. Similar observations 
are true for these algebras, in particular for RQEAJs, as were spelled out 
for the case of a = n(< w) at the beginning of the present section (w 
But in contrast to Theorem 12, we have to define RQEA~ as an SP-closure 
of set-algebras even if a > w. One can define the analogs of Crs~'s for 
RQEA~ and for RQA~. The simple finite schema ~0 in Sain-Thompson 
[ST89] has an RQEA~-theoretic version ~"1, which is also found in [ST89]; 
Z1 is also finite, and just as simple as ~0- So, QPEA~ = Mod(~l ) is the 
fmitary variety of quasi-polyadic equality algebras approximating RQEA~. 
For n < w, QPEA~ = PEAn. An important theorem of Diane Resek implies 
then that every QPEA~ is isomorphic to one of the above mentioned RQEA~- 
like analogs of Crs~. We do not know whether a similar result holds for 
RQA~-like analogs of Crs~'s. We note that Andr6ka generalized Theorem 
11 above to RQEA~ and RQA~ for arbitrary a. By the proof of Theorem 
5 one can easily see that RQEA~ is a variety. (If not specified otherwise, 
we always mean "for every ordinal a"). Andr6ka proved that RQEA~ is not 
axiomatizable over RCA~ with any set E of universally quantified formulas 
if ~ contains only finitely many variables and a > 2. For lack of space we 
do not go into more detail in connection with the theory of RQEAa, but we 
note that they are basically cylindric algebras enriched with the Pij's so the 
two theories should be very close, and the differences illuminating for both. 

c~ U S i The joint reducts {~(. ), j)~,j<~ and ~3sc~(U)= (~(~U),  c~,sj)~,j<~. ~ -- of 
RQAa's and RCAa's have been investigated in Pinter [P73a], Preller [PrT0]. 
Here we should note that the subreducts RSC~ = S {~s~(U)  : U is a set} 
are already sufficient for carrying through the aIgebraization of L ~  without 
equality in a parallel fashion as described above for the RQA~-case (Pinter 
[P73b]). Therefore this subreduct RSC~ of RQA~ is not of a completely neg- 
ligible importance. An axiomatization, analogous to E0 quoted above from 
[ST89], of the finitary variety SC~ approximating 41 RSC~ can be obtained 
on the basis of Thompson [T87]. Pinter [P73b] calls the members of SC~ 
substitution-cylindric algebras. The proof of Theorem 12 also yields that  
RSC~ is a variety for a > w. Sain proved that RSC~ is not axiomatizable 
by any finite schema in the sense of ~IMTII] if a > 2. Her proof can be 
recovered from the proofs of Thm.2(i) in [ST89]. 

~lThis is the same kind of approximation as CAa approximates RCA~, ef. the subsection 
in the middle of w and cf. w We note that S C a  - :  H S R d Q P A a  r RSCa. 
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We note that RSC~ = (SRdRCA~)N (SRdRQA~)  seems to be the weak- 
est reasonable subreduct of RCA~'s still completely suitable for the alge- 
braization of fttll first-order logic (without equality). An algebraization of 
logic completely parallel to the one in [ttMTII] w can be worked out in 
the same detail for RSC~ in place of RfiA~, with RSC~s of universes Rf(U) 
corresponding to models etc. 

6. A l g e b r a s  fo r  l o g i c s  e x t e n d i n g  L~____ 42 

Most of the logics we have in mind are discussed in Barwise-Feferman 
[BF85]. Many of these new logics remain in the realm of finitary relations, 
for example the finitary logics with additional exotic quantifiers (like "there 
are uncountably many", or topological quantifiers of Georgescu [G82a] etc.). 
These logics are generally denoted by Lo,~(Q), or just L(Q), where Q refers 
to the extra (or exotic) quantifier we are adding to L ~ .  Some of these 
logics are summarized in Part B of Barwise-Feferman [BF85] (but some are 
scattered all over the book, see e.g. pp.9, 509.) 

Many of these quantifiers are given by fixing a function F which associates 
with every set U a collection F(U) C__ 7)(U) of its subsets. Then Qz~(~) holds 
in a model 93q if {a E M : T(a) is true in 93~} E F(M). A special example 
is the classical quantifier "There exist infinitely many elements �9 such that 
~p(z)" suggested by Mostowski in 1957. Other examples are "there exist IUI- 
many (where U is the universe of the model in question)", and the standard 
Qa quantifiers saying "there are lq~-many". Note that when fixing such a 
logic L(Q), we define the function F for all sets U simultaneously. To make 
L(Q) satisfy the axioms of abstract model theory, one of which corresponds 
to permutat ion invariance in Remark 2 way above, we should place some 
restrictions on the "universal" function F, but that is not our main concern 
in this paper. 

Let us recall that the universe Rf(U) consists of elements of the form 
R • ~U with R C ~U, for some n E w. Rf(U) was the universe of the generic 
example ~ f (U)  of cylindric algebras, i.e. REAr's as well as that of RQA~'s 
since Rf(U) is closed under p~j for i,j e w. Rf(U) consists of all the (dummy 
embeddings or dummy representations of) finitary relations on U, and as 
our logic remains fmitary, Rf(U) remains adequate for the universe of the 
generic algebras of relations. 

42 Some algebraizat ions of some of these logics were already discussed between Theorem 
7 and Fact 2 in w (These were applications of relativized versions, Crsa 's ,  of RCAa's.) 
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Let us fix F as above. Then the new operator Q : p(~ U) , ~(w U) is 
defined as follows: 

{(b0,b  , . . .  e e U :  e e S ( U ) } .  

The full CSF over U is 

(~ ( "  V), Q, ci, Idi/)~,j<,,, 

i.e. it is the expansion of the fitll Cs~ with Q. The representable cylindric 
algebras with exotic quantifiers determined by F (ReAR's) are the algebras 
embeddable into products of full CsF's. The generic example: ~fF(U)  is the 
subalgebra of the full CSF with universe Rf(U). 

�9 The new operation Q : Rf(U) ~ Rf(U) acting on our (embedded or 
"coded") finitary relations is (for most choices of F) not term definable in 
RCA,,, in particular, is not such in ~f(U),  but does not lead out from Rf(U). 
It produces (codes of) fmitary relations from (codes of) fmitary relations. We 
could have introduced Qi for each i E w by letting Qi = p0~ oQ op0~, but this 
Qi is expressible in ~fF(U)  as defined above. The generalization of RCAF's 
from w-ary relations to a-ary relations for any ordinal a is straightforward. 
Analogously to the just described RCA case, the new operation Q can be 
added to RQA~'s, and the other algebras with universe P('~U) discussed so 
far; it can be added even to RRA's.) Pinter [P75], Georgescu [G82, GS2a], 
Schwartz [Sw80a] are some of the references to algebras of relations of this 
kind. 

We note the following in connection with Remark 2 (finitization). In 
practically all of the cases (relevant to logic), F(U) is closed under all per- 
mutations of U. In the interesting cases, Q : Rf(U) ~ Rf(U) is not term 
definable in ~tf(U). Thus expanding RCA~ or RCA~ or even RRA with Q is 
a new possibility in the search outlined in Remark 2, especially because the 
negative or limiting result of Bir6 ~Bi89] mentioned in Remark 2 above does 
not apply to Q. However, this observation is mainly of didactical interest, 
namely a result of Andr~ka seems to ilnply that adding such a Q will not 
result in a finitely axiomatizable variety. 43 

43Andr~ka proved that  if Q defined by F is permuta t ion  invariant (for all p : U ~ '~  U, 
p ( F ( U ) )  = F ( U ) ) ,  then adding one or more of these Q's (each may be based on a different 
but  invar iant  F )  does not make RCAn finitely axiomatizable for n > 2. Moreover, she 
proved the same for any new permuta t ion  invariant  unary  operator f : ~ (n  U) - - ~  7~( n U) 
satisfying the equat ion f (x  tA y) = f(~:) tA f (y)  in place of Q. So adding such a new 
operat ion f to RCA.. does not make RCA,~ finitely axiomatizable. Thus Problem 2.2 
cannot  be solved by adding such f ' s  or Q's (to the old operations). She also proved that  
the weaker version (of the problem) quoted from ITG78] at the end of Remark 2 is not 
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Concerning the other kinds of quantifiers in Part B of Barwise-Feferman 
[BF85], like Henkin quantifiers, we do not know of any work on their alge- 
braization. We feel that one should be able to stay inside the universe Rf(U) 
when algebraizing them, too. 

A l g e b r a s  for  i n f i n i t a r y  logics 

Let a be an arbitrary ordinal. After having introduced and studied 
RQA~'s in ~Ia54], Halmos expanded them to what are now called repre- 
sentable poIyadic algebras of a-dry relations (RPA~,'s), cf. [HMTII] w 
Halmos ~Ia62]. The new operations are the natural  infmitary generaliza- 

i tions of the sj, p~j, and ci's of RQA~'s. Next we generalize the operation 
C(r) from finite r c_ a to arbitrary r C_ a. Let ~ C ~ U and r C_ a. Then 

Cr(~) ded C(r)($) dod{q ~ ~U : (3s e z)q t (a  , r )  = s I(~ \ r ) }  

Note that  ci~ = C{i}$ and C{i,j}x = cicj~ = cdciz, and the same for any 
finite set { i l , . . .  ,iN} C a. For arbitrary v E act, the operation S~ has 
already been defined in w 

By an RPA~ we unders tand an algebra embeddable into a direct product 
of algebras of the form (~3(~U),Cr,S~ : r C_ a and r C ~a). 

Note that ,  though for a = n < w we have two different definitions of 
RPA~, they are equivalent (up to term definitional equivalence), i.e. they 
differ only in the choice of the fundamental  operators (like BA's of the form 
(B, A, v, - ;  O), or (B,A,V,- ,1) ,  (B,A,-)) .  

For a < w we already discussed these algebras. So let a >_ w for a while. 

TH~OR~,M 14. RPA~ is a discriminator variety in the standard uni- 
versal a/gebraic sense (see [BS81], [AJN88]). So are BRA, RRA, RCAn, and 
RPA~/f  n < w. 44 

solvable either by adding such f 's  or Q's. I.e. she proved that no finitely axiomatizable 
variety K0 containing the version K + of RCAn (n > 2) expanded by such f 's  or Q's has 
the property RCAu -- SRd  K0. (Sain proved that this last negative result does not extend 
to RCAw from RCA,,. Of. [$87, 87a].) These negative results of Andr6ka generalize to 
polyadic algebras with equality~ and remain true if we add the operation trc of taking 
transitive closure to RCA~. Here, if R C U • U then ~rc(R • u-2U)  = (R* • u -2U)  
where R* is the usual transitive closure of the binary relation R. (These were proved by 
Andr4ka.) (The case of adding binary invariant operators remains wide open.) 
44Discriminator varieties are getting more and more into the focus of attention in algebraic 
logic, see e.g. [AJN88], Blok-Pigozzi [BP89a], [BP89b], Pigozzi [P89]. (Every discrimina- 
tor variety with two term definable constants is very close to being a variety of BAO's, 
see the last two references, and [BP89b].) As mentioned in the footnote of Remark 1 in 
w our classes are more than discriminator, they are doubly pointed discriminator, and 
hence stronger results are available. 
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We cannot speak about finite or even recursively enumerable or decidable 
axiomatizations in connection with RPA~'s, because they have at least con- 

t i nuum many basic operators. Intuitively, this large mtmber of operations 
seems to be a drawback of RPAa's when one is trying to apply them to fini- 
tary logics or to algebras of arbitrary finitary relations. The main bulk of 
these operations seems to be irrelevant for L ~  or for {R : R C_ nU and n E 
w}, and therefore seems to "pull" the theory in misleading directions. On 
the other hand, for infinitary logics these operations are useful and relevant, 
cf. e.g. Ex.5.6.3, 5.6.6, 5.6.9 in [HMTII]. Further, RPA~'s are very useful via 
their reducts as we will soon see. 

One could argue that postulates like {S~-o~(X) = S~- o S~ : r ,~  E ~w} could 
be considered as some kind of generalized finite schemata because they look 
"schematic" in some sense. However, the intuitive value (or concreteness) of 
these generalized schemata is more problematic than that of the c~cj = cjci 
kind because if e.g. we are given three recursive functions T, ~, p E ~w by 
their recursive definitions then it might be an unsolvable problem to decide 
whether Sp(x) = S~S~(~) is an instance of the above schema. In connection 
with Theorems 13, 10, 4 we note that Daigneault and Keisler independently 
proved the existence of a finite generalized schema of equations in the above 
sense axiomatizing the variety RPA~ (recall that a > w), of. [HMTII] items 
5.4.41 and 5.4.1, Daigneault-Monk [DM63]. Pinter [P73b] simplified this 
generalized schema considerably. Pinter's simplified axioms for RPA~ proved 
rather useful in subsequent work (e.g~ of R. J. Thompson). 

Returning briefly to the connect ion  with loqic 4~ as approached in the RCA~ 
and RQA~ cases, recall that ~ p ( U ) ,  the quasi-polyadic algebra of all finitary 
relations over U, was introduced below Theorem 13 in an analogous manner 
to ~f (U)  introduced below Theorem 5. Let Lp be the class of subalgebras of 
RPA~'s with universes of the form Rf(U), that is the RQA~ algebras ~ fp (U)  
of (embedded) finitary relations over U, but now expanded with the opera- 
tions S~-, C(r) for v E ~w and r c_ w. Similarly to the previous cases, Lp 
consists of the polyadic algebras corresponding to models of L ~ .  (Further 
S P L p  contains all the algebras corresponding to other aspects, e.g. theories 
of L ~ )  

The following is in sharp contrast with what we saw for RCA~'s and 
RQA~'s. 

45We will return to this connection again with a greater emphasis on infinitary logics. 
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THEOR~,M 15. RPAo, ~ HSP(L~). That is, the variety generated by 
oo Lp is strictly smaller than RPA~. 

PRooF .  46 Let 7- : w ~-~ w be a permuta t ion  acting as predecessor 
on the even numbers ,  and as a successor on the odds. I.e. T(0) = 1 and 

+ 2) = 2n, + = + 3. Let e ( , )  be the equation 

where @ denotes symmetric difference. Then L~ ~ e(~), but RPA~ ~ e(x) 
because e(~) fails for e.g. ~ -- { ( u , u , . . .  , u , . . . )  : u E U}, as well as for 

= {q e ~U : {{ : q~ ~ b} is finite}, for any fixed b e U if IUI > 1. | 

The above theorem points in the direction of the l imited relevance of 
RPA~-theory for finitary quantifier logics. Namely, there are polyadic equa- 
tions valid in all algebraic counterparts  of finitary logics which are not valid 
in RPA~, hence  investigating RPA~ in general might  lead one to questions 
irrelevant for fmitary logics 47. (The above equation distinguishes the whole 
of RPA~ from polyadic algebraic counterparts  of aspects or "parts" other 
than  just  models of fmitary logics like the Lindenbaum-Tarski  algebras of 
formulas, of those of theories etc.) Of course, this does not diminish the 
value of RPA~ for investigating infinitary logics. 

There is a way, however, in which RPA~'s seem to be very useful for all 
parts of algebraic logic, namely they provide us with a wealth of subreducts 
to study. Indeed,  for any subsemigroup (S, o} C_ ( ~ ,  o> of the rid] trans- 
formation semigroup ~w of w we have a potentially interesting '}educt" 
generated as a variety by the algebras of the form (~(~U) ,  c{,S~ : r E $ , i  
w). RQA~'s are the case when $1 = "all finite t ransformations",  and Pin- 
ter's subst i tut ion-cylindric algebras obtained from (~(~U) ,  Ci,Sj>i,j<c~ are 
the case when $ 2 =  "subsemigroup of S~ generated by {[i/j] : i , j  E w}". 
Let RPAs be the variety associated above to the semigroup $. For many  
interesting choices of S with an arbitrary a >_ w in place of w, there are 
cleep results in Daigneaul t -Monk [DM63] which seems to be one of the key 
sources for results on polyadic algebras and their generalizations like RPAs. 

46The idea of this proof occurs in the proof of Thm.9(i) in the June 1987 version of Sain 
[887~], ~ a  in S~in [889]. 
~TSince the opposite of Theorem 15 is true for RCA~ and RQA~, this danger is not 
present there. 
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THEOREM 16. (Sain [S87a] Thm.0, Corollary 17) There is a subsemi- 
group S of ~'w such that 

(i) RPAs is term definitionally (i.e. polynornially) equivalent with a va- 
riety Vs axiomathable by finitely many equations. 

(ii) RQA~ = SRd(RPAs)  i.e. the class of representable quasi-polyadic 
a/gebras coincides with the appropriate subreducts of the class RPAs. 

The above result is a positive solution for the finitizability problem which 
we have discussed throughout this paper beginning with Remark 2. In par- 
ticular, Theorem 16 solves positively the RQA~ theoretic version of Problem 
4.1 in w As we indicated in Remark 2, this problem is really a whole family 
of problems (or a theory built around problems driven by a fundamental de- 
sire for insights in connection with a mysterious pattern of recurring negative 
results which might be the symptoms of some ~mcovered property of first- 
order logics). Therefore a single positive result, even if as powerful as the 
above one, cannot be the final word about the finitization problem, rather 
the opposite is the case: it is a new beginning in finitizability theory. In our 
opinion, the above result is a breakthrough. Namely, all elements of RPAs 
are representable as (i.e. are isomorphic to) algebras of w-ary relations and 
all operations of RPAs's are permutation invariant set theoretic ones (obvi- 
ously, since they are S~'s and ci's); and at the same time, RPAs is a finitely 
axiomatizable variety if we choose its basic operations properly. The latter 
of course implies that the done (set of term functions) of RPAs is finitely 
generated (as we mentioned at discussing the fmitization problem of RCA~). 
Making the clone of RPAs finitely generated is only the first step of the 
proof, the easiest one. Namely, it is easy to expand RCA~'s, or RQA~'s with 
S~'s such that the clone of the expanded class becomes finitely generated, 
see Copeland algebras on p. 264 of [HMTII]. However, as indicated therein, 
it is very hard to force the new algebras to become finitely axiomatizable. 
Even if the original class was finite schema axiomatizable (which is not the 
case with RCA~ or RQA~), this property tends to go away as a by-product 
of our coding the original infinity of operations by finitely many new ones, 
cf. Corollary 3.6 on p. 654 of Demaree [D72]. The hardest part, however, 
seems to be forcing the new operations to be representable, too (by adding 
the new operations, one forces the old ones to be representable; but then the 
problem is, roughly, that nothing forces the new ones to be representable). 

In w (Application to logic) of Sain [S87a], she shows that RPAs is in- 
deed adequate for the algebraization for first-order logic without equality. 
Actually [$87a] works out the connections with logic in a way parallel with 
[HMTII] w 

There are important open problems stated in gain [$87a]; one of them is 
to simplify the finite set of equations describing RPAs and another one is 
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to simplify the class (or operations of) RPAs itself. Actually [$87a] presents 
some very nice, simple and elegant candidates $ to take the place of S, 
the only problem left open is to decide whether one of these 3's is finitely 
presented as a semigroup. A positive answer would provide us with an in- 
tuitively illuminating, transparent and very attractive version of RPAs in 
Theorem 16 above. In this connection we should mention that R. J. Thomp- 
son has a result which is also highly relevant to the finitization problem. His 
class RPA~. is also a finitely axiomatizable subreduct of RPA~; but RQA~ 
or even the subreduct RSC~ of RQA~ containing only the s~'s and ci's (or 
even the one containig the ci's only) is not obtainable as a subreduct of 
RPAT. So adequateness of RPA:r for algebraizing first-order logic seems to 
be problematic. (On the other hand, the RPAT operations when applied to 
Rf(V) generate the same suba~gebras as those of mfp(U).) 

The above important  results, in a sense, form a part of a relatively re- 
cent movement in algebraic logic connected with polyadic algebras. This 
movement looks at classes K of subreducts of RPA~'s such that K contains 
all RQA~'s as subreducts. Actually Pinter's simpler substitution algebras 
RSC~o = SI=td(RQA~,) introduced at the end of w above are sufficient in- 
stead of RQA~'s. For simplicity, we look at 

(5.1) RQA~ = SRdK  and K = SRd(RPA~).  

Theorem 16 above shows that the equational theory of such a class K can be 
finitely axiomatizable. According to Thm's 7(i), 90) on pp. 14-15 (proved 
on p. 15) of the June 87 version of Sain [$87a], there are choices of K sat- 
isfying (5.1) such that K is only a quasivariety but not a variety. (It is also 
proved there that HK is axiomatizable by a finite schema of equations for 
the same K. It is an interesting open problem whether that K is axiomati- 
zable by a finite schema of quasi-equations.) This means that when looking 
for simpler solutions for the finitization problem than the one in Theorem 
16, then it might be a good idea to look for finitely axiomatizable quasi- 
varieties too, and not only for varieties. The works of Blok and Pigozzi 
(cf. [BP89]) indicate that quasivarieties are just as good vehicles for alge- 
braic logic as varieties. Works concerning classes like K above are numerous, 
but we should point out Craig's semigroup oriented school (cf. earlier refer- 
ences to Craig's works, Howard [H65], Thompson's works), Demaree [D72], 
Daigneault-Monk [DM63] - -  without claiming that we have mentioned all 
the important  ones. 

In passing we note that expanding RCA~'s with the single operations C(~) 
yields a class RfiA + highly relevant to L ~  and having a smoother theory in 
some respect than RCA,'s for c~ _> w. E.g. RfiA + is a discriminator variety, 
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while RCAa is not if a > w. 
universal closure of a formula.) 

(The logical meaning of C(~) is taking the 

Let us re turn  to alqebraizinq infinitary loqics. For the rSle of RPA~'s (a > 
w) and their reducts and expansions already ment ioned in this paper,  see 
Examples 5.6.2, 5.6.5, 5.6.8 of [HMTII], Keisler [K63], Daigneaul t -Monk 
[DM63]. 4s Other  but  not unrelated algebraizations of infinitary logics are in 
Preller [Pr68a, Pr69, Pr69a], Lucas [L68]. 

Lucas [L68] is related to observing that  if we want to treat infinitary 
logic with equality via RPA~'s then it is not enough to add the Idij 's  as 
new constants,  but  we will also need constants denoting the intersections of 
infinitely many  of the Idij 's .  

The t ransformat ional  algebras in Craig [Cr74a] p. 30 achieve this effect in 
a very elegant way, but  the approach there is more ambitious than  aiming for 
just this. Namely, one of the purposes of that  work is unification of (a very 
large por t ion of) algebraic logic. 40 For any T, besides ST, Craig introduces 
T ~ :  7)(~V) ---+ "P(~U) as follows. T ~ ( . )  = {q o r :  q e . } ,  for any ~ C_ ~U. 
We note that  T~ is a conjugate of ST in the sense of J6nsson-Tarski  [JT51], 
and that  the t e rm funct ion t~(~) = Idij h clz of CA~'s is the same as TF/i]. 
Let 6: be a subsemigroup of the t ransformation semigroup an.  Then the 
class TB s  of 6:-transformational algebras consists of the algebras embeddable 
into products  of algebras of the form (~3(~U),S~,T~)~Es. Observe that  
c~x = S[~/j]T[~/i](z ) if j ~ i, moreover, to each r ~ a there is v E ~a such 
that  C(r)Z = S~Tr(z) .  But  then,  C(~)(z) = C({0})C(a\{0})(z) is expressible, 
too. So the TBs ' s  are more powerful than the S-polyadic algebras ~~ , i.e. all 
6:-polyadic operat ions are expressible, moreover Idij = T[i/j] (1) shows that  
even more  are expressible in TBs .  If 6: is generated by a subset G then, of 

48 A problem in connect ion with algebralzing infinitary logic is the following. As mentioned 
in the discussion of RCA,~'s around the end of w the algebraic counterparts  of models 
of L ~  form the class k which admits  an intrinsic characterizat ion condensed into the 
nota t ion / _-- Cs~ ~g n / f w  in [[tMTAN] and [HMTII]. In infinitary L ~ ,  it is customary to 
have at least a ----- [~ -b A[+ variables. This leads to the reducts of RPAa ' s  in Da igneau l t -  
Monk ~)M63] in which C(r  ) is restr icted to the case when [r[ < a.  But then the class 
of algebraic counterpar t s  of models (analogous to [ )  is not the polyadic version of Csa ,  
nor the intersect ion of tha t  of Cs~ eg with any abstract  class (generalizing I_f) as was 
shown in [N78] (based on Andr~ka [A73]). So a sleek (like Cs Teg) characterizat ion of the 
algebraic counterpar t s  of models in the infinitary case seems to need a new idea. Some 
nonconclusive exper iments  in this direction were reported in ~N78]. 
49Different approaches  for a similar kind of unification are in Schein [Sc70], Andr~ka-  
N~meti [AN80], cf. [HMTII] p. 260 and Andr~Ata [A77], Salibra [Sa89], and on a different, 
more universal  algebraic level of abst ract ion [I-IMTII] pp.255-260, cf. Andr~ka-Sain [AS78] 

and [ANS84]. 
5~ are basically the RPAs ' s ,  but sometimes C r  is also included for those choices of 
r for w h i c h  I~-(r)] = 1 for s o m e  ~ C S .  
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course, it is enough to consider (~(~U) ,  ST,T~)~-6G. ff G = {[i/j]: i,j < a}, 
then TBs  is the same as RCA~. If S consists of the finite transformations of a 
then TBs  is RQEA~ i.e. quasi-polyadic algebras with equality. I f $  = ~a  then 
TBs  coincides with Lucas's expanded RPEA~'s. (The latter are basically 
RPA~'s with new constants IdE for equivalence relations E on a.) There 
are further examples in Craig [Cr74a], we listed the above ones to illustrate 
the unifying power and elegance of this approach. 

In passing we note tha t  if K is a reduct of TBs (S = ~c~) containing 
C(~) and the Boolean operations as derived operations, then H S P K  is a 
discriminator variety, cf. Theorem 14. 

7. O t h e r  a l g e b r a s  o f  r e l a t i o n s  

We have no reason to believe that  the decisions we made (at certain 
%ranching points")  in the development outlined so far were the best possi- 
ble ones. (One aspect of this observation already appeared as a sequence of 
recurring remarks start ing with Remark 2 addressing the fmitization prob- 
lem.) Many of the approaches listed below originate from making some of 
these decisions differently. 

As ment ioned  in the introduct ion,  this section was intended to be some- 
what complementary  to a similar overview at the end of [HMTII]. Therefore, 
in this section we tend to restrict ourselves to giving such references which 
were not listed in [HMTII] (e.g. because they appeared later than [HMTII]). 

(1) M a n y - s o r t e d  c y l i n d r i c  a l g e b r a s  

In the middle of w our task was to glue the algebras 

~r = ( ~ ( ~ t O . . . ) ,  . . .  , ~ e I ~ ( U ) = ( V ( ~ U ) . . . ) ,  . . .  n e , ~  

belonging to the varieties RCA~,. . .  ,RCA~, . . .  respectively, together into a 
single algebra of relations of arbitrary finite ranks. This task admits an easy 
solution if we are willing to use many-sorted (in other words heterogeneous) 
algebras (cf. Surineis ter  [Bu86], Ehr ig-Mahr  [EM85], Lugowski [L76] for the 
many-sor ted version of universal algebra). Many-sorted cylindric algebras, 
MsCA's have the ~e[n(U) ' s  as sorts for each n < w. So, in particular,  there 
are w-many sorts, and the old operations of ffle[n(U) act on the sort or 
universe :P(" U). We need operations connecting the different sorts too, so let 
c + : :P("U) ~ :P(~+IU) be our old dummy embedding, c + : R ~ R • V 
for R C ~U. Its "inverse" c~ : P ( " + I U )  ~ P('~U) deletes the last 
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column of any n + l - a r y  relation, e.g. c~-{(a, b, c)} = {(a, b)}. So in part icular  
c+c~(z)  = c,~(z) for ~ _C n+l U. Now, a full MsCA is of the form 

: n < 

Then one defines MsCA's by taking subalgebras of direct products.  By us- 
ing results f rom cyhndric algebra theory (cf. 2.3.8 on p. 63 of [HMTII]), 
one can rearrange these algebras such that  they form a many-sorted variety 
axiomatizabIe by a finite schema of equations, see [HMTII] p. 263, Bernays 
[]359]. Other  works on this MsCA approach are e.g. in Bbrner [B88], Schwartz 
[Sw79]. In passing we  note that  this many-sorted approach seems to be con- 
nected with the universal algebraic theory of clones (as was made explicit 
in Bbrner []388]). Namely, clones are sets of special finitary relations whose 
speciality is tha t  they are functions. Therefore an algebra of clones over 
a set U is at the same time an algebra of (certain) fmitary relations over 
U. The many-sor ted  algebraic approach to clones is one of the oldest, most  
tradit ionM ones, cf. Cohn [C65] w and its Exercise 3 for example. 

Despite of the fact tha t  this many-sor ted approach leads to a natural  pos- 
itive solution of the schema version of the finitization problem (cf. Remark 
2 in w Prob lem 4.1 at the end of w etc. for this problem), as far as we 
know, it hasn ' t  been explored too much  beyond proving (incarnations of) 
this result, st We do not know the reason for this. 

(2) P a r t i a l  c y l i n d r i c  a l g e b r a s  

We ment ioned  clones above as motivat ing examples for the many-sorted 
approach. Clones are also often t reated as partial  algebras (cf. McKenzie 
et al. [MMT] p. 143, Exercise 3 in w of Cohn [C65]). For the theory 
of part ial  algebras see Craig [Cr88], Bu~meister [Bu86], Andr@ka-N~meti 
[AN76]. Actually, many-sor ted  algebras are well known to be special cases 
of one-sorted part ial  algebras. Therefore an alternative way of doing (1) 
above is using part ial  algebras. (Boole originally introduced his algebras as 
part ial  ones, anyway.) 

Let Frl(U) = {R : R C ~U for some n < w} be the collection of fmitary 
relations over V (as above Fact 2 in w If 0 ~ R C nU then - R  = ~U ". R, 
otherwise - is undefined. R U S and R N S are defined only if the ranks of 
R and S coincide. Let R C_ nu.  For i < n, ci(R) is the usual, for i > n we 
let ci(/~) = R. c + and c~- are as in subsection (1) above, and are defined 
only on R C_ nU and R C n+lu  respectively. For e a c h n  < w, we add the 

51 Recall (from w that the schema version is the less ambitious version of the finitization 
projects. 
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constant  Id~ = (Id I ('~U)) = {q E ~U : q0 = qifor  all i < n}. Now our 
generic algebras are of the form 

(Frl(U),n,u,-,Cn,Cn,Cn)n<w �9 

PaCA's are the algebras embeddable into direct products  of these (as usual). 
Since ~U = cc0 . . ,  c~_~ (Id,,) is a derived constant,  each sort 9~ein(U) of the 
algebras in (1) above is recoverable in the present partial algebraic setting 
too. 

We note that  the point in using the new, partial versions of U, fl, and - 
is that  they do not lead out from the circle of the usual finitary relations, 
i.e. F r l ( U )  is dosed  under  them. The ~ problem with the total versions 
of these operations was, noted immediately above the beginning of w that  
both  total  complementa t ion  and total  union led out of Fr l (U) ,  e.g. the union 
of relations of different ranks is a set of sequences of various length hence it 
is not a relation in the usual sense. 

Despite of the availability of partial  algebra theory, almost nothing is 
known about these algebras, as far as we know. 

(3) Algebras of finite s e q u e n c e s  

Let us recall the BA ~ (<~  U) of finite sequences from before w Let 
s u c c :  n ~ n +  1, Fred : n + l ~ n with w e d ( O )  = 0 be the usual 
t ransformations of w. Then Ts~c ,  Tpred, Ssucc, Spred are defined on subsets 
of <~ U too, since for any q G <~ U we have q o succ, q o p r e d  E <w U, too. 
E.g. (a, b, c) o succ = (b, c) and (a, b, c) o Fred = (a, a, b, c). For R C_ <~ U, by 
definition S ~ c ( R )  = {q E <~U : q o succ E R} and similarly for Sp~d. The 
definition of T ~ ,  Tpred is even more literally the same as it was around 
the end of w above. 

By a finite sequence algebra (FSA) we unders tand an algebra embeddable 
into a direct product  of algebras of the form 

(~ (<~  U), ci, S~r162 S~.r162162 , 

where ci is the usual one, e.g. c2 { (a, b, c) } = { (a, b, u ) :  u C U}, c3 {(a, b, c) } = 
{ (a ,b , c ) } ,  and ci(zUy) = (ciz)U(ciy).  Recall that  1 denotes the top element 
<wU in BA language. We note that  1U = {(u) : u E U} = -c0Tp~d(1) ,  
~  {()} = T s u c c ( 1 U ) , 2 U = S s * * c c ( i U ) , . . .  , ~ + l U = S s u c c ( ~ U )  f o r n > O ,  
finally Id2 {(u, u) : u e U} = Tp,.r 1 U) and Id~+l = T ~ d ( I d , , )  for n > 0. 
Since ~U and Idn are derivable constants, and the ci's and the s tandard BA 
operations are built in, the cylindric algebra ~e[n(U)  is available as the set 
of demen t s  below ~U. 



540 I. N~meti 

So the many-sorted cylindric algebra with n-th sort P(nU) or 9~e[n(U) de- 
scribed in (7.1) in subsection (1) above is contained in a sense in our present 
FSA with universe P(<~ U). Moreover, all the operations of the many-sorted 
algebra in (7.1) are definable in our present FSA. Despite of all these nice 
things, the algebraic theory of FSA cannot replace that of MsCA because e.g. 
the algebraic operators like direct products or ultraproducts behave rather 
differently in the two cases. For example, the direct power or uitrapower with 
exponent w of the above FSA will contain elements z, y corresponding to the 
w-sequences (2 U3U,.. .  n U , . . . )  and (Id2,Id3,. . .  ,Id,~,...) respectively. El- 
ements like �9 and y do not fit into any of the sorts of MsCA's, and indeed 
they do not appear in direct powers or ultrapowers of MsCA's. 

Finally we point out that Craig's algebras as described in item (3) on p. 
265 of [HMTII] are term definably equivalent with FSA's above. To see this, 
we note that, using the notation Q(x) and P(x) introduced therein, we have 
Q(~) = S~cc(~) \ ~ and P(~)  = T~ucc(z \ ~ This is enough for one 
direction. In the other direction Tp,.ed(X)= (Id01 N Q ( $ ) ) u ( x  N~ where 
~ = -Q(1 ) ,  and similarly for the rest of the FSA operations. 

For interesting results concerning FSA see op. cit., and the references 
therein, e.g. Craig [Cr74a, Cr74], Monk [M70]. 

t 

F I G U R E  2 
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(4) A l g e b r a s  o f  g e n e r a l i z e d  f in i t e  s e q u e n c e s  

One disadvantage of working with <~U as above is that  these finite se- 
quences impose a s t ructure  (w, succ, 4) on the index set. I.e. the indices 
1,2 and say 5 are not equivalent as they were in the RCAn or RCA~ or 
RQA~ case. Another  symp tom of the same "asymmetry" is that  P12 --- S[~,2] 
cannot be applied to 7)(<~U) because it leads out of 7~(<"~U). Namely, 
S[1,2] {(a, b>} = {(a,b} o [1, 2]} but  f = <a, b> o [1,2] is not a finite sequence 
since f(0)  = a, f (1)  is undefined, f(2)  = b. 

Let Gfs(V) -- U{Hu : H C w and IHI < w}. That  is, a generalized 
finite sequence is a function mapping  a finite set of natura l  numbers into U. 
Gfs(U) is the set of these. Now, replacing <"~ U with Gfs(U) in subsection 
(3) above, we obtain the defmition of GFSA's, i.e. generalized FSA's. The 
theory becomes smoother  this way. Moreover, we may safely add S[i/j], S{i,j] 
to the operations,  ff after adding these we remove the ones associated with 
pred and succ then  we obtain something very close to RQA~'s or RCA~'s, 
depending on whether  we keep Id2. 

In many  respect the lat ter  version of GFSA's are very close to what are 
caned weak cylindric set algebras in [HMTII]. See e.g. Howard [H65], Craig 
[Cr74], Andr~ka [A77] for GFSA's. As far as we know, they originate with 
Craig. In passing we note that  this approach of generalized sequences allows 
for the fulfillment of an old dream of some algebraic logicians: ff we want, 
we can introduce c~- as an operator  of simply deleting i from the arguments  
of the sequences,  i.e. = { I  (Dora(i) {i}) : / e 
really deletes (unmistakably abstracts away from) the i-th column of any 
relation (in algebras of relations coming from computer  science this deletion 
operat ion is frequent).  In general, this GFSA approach seems to be close to 
the way relations are often approached in computer  science. 

(5) M a k i n g  f u n c t i o n  s y m b o l s  o f  logics  exp l i c i t  

In subsection (1) of this section we already noted tha t  the algebra of 
clones is a well investigated example of special algebras of fmitary relations 
which happe~ to be functions, see the references in (1). The operations of 
such algebras of finitaxy functions will have a different character from those 
discussed so far, because in choosing them, we have to make sure that  they 
yield functions when applied to functions (so even the Boolean operations 
are excluded). 

To any set U, we can associate two algebras, one, say ~n(U),  of finitary 
functions, and an RCA,~, say 9~f(U), for fmitary relations over U. Since their 
demen t s  are strongly related, we can combine them into a single two-sorted 
algebra ~s (U)  = < ~ n ( U ) , ~ f ( U ) , ] 0 , . . .  ,fn>, where the fi 's are operations 
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acting between the sorts. Algebras like ~z(U) can be used in algebraizing 
quantifier logics with function symbols in such a way that terms (and term- 
like syntactic entities of the language) correspond to ~n(U), and formulas 
correspond to ~Rf(U). So when forming the Lindenbanm-Tarski algebra of a 
theory then (the equivalence classes of) terms form one sort of the algebra, 
and (those of) formulas form another. In general, when a logic has several 
syntactic categories often called types in computer science logics (see Salibra 
[Sa89]), then each syntactic category or type gives rise to a separate sort. 
Such, an approach was elaborated in Andr6ka-Sain [AS78] and subsequent 
works reviewed on pp. 250-260 of [HMTII], see Examples 5.6.3, 5.6.6, 5.6.9 
for the treatment of the "term sort" mentioned above. Feldman [Fe89], 
Cirulis [C89, C88, C88a], IMP88] represent a variety of approaches, and 
contain further results in connection with this topic. 

(6) A lgebra i c  logics for nonclass ica l  quant i f ier  logics 

See e.g. item (4-6, lS) on pp. 265-270 of [HMTH], F eeman [FZ6], Monk 
[M60], Ceorgescu [G79, C79a], Schwaxtz [SwS0], Ferenczi [Fsga], our w (7) 
below (Rasiowa's approach), and w of [M77]. This is a rather incomplete 
list. What item (11) below writes about nonclassical (or non-Boolean) gen- 
eralizations of Boolean Algebras with Operators is relevant here. 

(7) T h e  R a s i o w a - S i k o r s k i  a p p r o a c h  

In principle, one could modify the approaches reviewed so far such that 
instead of adding new operations like ci to BA's, this modified approach 
would only assume the existence of the potential values of these operators as 
dements of the BA. In a sense, this seems to be similar to defining groups as 
semigroups in which certain kinds of elements exist. Roughly speaking, the 
approach discussed in this subsection differs from the ones reviewed so fax 
in that instead of adding new operations to BA's, one uses BA's satisfying 
certain existence properties. So, in a sense, instead of expanding BA's to 
BAO's, we move from BA's to a special subclass of BA's. Of course, when 
applied to a nonclassical logic, BA's in this approach are replaced with the 
algebraic counterpart of the propositional version of the logic under investi- 
gation, see e.g. Rasiowa [R51-R74a], [RS]. In this survey we cannot attempt 
covering the literature of this branch of algebraic logic, but see e.g. Maksi- 
mova [Ms77, Ms79, Ms88], ~/isR74], Bloom and Brown [BB73], Brown and 
Suszko [BrS73], [G85], [GP89], [GgP88]. Font-Verdfi [FV89-91] is a continu- 
ation of this approach, but they are also taking into account [BB73], [Br73], 
and [BP89-89d]. In Rasiowa [R74], the approach is traced back to a paper 
of Mostowski iYom 1948. 
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(8) Connec t ions  wi th ,  and  approaches  or iginat ing from, 
c o m p u t e r  science 

This area was sporadically mentioned throughout this paper, we do not 
repeat those references. For lack of space, here we restrict ourselves to a 
list of references the items of which are not listed in [HMTII]. Even if we 
restrict our attention to papers that appeared after [HMTII], our list is 
severely incomplete. Some of the recent works in this area are Cosmadakis 
[C87], Trnkovs [TR87], IMP88], [C88a, C86], Imielinski-Lipski 
[IL84], Venema [V88], [W88], [L87], [LM89], [GL90], [Ca88], Goldblatt [G87], 
J6nsson [J89, J90], Salibra [Sa89], Ng [N84], Volkov [Vo86-88a], IN80, N81], 
Sanders [Sa80], Knuth-R6nyai [KR83], [BZ86], [BKSS], van Benthem [vB88- 
90hi, [AGN87], [C87], [089, O89a], Schbnfeld [$577], Diintsch [D/i89], the 
textbook [SS89], [BMP], Pratt [Pr90], [K90], IN90], [H80], ~IJ86], [BU77], 
JAN86], [P188, P189], [Ro72], [Zi83]. 

(9) Connec t ions  wi th  ca tegory  theore t ica l  logic 

First we briefly return to the finitization problem using the language of 
category theory. Let a be an ordinal (as before). Let Ful l  Cs~ be the usual 
category of full Cs~'s (see w as objects and homomorphisms as morphisms 
between them. Let S e t I s o  be the category of sets as objects and isomor- 
phisms (bijections) as morphisms between them. Then there is a functor 
F + : S e t I s o  >-+ Ful l  Cs~ such that F~(U) = ~ [ ~ ( U )  = (~3(~U),...), 
and for any morphism p : U ~ W, F~(p) : 7v(~U) ~ P(~W) is the 
natural one, i.e. F~(p)(R) = {p o q: q E R} for R C ~U. It is not hard to 
check that F~ is really a functor (cf. Exercise 3P (Algebraic Logic) (c) in 
[AHS]). (In [HMTAN], [I-IMTII] p. 15, F~(p) was called the base isomorphism 
induced by p, and F~ (p) was denoted by /~  .) 

Let K + be an expansion of the class full Csa, i.e. full Cs~ = Rd(K+),  
cf. Remark 2. We say that K + is functorially invariant if we carl "expand" 
F~ defined above to a functor F~ : S e t I s o  ~-. K + such that Fa(U) = 
Rd(F+(U)) ,  and F~(p) "as a function" coincides with F+(p). Here K + is 
the category made from K + the usual way (adding the usual homomorphisms 
as morphisms). 52 

52Using the terminology of [HMTAN], [HMTII], K + is functorially invariant if its full 
members "admit" base: isomorphisrns  the same way as those of Csa do. In passing we 
note that restricting our attention to full algebras is important here. Namely, Andr6ka 
constructed a simple RRA ~ and an automorphism h of ~ such that hn no representation 
of ~ is h induced by a permutation of the base set U (of the algebra ~i _C ( ~ ( U  • U) . . . )  
representing 9.~). I.e. for any embedding of 9A into a full set RA ( ~ ( U  x U ) . . . ) ,  h does not 
extend to an automorphism of the full algebra. Her construction carries over to cylindric 
and polyadic algebras from RA's. This solves Problem 19a of Maddux [Ma89c]. Shelah 
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As noted  in a footnote  in Remark 2, functorial invariance is stronger than 
invariance (the lat ter  quoted in Remark 2 from the literature),  and conforms 
more to algebraizing abstract  model  theory. (The finitely axiomatizable 
expansion of RQA~ in Sain [S87a] and in Theorem 16 in w is functorially 
invar iant ,  too.) 

PROBLEM 3. Find functorially invariant K + such that S P K  + is a 
fhlitely axiomatizable variety (or at least a finitely axiomatizable quasivari- 
ety) satisfying one of  (i)--(iii) below. 

(i) full Cs~ = R d ( K  +) for a = w or for 2 < a < w. 
(ii) The same as (i) but with full set RQA~, in place of full Cs~,. 

(iii) The same as ~1) but for Pinter's substitution-cylindric a/gebras (see 
w 

The above problem comprises 6 different problems, each one interesting 
on its own fight,  e.g. the a < w and a = w cases are two separate problems. 

For a = w, (ii), (iii) above were provided with one solution in Sain [S87a], 
but it would be still immensely interesting to see simplifications (both of K + 
and of the ardomatizat ion of the variety generated by K +) of that  solution, 
and to see different solutions. It would be also very hlteresting to see a 
(preferably streamlined) finite axiomatization of the quasivariety generated 
by { F + ( U )  : g is a set} for the choice of K + ~ven  in [S87a] (as a solution 
of (ii), (iii) above), where the fimctor F + : S e t l s o  ~-~ K + was int roduced 
preceding Prob lem 4.1. 

Connections with category theoretical logic were sporadically ment ioned 
th roughout  this paper.  E.g. it was pointed out that  RRA's are actually 
categories. We should ment ion  that  so are the various kinds of algebras 
lmifying all finitary relations (RCA~'s, RQA~'s etc.) discussed in this paper.  
The objects of these categories are the elements representing nU for n < w. 
This is the easiest to see in the case of many-sorted cylindric algebras in 
subsection (1) above. There the objects of the category are the sorts of the 
algebra. Then  elements of the algebra can be considered as relations acting 
between sorts, and in this quality they are morphisms acting between the 
sorts as objects. 

Another ,  more generally used approach (cf. [Z83], [Z84], [D69], [Mk87], 
[MkR77]) considers all elements of a many-sorted cylindric algebra 92[ (or a 
partial  cylindric algebra, cf. i tems (1,2) above) as objects of the correspond- 
ing category C.  A pair (R, S) of elements R, S of 9.1 is a morphism of C iff 
R can be considered as a f imction with range contained in S (i.e. whenever 

proved that  simileLr kinds of results can apply even for very innocent looking cylindric 
algebras [Sh89], IBIS88] (solving a problem ~om [GMTAN]). 
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S is an n-ary relation then R is an n + k-ary one for some k, and can be 
considered as associating n-tuples to certain k-tuples; the codomain of this 
morphism is S, while its domain is C~Cn+I . . .  c~+k(R)). (This connection 
extends to ordinary cylindric algebras the obvious way, i.e. by transforming 
~l into such an algebra.) If we turn a cylindric algebra 91 into a category C 
along these lines then any functor F : C ~ Se t  preserving ~3 finite limits 
and finite colimits will correspond to a model of the usual first-order the- 
ory represented by 91 or, equivalently, F will correspond to a representation 
of (a subdirectly indecomposable factor of) ~ as a (cylindric) set algebra 
or, still equivalently, F will correspond to a homomorphism from 91 into 
a (cylindric) set algebra. Roughly speaking, the special categories called 
small pretoposes (see e.g. [Mk87], [MkR77]) in categorical logic correspond 
to ("abstract") cylindric algebras (or RQA~'s), and pretopos functors flom 
small pretoposes into Se t  correspond to homomorphisms from arbitrary 
cylindric algebras into cylindric set algebras (Cs~'s or Qps~'s). The large 
pretopos Se t  corresponds to the class of fall Cs~'s. The reason why there 
is no single Cs~ (but instead a class of them) corresponding to Se t  is that 
Se t  is a proper class, and for '~purely administrative" reasons, algebras are 
required to be sets. It is not hard to construct e.g. a single class size Qps~ ~3 
such that ~3 would play the r61e of Set  in quasi-polyadic algebraic logic. 
hi particular, the class of all models of a theory T would correspond to the 
dass Hom(91T, ~3) of homomorphisms from the RQA~ 91T corresponding to 
T into our single "class-algebra" %. 

We are afraid that the remarks made so far do not convey enough of the 
subject of this item. For lack of space we restrict ourselves to giving an 
incomplete list of references.: Daigneault [D69], Monk ~M78], Zlatos [Z83, 
Z84], Comer [Co72], Sarthelemy [B74], Georgescu [G73], Gergely [Ge80], 
Jbnsson [J88], Olivier-Serrato [OS80], Laita [L76], Ouellet [082], Volger 
[V75], Topencarov [T74], Freyd-Scedrov [FS90]. 

The natural category theoretic investigations (which have already been 
carried through in great detail for groups, selnigroups etc.) for cylindric and 
related algebras constitute an area where more work would be welcome. 
(E.g. the connections between RRA's mid RCA,~'s in w of [HMTII] are not 
fanctorial in their present form, and it would be very nice to have such a 
version.) For fragmentary results and open problems see e.g. Preller [Pr68], 
Ads [AHS], and Sain [$89]. 

53 Set  is the usual category of sets (as objects) and functions between them (as morphisms). 
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(10) Peano  A r i t h m e t i c ,  Gbdel ' s  incomple teness  etc. 

The algebraic approaches (sometimes called multi-modal logic approaches) 
to this field use BAO's (Boolean algebras with operators) just as the rest of 
the directions reported herein. Usually at least one of the extra-Boolean 
operators is based on self-reference as the latter was used in Gbdel's proof 
(definability of syntactic concepts in strong enough theories). This field 
became recently very active. See Solovay [So76], Smorynski [Sm85, Sm84], 
and the references in Chapter 2 of Bernarducci []389]. See also Halmos 
[Ha60], and pp. 206-215 of Halmos [Ha85], [M77] Problems 1, 4, 5. (Works 
of Magaxi, Mangione, Hansoul, and Jeroslow quoted in [HMTII] axe relevant 
to the present subject.) 

(11) Boo lean  a lgebras  wi th  opera to r s  (BAO's) 

As already mentioned e.g. in Remark 1 (w the theory of BAO~s is an 
important one unifying not only practically all the approaches discussed in 
this paper, but a large portion of propositional algebraic logic, too. Be- 
sides in algebraizations of quantifier logics, BAO's play a fundamental rble 
in the theories of modal, multimodal, and temporal logics, cf. e.g. Gold- 
blatt [G76-G89]. To mention only one example, what are known today 
as Kripke-models, were first discovered in BAO-theory, cf. J6nsson-Tarski 
[JT48], [JT511. 

Besides the fundamental works [HMT] w and [JTbl], for a sample of 
works too recent for being quoted in [HMTII], on BAO's and their strong 
connections with mnlti-modal logics (temporal logics), see e.g. J6nsson [J84, 
J90], Henkin [HT0], Goldblatt [G85, G87, G88, G89], Naturman-Rose [NR89], 
Bernardi-D'Aquino [BD88], Brink [Bn88], [Sha80], Blok []3176, B180, B180a], 
Blok-Pigozzi [BP89a, SP89b], [Ra79], [Te86], Shin [S84], INS0], works of 
Hansoul and Wu in the bibliography of [HMTII]. 

Non-classical (i.e. non-Boolean) generalizations of BAO's: 
If we want to study e.g. intuitionistic multi-modal logic then we have to gen- 
eralize Boolean Algebras with Operators accordingly. Indeed, if we replace 
the Boolean part of BAO's with the algebras of some nonclassical proposi- 
tional logic we will obtain standard generalizations of BAO's like Heyting 
algebras with operators ([M60], reference fischer-Servi [81'] of [HMTII], 
[FV89], [F87], [Ve86]), De Morgan algebras with operators, I-Iilbert algebras 
with operators, distributive lattices with operators ([Co89a], [IL84], [A89a], 
[A89]). Weak Brouwerian semilattices with operators and pseudo-interior 
algebras with operators were proved in [BP89b] to be of central importance 
for the theory of discriminator varieties. See also [SwS0] and references 
Georgescu [72'], Servi [79'] of [HMTII]. Some classes of neyting algebras 
with operators suitable for studying certain intuitionistic modal logics were 
investigated in ~FV89]. 
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(12) Log ics  w i t h o u t  v a r i a b l e s  ( c o m b i n a t o r y  logic) 

This fairly active branch of logic is strongly related to algebraic logic. Both 
fields (logic wi thout  variables, LWV for short, and algebraic logic, AL) aim 
for a more refined analysis of the structure of formulas (together with their 
meanings,  proofs etc.) than  conventional logic does. Namely, conventional 
logic takes atomic formulas with all their subst i tuted versions like R(vovl ), 
R(vlvo), R(v2v2) etc. for granted, i.e. they are treated as "primitives". A 
disadvantage of the conventional view is that  these primitives are far f rom 
being independent  of each other, and in particular they cannot be replaced 
by each other in formulas without  affecting validity. A consequence of this 
conventional t r ea tment  of atomic formulas, often ment ioned both  in LWV 
and AL, is a certain complication in the axioms or proof rules when one 
has to talk about  free and bound  occurrences of individual variables when 
specifying an axiom or rule. A typical example is the axiom schema saying 
"3vi~ ~ ~ if vi does not occur freely in ~". This kind of complication 
(reference to free variables) is not acceptable in propositional logics. Both 
AL and LWV eliminate this complication from quantifier logics. This is 
obviously true for LWV, concerning AL we mention that  the inference system 
for predicate logic given in App C of [BP89] p. 69, no axiom or rule schema 
refers to individual  variables. Actually, in conventional logic, talking about 
free occurrences of variables is needed to express the connection between 
the atomic formulas R(VoVl), R(v2v2) etc. ment ioned above. Therefore, ff 
we want to get rid of variables, we will have to express these connections 
by some other means,  e.g. by new logical connectives. Indeed, both  AL 
and LWV begin el iminating (explicit mention of) free individual variables 
by introducing new logical connectives binding the substi tution instances of 
R(vovl ) to each other. Such a connective is P01 = S[0,1] recalled in w herein, 
and discussed th roughout  this paper. Since P01 R(vo vl ) is logically equivalent 
with R(vl vo), we may restrict our supply of atomic formulas to the ones of 
the form R(vovl ) i.e. to the ones in which the individual variables occur in a 
once for all fixed order v0, vl ,  . . . . . .  , vn, v,~+ 1 if we have all the p~j's and sj~ 's 
as logical connectives. But  since the individual variables following predicate 
letters are uniquely determined,  one can just as well dispense with variables 
altogether.  Indeed,  this is done in many of the LWV papers as reviewed 
at the end of w in Kuhn  [Ku80]. In many of the LWV papers, the logical 
connectives p~j, s~. are called combinators or combinatory predicate functors, 
see i tem (2) on p. 249 of Do~en [Do88]. In the AL literature, the above 
indicated way of eliminating variables is described in detail e.g. in [AGN77], 
[HMTII] (restricted formulas), [BP89] App C, Sain [$87a] w to ment ion a 
few recent sources; but  this is a classical tool of AL. 
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To indicate why AL would want to get rid of the conventional machinery of 
free individual variables, observe that when translating an algebraic equation 
like x < CoX to logic, we obtain the logical schema ~ --. 3vi~ in which the 
free variables of ~ are not mentioned. The algebraic variable x translates to 
a formula ~ or to a metavariable ~ running over formulas. What it does not 
translate to is an individual variable. Somehow the individual variables of 
logic (sometimes indicated in logic as ~(vl v2 ) meaning that vl and v~ are free 
variables in ~) do not show up on the algebraic side. Very roughly speaking, 
this is one of the reasons why AL and LWV are so strongly connected. 
(Another reason is that they both are ambitious analyses of logic, and they 
both are deeply concerned with finding the right concepts.) 

A very incomplete list of references is: Do~en [Do88], Quine [Q36, Q71, 
Q81], Kuhn [Ku80, Ku83], [Bc85], Venema [V89], Craig [Cr74], Tarski- 
Civant [TCST], [CiS9]. 

Further discussion of the connection between combinatory logic and AL 
is found in [Q71], and in the excellent recent book [TG87]. [TG87] is of 
central importance in understanding the deep connections between Tarskian 
AL and Tarski's approaches to other foundational fields. A very long time 
was devoted to the careful and ambitious preparation of that book. Indeed, 
it provides an illuminating synthesis of the various schools of thought (think 
of "Tarskian semantics" as an example) Tarski created or pioneered. 

(13) C o n n c e t i o n s  b e t w e e n  a lgebras  of logic and " p u r e  logic"; 
un iversa l  a lgebra ic  logic 

In a sense, these investigations concern the connections between algebrMc 
logic (AL) in the narrower sense on the one hand, and logic (mathematical 
logic, philosophical logic, symbolic logic etc.) in itself on the other hand. 
(This sentence is somewhat paradoxical because it might seem to imply that 
AL does not contain these connections, and that logic in itself does not 
contain A_L, but no such implication was intended here.) One of the main 
concerns is explicit applications and interpretations of results of A_L, in "pure 
logic". (The other direction is not ignored either.) 

Universal algebraic logic starts out from a very general definition of a logic 
L (of which the well known logics like classical logic, modal logics, temporal 
logics, intnitionistic logic, computer science logics etc. are special cases), 
and investigates the kinds of mathematical objects (e.g. classes of algebras 
like that of cylindric algebras, multi-modal algebras, Heyting algebras etc.) 
associated to L by AL. Associating such objects to L is called algebraization 
of L. One of the subjects investigated here is elaborating a general method 
for algebraizing L ([HMTII] pp. 255-260), another is finding an adequate 
criterion for algebraizability of L (Blok-Pigozzi [BP89]) which was called 
"adequateness criterion" in [AS78] and "semantical well presentability" in 
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[HMTII] p. 257, [ANS84]. The recent [FV91], [FV90] point in the direction of 
possible tmifications of algebraizability in the sense of [BP89, BP89c, BP89d] 
and that in the sense of [HMTII] w [AN78], [ANS84]. A typical problem 
area of universal AL is proving that (independently of the choice of L) a 
certain logical property of L is equivalent with an algebraic property of the 
corresponding class of algebras cf. the works of Blok and Pigozzi, [ttMTII] 
w [ANS84], [AGN73, AGN77], [AN75] w [086], [Ma77], [W84], [$89]. 

Algebraic model theory concentrates on the algebraization of L fIom the 
point of view of the model theory of the logic L. (This again might sound 
somewhat paradoxical since the model theory of L might already have some 
algebraic flavor. In this area, however, algebraization is independent of that 
algebraic flavor.) Cf. [HMT] w [N89, 78], [$89], [Se85, 86], [Sh89], [J73]. 
For lack of space we cannot discuss the present subject (connections between 
AL and logic) adequately. Further references are e.g. [$87] w [B176-BP89], 
[Co72], [Cz79], [G76], [MT1, 77, 78], ~85a, 87], [089], [P89], IRa90], [A77]. 

(14) 

For algebraizations of quantifier logics not mentioned in this paper the 
reader is referred to Chapters 5, 6 of [HMTII] (cf. also w of [M77]). 

8. APPENDIX:  
T h e  t r a d i t i o n a l  f i n i t e l y  a x i o m a t i z a b l e  a p p r o x i m a t i o n s  CA, 
RA e tc .  o f  o u r  c lasses  RCA~ RRA etc .  of  a l g e b r a s  of  r e l a t i o n s  

DEFINITION 8.1. By  an a-dry cylindric Kripke frame we understand 
a relational structure f ~  = (W,=i,Eij)i,~<~ where E~j C_ W and =_~ is an 
equivalence relation on W satisfying (1-4) below, for a//i, j < a. 

(1) (=i o ---j) = (=_j o - i ) ,  i.e. the equivalence relations commute; 

(2) E i j =  Eji is a set of representatives for - i ,  i.e. 
( w  ~ w ) l ( ~ / = ~ )  n E~jl = i ~ i  r j, else E~ : w; 

(3) (Vu ~ E ~ j ) ( ~ / - k )  c E~j for ~ ~ { i . j } ,  ie.  E~ is a . . i o n  of =k- 
equivalence classes; 

(4) Eij ~ Ejk C_ Eik. | 
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Let !~3 = (W,-i ,Ei j}i , j<~ be as in Definition 8.1. The powerset algebra 
or complex algebra ~ ( ~ )  of !~  is defined as follows: 

where Ci(X) = [J { ( u / - i ) :  u E X}, i.e. C~(X) consists of the -i-neighbors 
of elements of X. 

DEFINITION 8.2. The daBs CA~ of a-ary cylindric algebras is defined 
a s  

s = S {~(!~!3) : ~3 is an a-ary cylindric Kripke frame}. 

Recall that S is understood up to isomorphism. | 

PROPOSITION 8.3. (i) CAa is a variety axiomatizable by a finite schema 
of equations. 

(ii) CAn is axiomatizable by a finite set of equations, for n < w. 

OUTLINE OF PROOF. Translating the conditions in Definition 8.1 (mak- 
ing ~ a cylindric Kripke frame) into equations valid in ~ ( !~ )  is an easy 
exercise. E.g. transitivity of - i  translates to the equation c ic~ _< c~z; or 
reflexivity of -~ translates to ~ < cix. A system of equations obtained this 
way is the following, postulated for all i, j, k < a. 
(E0)  the Boolean equations (E4)  c~cjx = cjc~x 
( E 1 ) c ~ ( z V y ) = c l x V ' c ~ y  (E5) Id i i  = 1  and Idij = I d j i  
(E2)  x < ci~ = c~c,~: (E6)  Idik = cj(Id~j A Idjk) i f j  ~ {i ,k} 
( E 3 ) c i - c i ~ = - c i ~  ( E T ) I d i j A c i ( I d i j A z ) _ < z  i f i ~ j .  

CLAIM 8.3.1 CA~ coincides with the variety defined by (E0-7). 
To prove this: It is easy to check that CA~ ~ (E0-7); (E0-4) correspond 

to the first part of Definition 8.1 including (1), while (E5-7) correspond to 
(2-4). In particular, (E7) together with c~Id~j = 1 correspond to the main 
part of (2), where ciId~j = 1 follows from (E5-6). Therefore, what remains 
to prove is that every algebra in which (E0-7) is valid is in CA~. This 
goes by repeating the proof of the Stone representation theorem for Boolean 
algebras, but now paying attention to the non-Boolean operations (ci,Idij) 
too. This is not very hard, and is described in detail e.g. in [HMT] 2.7.4-5, 
2.7.40. | 

Terminology* We say that CA~ is finitizabIe exactly because Proposition 
8.3 holds; namely because both CAn is finitely axiomatizable and CA~ is 
axiomatizable by a finite schema, for a _> w. 
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PROPOSITION 8.4. RCA~ C_ CA~. 

PRooF.  By Proposition 8.3 it its enough to prove that fullCs~ C CA~. 
Let 

-- <~3 (~U),c{,Id{j>i , j<, .  For any p, q E ~Ulet  p - i  qif f  (Vj E ax  {i})p i = 
qi. It is easy to check that 92 = (~U, - i , I d i i )  is a cylindric Kripke frame. 
Since ~l-- ~3(~) ,  we are done. | 

Summing up, we have a finite schema axiomatizable variety CA~ contain- 
ing RCAa as a fmitary approximation of RCA~. The next natural  question 
asks how good this approximation is, how far CA~ is from RCA~. The rep- 
resentation results in [HMTII] w seem to say that they are pret ty  close. 
For example a result says that if a CA~ is atomic with all atoms "rectan- 
gular" then it is already in RCA~, where an atom ~ of a CA2 is rectangular 
iff x = c0(z) A cl(z) .  Rectangulari ty for arbitrary a is the natural  general- 
ization of this (the intuitive idea being that the rectangular 'Yelation" ~ is 
a Cartesian product) ,  cL [HMT] w p. 227. Another result says that if 
9~ E CA~ and (Vx E A)(3 infinite H C a)(Vi E H)c~z = z then 9~ E RCA~. 

By Monk's non-finitizability result (Theorem 4 here) the gap will always 
remain infinite between RCA~ and its finitary approximation CA~. The same 
applies to BRA's, RRA's etc. 

To illustrate the difference between RCA~ and CA~, the figure below rep- 
resents a cylindric Kripke frame ~ for which ~3(92) E CA2 \ RCA2. W has 5 
elements, the vertical, solid line represents --1, while the horizontal broken 
one represents =0.  E.g. d ~0 e and d --1 e, further d --0 a but d ~1 a. 

i 

I 

E01 

J 

92 

It is easy to check that ~3 satisfies the conditions in Definition 8.1, hence 
~3(~3) E CA2. It is not hard to see that ~3(92) ~ RCA2 since ~(92)  is simple, 
hence if it were in RCA2 then it were isomorphic to a Cs2 etc. We omit the 
rest but the reader is invited to try to represent ~3(92) as a Cs2. 
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The finitely axiomatizable variety RA of relation algebras approximating 
RRA is obta ined the following way. Let (3.1) + be obtained ~ o m  (3.1) above 
Theorem 1 in w by replacing "involuted semigroup (A, o,-1 ),, in (3.1) with 
"involuted m o n o i d  (A, o, -1,  Id ) ' .  Consider the equation 

(8.1) ~-1 o - ( x  o y) < - y .  

An algebra is an RA iff it satisfies both  (3.1) + and (8.1). It is easy to see 
that  {(3.1 + ), (8.1)} is a finite set of equations, hence RA is a finitely based 
variety. Clearly, RA 2 RRA. 

Completely  analogous observations apply to the RA-RRA relationship as 
were outl ined for the CA-RCA relationship above)  4 

R e m a r k  (in connection with defining RA). Let RA- be the variety defined 
by (3.1) + . Then  RA- ~ RA, moreover RA- is not a discriminator variety 
(while RA, CAn etc. are such). What  is lost in RA- is that  if we define cos 
as 1 o x then though  co remains a closure operator in RA-,  it is no more a 
complemented  one, i.e. the complement  of a c0-closed element need not be 
co -closed. 

Therefore, if we take ~IMTII] Def.5.3.1 (p. 211) defining RA, and remove 
the last equat ion (R~) then the variety defined by the remaining postulates 
(R1 - R6 ) is not discriminator.  (We note that  (R7) is our (8.1), and (R1 - R6 ) 
is equivalent with our (3.1) + .) A similar remark applies to other s tandard 
definitions of RA, e.g. to [JT52] Def.4.1. 

If we add the following simple equation 

(8.2) 1 o - ( 1  o x) _< - ~  

to (3.1) + then  we obtain a discriminator variety containing RA. (Actually 
the weaker equat ion 1 o -  (1 o [x V x- l ] )  < - x  is sufficient in place of (8.2).) 

It is interest ing to know whether  we are in a discriminator variety e.g. 
because in any discriminator  variety V, quasi-equations and equations are 
equivalent in the sense that  any quasi-equation q can be translated to an 
equation e such that  for every subdirectly irreducible 9.1 C V, (91 ~ q iff 91 ~ e~ 

54 See e.g. the results quoted from Maddux [Ma87a, 87] etc. close  to the end of w Further, 
Givant proved that if an RA 91 is generated by a chain H C A of equivalence elements 
then QI is representable. This generalizes a result of J6nsson. Givant generalized parts of 
this to cylindric algebras. 
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So as soon as we know that we are in a discriminator variety, we may use 
quasi-equations in defining subvarieties. 

Maddux [Ma78, Ma82, Ma87] introduced the important varieties NA D 
WA D SA D RA containing RA. These are obtained by weakening asso- 
ciativity of "o" in (3.1) + . These are important from the point of view of 
algebraizing syntactic aspects of logic (e.g. proof theory) as well as from the 
point of view of the so called relativized algebras of relations, cf. the discus- 
sions around Theorems 6, 7. Sain proved that in WA and NA, for any class 
K with 

"simple algebras" C K C_ "subdirectly irreducible algebras", 

K is not first-order axiomatizable (actually, K ~ UpK),  solving a problem 
on p. 112 of Maddux [Ma78], w or [Ma89c] Problem 5. 

(Sain proved the same for the cylindric algebraic counterpart of these 
classes [cf. e.g. the discussions around Theorems 6, 7] e.g. for ICrs~, too.) 
The proof uses methods in [$84, S89]. These results show that WA and 
NA are far from being discriminator, since in discriminator varieties every 
such K is axiomatizable by a single universal formula. (SA is a discriminator 
variety.) 

$ * * $ $  

The class RQPA~, abbreviated as RQA~ in the present paper, of repre- 
sentable quasi-polyadic algebras of c~-ary relations was discussed in w The 
fmitizable variety QPA~ (of quasi-polyadic algebras) approximating RQPA~ 
is defined analogously to CA~ or RA by a finite schema E0 of equational 
axioms. This approximation E0 of QPA~ was discussed and outlined above 
and below Theorem 12 in w 

So far we discussed the fmitizable approximations CA~, RA, and QPA~ of 
our classes RCA~, RRA, and RQA~ of algebras of relations. The finitizable 
approximations, PAn, PEA,~ etc. of our other kinds RPAn, RPEA~ of alge- 
bras can be defined analogously to our above definitions (of CA~ and RA), 
and more or less analogous observations can be made. There is a general 
notational convention: the fmitary approximating class has the shorter name 
(like CA~ or RA), and the name of the approximated class is obtained by 
writing an "R" in front of the short name (like RCAc, or RRA). Here this 
extra R stands for representable. 

The fmitizable approximating varieties CA~, RA, QPA~, PA~, QPA, etc. 
are discussed in the two volume monograph [I-IMT], [HMTII], and in the 
references therein. CA~ is studied in especially great detail: almost the 
whole of the first volume [HMT] is devoted to CAn. 
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R e m a r k  (discriminator varieties). CA., RA, PA~, PEAs, QPAn, QPEAn 
are all discrhninator varieties (n E w and ~ an arbitrary ordinal). Actu- 
ally, CAN is contained in a discriminator variety Vn much larger than CA~. 

def Namely, let c(~)z = Co... c,~-1 (z). Then V~ is defined by the following 4 
equations: 

z < c(,~)x, c(,~) 0 = O, 
ci(y /~ C(n);~ ) A c ( n ) ~  ci(y ) A C(n)~ , 
q ( y -  c(,~)z) - c(~)x = c i ( y ) -  c(n)x, for all i < n; where ( x -  y) 

abbreviates (x A -y ) .  
Clearly CAn C Vn. The discriminator term for Vu is the one given in the 
proof of Theorem 3. The idea of the proof is that the above equations ensure 
that "relativizing" both with c(,~)z and -c(~)z are homomorphisms, hence 
in any subdirectly irreducible member of V~ we have c(~)z E {0, 1}. Note 
that the above equations do not tell us anything about the behaviors of the 
Idij's. An immediate corollary of this is that the (fairly elaborate) axioms 
governing the Idij's (recall Definition 8.1 (2-4)) do not contribute to CA,~'s 
being a discriminator variety. (We note that we could achieve even bigger 
discriminator varieties by picking some cylindric algebraic term a(z) and 
writing or(z) in place of c(~)x everywhere in the above equations. Of course, 
one has to choose a(z)  in such a way that these equations remain valid in 
CA~.) 

List of  s y m b o l s  

Classes of  a lgebras  (the index n or a like in CSn or Cs~ referring to 
ranks of relations is omitted): 

Symbol 
BA 
BAO 
BRA ~ 
BRA 
BSR 
CA 
Crs 

Cs 

FSA 
full Cs, 
full Ps, 
GFSA 

full Crs, } 
etc. 

Name 
Boolean Algebras 
Boolean Algebras with Operators 
fmitary approximation of BRA 
Algebras of Binary Relations (without identity) 
Boolean semigroups of relations 
Cylindric Algebras 
Cylindric relativized set algebras 
__ ( Cylindric set algebras 
--  ~ (C$.=a lgebras  of •.ary re la t ions) ]  
Finite Sequence Algebras 
__ ( full (or powerset) elements of Cs etc. ) 
- -  i.e. algebras with universe ~(V)  for some V 
Generalized Finite Sequence Algebras 
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Gs  

HCA 

L 
Lf 
Lp 

Mod( ) 
MsCA 
NA 
PA 
PaCA 
PEA 
PK 
Ps 
QPA 
QPEA 
Qps 
QRA 
RA 
RCA 
RdK 
RPA 
RPEA 
RQA 
RQEA 
RQPA 
RRA 
RSC 
RV 
SA 
SC 
SK 
TB5 
IK 
WA 

Generalized cylindric set algebra 
Hyper Cylindric algebras, CA~ C HCA~ C RCA~ 

reg n " " 
\ c l a s s  of a lgebras  of f in i tary  re la t ions  ] 

Locally finite dimensional cylindric algebras 
same as L but for the quasi-polyadic case 

- -  o the set N of formulas 

Many sorted CA's 
Nonassociative relation Algebras 
Polyadic Algebras 
Partial CA's 
Polyadic Equality Algebras 
class of Products of (members of) K 
Polyadic set algebras 
Quasi-Polyadic Algebras 
Quasi-Polyadic Equality Algebras 
Quasi polyadic set algebras 
Relation algebras with quasi-projective elements 
Relation Algebras 
Representable Cylindric Algebras 
class of Reducts of. (members of) K 
Representable Polyadic Algebras 

Polyadic Equality Algebras 
Quasi-polyadic Algebras 
Quasi-polyadic Equality Algebras 

Representable 
Representable 
Representable 
=RQA 
Representable 
Representable 

Relation Algebras 
Substitution Cylindric algebras 

Representable members of the Variety V 
Semi-associative relation Algebras 
Substitution Cylindric algebras 
class of Subalgebras of (members of) K 
S-Transformational Algebras 
class of isomorphic copies of algebras in K 
Weakly associative relation Algebras 

Algebras and their  universes: 

S y m b o l  

Frl 
Gfs 

Name 
algebra of Finitary functions 
set of all Finitary relations 
set of Generalized finite sequences 
Neat reduct of ~D 
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~SC 

V(v) 

~ef  
9~eI~ 
Rf 

mf 
mfp 
r  

Other :  

Symbol 
ci 

Cr 
Id 
Idij 

Pij 

S,- 

R o S  
'W 

H U 

substitution cylindric Powerset algebra (a reduct of ire[) 
Powerset of Y (= universe of ~(V))  

( =(~(v),n,u,O,v,-) ) 
"~- ~Boolean algebra of subsets of V 
set of essentially tlnitary Relations 
algebra of essentially finitary Relations 
algebra of a-ary Relations 
set of finitary Relations (universe of 9~f) 
algebra of finitary Relations 
quasi-polyadic version of ~ f  
Two sorted cylindric-like algebra 

N a m e  
/-th cylindrification } 

(forgetting the /-th argument) 
generalization of c~ 
identity relation (both binary and n-ary) 
identity of i-th and j-th arguments 
permutation of i and j 
substitution of j for i 
substitution along r 
set of all natural numbers 
= {(a,b) : 3c(aRc and cSb)} 
= U • U • . . .  • U (n times), or equivalently 
set of all functions from H into U 
set of all finite sequences over U 
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