
DE• A Finite Model Theorem for the 
KozEN Propositional / -Calculus * 

Abstract. We prove a finite model theorem and infinitary completeness result for the 
propositional /t-calculus. The construction establishes a link between finite model theorems for 
propositional program logics and the theory of well-quasi-orders. 

1. Introduction 

L~, is a propositional #- or least fixpoint-calculus related to systems of Scott 
and DeBakker Ell]  and Pratt  [8]. L u was introduced in [2], where an 
exponential-time decision procedure and complete finitary deductive system 
were given for a restricted class of formulas. In [3], a nonelementary decision 
procedure was given for full L u. In this paper we prove that every satisfiable 
formula of L u is satisfied in a finite model. We also give a complete infinitary 
deductive system. 

Finite model  theorems are useful in obtaining efficient decision procedures. 
In general, the smaller the model (as a function of the size of the formula), the 
more efficient the decision procedure. The standard technique for obtaining 
finite models in propositional program logics is f i l t ra t ion ,  a technique borrowed 
from modal  logic. It was first used in propositional program logics to obtain a 
finite model theorem for Proposit ional Dynamic Logic [1], thereby giving a 
nondeterministic exponential-time decision procedure. Filtration does not 
work for L,  [-2, 9], thus a new technique is needed. 

We prove the result by showing that the size of a minimal model for a given 
satisfiable L~ formula is related to the size of a maximal set of pairwise 
incomparable elements in a particular ordered structure involving sets of 
ordinals. This establishes a connection between finite model theorems for 
propositional program logics and the theory of well-quasi-orders. 

Basic definitions are given in w In w we define a partial order ~ on 
formulas and extend it to a quasi-order on collections of formulas. In w we 
consider models whose states are labeled with sets of formulas, and give local 
conditions (involving %) on labelings which insure that a state satisfies all 
formulas in its label. The results of this section may be of more general use in 
performing surgery on models. In w we show that a certain quasi-order ~ on 
sets of ordinals is a well-quasi-order [4], therefore has a finite base. In w we 
combine the results of w and w to obtain a finite model  theorem. In w we 
show how the finite model  theorem gives a complete infinitary deductive 
system. w contains Conclusions and directions for further work. 

* Supported by NSF grant DCR-8602663 
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2. Definition of Lu and L~ 

The systems Lu and Lu + were defined in [2]. We review the definitions 
briefly, referring the reader to [2-1 for a more detailed presentation. 

2.1. Syntax 

The basic nonlogical symbols of L~ and Lu + consist of 
1. propositional constants P, Q . . . .  
2. propositional variables X, Y,. . .  
3. program constants a, b . . . .  
Formulas p, q . . . .  are defined inductively: 
1. X 
2. P 
3. p v q  
4. 7 p  
5. (a)  p 
6. ~X. pX, ~ an ordinal 
7. #X.  pX. 
In (6) and (7), pX is a formula with a distinguished variable X, all of whose free 
occurrences are positive (occur in the scope of an even number of negations 7). 
Intuitively, ~X. pX represents the ~-fold composition of the operator 2X. pX 
applied to false. L + is the language defined by (1-7) .  L~ is the countable 
sublanguage obtained by deleting (6). 

The operators ^ ,  --. ;false, true, and I-a] are defined as usual. In addition, 
we define 

vX.pX = 7 # X .  Tp  7 X .  

The operator v is the greatest fixpoint operator. 
The usual quantifier scoping rules, as well as the definitions of bound and 

free variables, apply to #X, vX, and ~X. A formula with no free variables is 
called closed. 

An L~ + formula is said to be in positive form if it is built from the operators 
v ,  ^ , /~ ,  v, ( ) ,  [ ] ,  and 7 ,  with �9 7 applied to atomic subformulas only. 
Every dosed L, formula is equivalent to a formula in positive form. 

2.2. Semantics 

A model is a structure Jr = (S, I), where S is a set of states and I is an 
interpretation function interpreting the propositional and program constants, 
such that I(P) ~_ S and I(a) ~_ S x S. A formula p(.Y) with free variables among 
.~ = X 1, . . . ,  X,  is interpreted in ~ '  as an operator U a which maps any 
valuation .4 = A1 . . . .  A, of X" over subsets of S to a subset Ua(.4) of S. The 
operator U a is defined by induction as follows: 

(2.1) X~(.4) = A i 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 

p~t(X) = I(P) 

(p v q).U(~) = p.U(~) w p ' ( A )  

(-7 p)*(A) = S-p*( ,~)  
( (a )  p)~U(X) = (a~)(p '~(X))  

where in (2.5), 

(,aX~)(B) = {sl'qt e B(s, t) e I(a)}. 

In order to give the semantics of aX.pX and #X.pX,  let pX be a formula with 
distinguished free variable X occurring only positively. Let X denote the other 
free variables in p. Thus pX = p(X, X). We assume by induction hypothesis 
that the operator U u has already been defined. 

(2.6) OX.pX'~(X) = false ~u = 0 

(2.7) ( e+  I )X.pX~(A) = U~t(c~X.pX+e(A), A-) 

(2.8) 6X'pX"U(~) = U flX'pX~(A),  6 a limit ordinal 

(2.9) ItX'pX"a(Z) = U fiX'pX"U(~) 
P 

where in (2.9), the union is over all ordinals ft. Taking # > c~ for any ordinal e, 
(2.6-2.9) reduce to the single definition 

(2.10) c~X.pX~t(A) = U P"*t(flX.pX~(A), A-) 
p <ct 

where e is either an ordinal or it. 
Because p is positive in the variable X, 2X.Uu(X, A) is a monotone set 

operator, and 

(2.11) ~ < ~--+o~X.pX~(~) c flX.pX,U(~). 

There exists a least ordinal z such that zX .pX~(X)  = (~ + 1)X.pXJU(X), and it 
follows that p X . p X ~ ( A ) =  ~X.pX"U(A). The ordinal z is called the closure 
ordinal of the operator 2X.Ua(X, A), and #X.pX~(A)  is the least fixpoint of 
; tX.p~(X, A). 

I fp is closed, then p~ is a constant function, i.e., UU(A) is a fixed set of states 
independent of A. In this case, we say s satisfies p if s e p~(A) and write 
~ t ,  s ~ p or s ~ p when ~ is understood. We write ~ p if Jg,  s ~ p for all 
and s .  

2.3. Closure 

Let p be an L u formula in positive form. The closure CL(p) of p was defined 
in [2]. It corresponds to the Fischer-Ladner closure of PDL [1]. It is the 
smallest set of formulas such that: 
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1. peCL(p) 
2. if NPeCL(p)  then PeCL(p)  
3. if q v r e CL(p) then both q, r e CL(p) 
4. if q ^ reCL(p) then both q, raCL(p)  
5. if (a)q  e CL(p) then q e CL(p) 
6. if [a] q e CL(p) then q ~ CL(p) 
7. if a X . q X  e CL(p) then q(aX.qX) ~ CL(p), 
where tr is either # or v. CL(p) is finite, and is in fact no larger than the number 
of symbols of p [2]. 

3. A Partial Order on L~ + Formulas 

Let ~ = ~1, . . . ,  ~, and /7 = i l l , . . . ,  [$, be n-tuples of ordinals or #, and 
define ~ ~</7 if ct i ~</~i, 1 ~< i ~< n. Let p be a formula of L~ in positive form. Let 
~ I X I . q x X 1 , . . . ,  a , X , . q , X ,  be a list of all occurrences of subformulas of p of 
the form ctX.qX, where each ~i is either # or an ordinal, listed in the order in 
which they occur in p. We denote this by writing 

i 

p = p( 1, . . . ,  = 

Replacing ei in p with/~,  1 <~ i ~< n, results in a well-formed L + formula p(/7). 
We define p(~) ~ p(/7) if c7 ~</7. That is, p ~ q if p and q are identical except for 
the ordinals appearing in subformulas of the form eX.rX ,  and the ordinals 
of p are not greater than the corresponding ordinals of, q. We define 
p" = p(#, . . . ,  #), the L,  formula obtained by replacing all ordinals by #, and 
observe that p ~ p "  for all L + formulas p. By (2.11) and the fact that p is 
positive, 

(3.12) i f p ~ q  then ~ p ~ q .  

If S, F are sets of L~ +, formulas, define 

(3.13) S ~ F  if V q ~ F  3p~Z  p ~ q .  

From (3.12) we have that 

(3.14) if Z ~ F  then ~ A E - - - , A F .  

Finally, if E is a set of L~ + formulas, define 

S u = ~pUlp~ El. 

4. Annotated Models 

Let J / / =  (S, I) be any model, and let @ be a function labeling each state 
s ~ S with a class Os of closed positive L~ + formulas. The labeling O is called an 
annotation of Jr and the triple (S, I, O) is called an annotated model. 

The following definition of well-annotation gives local syntactic conditions 
that insure that states of an annotated model satisfy their labels (Lemma 4.2). 
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This is useful in performing surgery on models, because in practice it is easily 
checked that these local conditions are preserved by certain cutting and pasting 
operations. 

DEFINITION 4.1. An annotat ion O is called a well-annotation if t h e  
following conditions hold: 
1. if P e O s ,  then s ~ P  
2. if -7PeOn,  then s ~  7 P  
3. if p v  q e O s ,  then either pEO~ or qeO~ 
4. if p / x  q e  0~, then both p, qE O~ 
5. if ~ X . p X  ~ 0~, then 3fl < e p( f lX .pX)  e 0~, ~ an ordinal or ~t 
6. if v X . p X  ~ 0~, then p ( v X . p X )  e O~ 
7. if ( a ) p  ~ 0.~, then 3t(s,  t) ~ I(a) and 3p' ~ p p' e 0 t 
8. if [ a ] p e O s ,  then V t ( s , t ) e I ( a ) - , 3 p ' ~ p p ' e O  r [] 

LEMMA 4.2. 
(i) I f  0 is a well-annotation, then s ~ Os for  all s e S. 

(ii) I f  0 is an annotation such that Vs  s ~ 0~, then 0 can be extended to 
a well-annotation 0 satisfying the property 

(4.1) U 6)2 ~- ~ CL(qU) �9 
s~S teS,qeOt 

PROOF. (i) Suppose  0 is a well-annotation. For any closed positive L + 
formula q, let qO= { s l 3 q ' ~  q q'~O.,} .  If q = q~ . . . . .  q, is a list of closed 
formulas, let qo denote the list ql ~ . . . . .  q~'. Let p(X) be an L~ formula in 
positive form with free variables among J{ = X ~ ,  . . . ,  X,.  We prove by 
induction on the structure of p and by transfinite induction on ordinals that 

p(q)o c_ p.~(glO). 

In particular, pO___ p~ for any closed p. This will establish (i). 
1. P~ P ~  by Definition 4.1(1). 
2. 7 P ~  7 P  ~a by Definition 4.1(2). 
3. X,(q) ~ = qO = X~(qo) .  
4. (p v q)(gl) ~ ~_ p(q)~ w q(F1) ~ by Definition 4.1(3) 

Uu(q ~ v q , (qo )  by induction hypothesis 
= (p v qj.~(qo). 

5. (p ^ q)(q)~ ~_ p(gl)~ n q(gl) ~ by Definition 4.1(4) 
~ p,(qO)c~ q , (qo )  by induction hypothesis 
= (p ^ q)~(qO). 

6. (a)p(F1) ~ ~_ (a~)p(gl)  ~ by Definition 4.1(7) 
~_ (a"~)p"U(q ~ by induction hypothesis and monotonici ty of (a  ~u) 
c ((a)p)~U(qO). 

7. [alp(q) ~ [a~](p(q) ~ by Definition 4.1(8) 
~_ [aJt]p~t(q ~ by induction hypothesis and monotonici ty of [a ~]  
=_ ([a] p).~(qo). 
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8. ctX.pX(q) ~ c _ Ur (1) ~ by Definition 4.1(5) 
~_ Ut~<~p~(flX.pX(gt)o, qo) by induction hypothesis on p 
~_ Ut~<~p~t(fiX.pX~t((l~ gl ~ by induction hypothesis on fl and mono- 
tonicity of p~ 
= ~ X . p X  ~ (qo). 

9. vX.pX(( l )  ~ ~_ p(vX.pX((l) ,  (1) ~ by Definition 4.1(6) 
c_ p ~ ( v X . p X ( q )  ~ (1 ~ by induction hypothesis on p; but vX . pX  ~ (4 ~ is the 
greatest subset A of S such that A _ p~(A, qo), therefore 

vX .pX(q )  o c_ vX . pX~(qo ) .  

(ii) Let O be any annotation such that s ~ O~. We will add new formulas to 
O to satisfy the conditions of Definition 4.1, always preserving s ~ O~, and 
making sure that for any new formula p, p u t  CL(q ~) for some q already 
appearing in some O t. 
1. If p v qeO~,  then s ~  p v q, so either s ~  p or s ~  q. If the former, 

set O~:= O~ u {p}, otherwise set O~:= O~ w {q}. 
2. I f p A  qeO~,  set O ~ ' = O ~ u { p , q } .  
3. If [a]peO~ ,  then for all t such that (s, t )e I (a) ,  t D  p. Set O~:= O t u  {p} 

for all such t. 
4. If v X . p X  e 0~, set O~:= O~ u {p(vX.pX)} .  
5. If c~X.pXe  0~, then s ~ c tX .pX,  so by (2.10) there must exist a/~ < ~ such 

that s ~ p ( f lX .pX) .  Pick one such fl and set O~:= O~ u {p( f lX.pX)} .  
6. If ( a ) p  ~ 0~, then there must be a state t such that (s, t) e I(a) and t ~ p. 

Pick one such t and set O t :=  O t w {p}. 
Let O be the final value of O obtained by this procedure. Then O satisfies 

[] the conditions of Definition 4.1 and the property (4.1). 

5. Well-Quasi-Orders 

DEFINITION 5.1. A quasi-order is an ordered set (Q, ~<) such that ~< is 
reflexive and transitive. (Q, ~<) is a well-quasi-order if any of the following five 
equivalent conditions hold: 
1. Every set has a finite base: VA _ Q 3 A  o c_ A,  A o finite, such that Vy e A 3 x  

s A o x  <~ y (i.e., such that Ao ~ A in the sense of (3.13)). 
2. ~< is well-founded, and there is no infinite set of pairwise ~<-incomparable 

elements. 
3. Every countable sequence x o, x 1, ... has x i ~< xj for some i ~ j .  
4. Every countable sequence x o, x 1 . . . .  has a countable monotone sub- 

sequence Xio <~ xi~ <~ .. .  
5. Any linear order on the quotient Q / -  extending ~ is a well-order, where 

x =- y iff x <. y and y <. x.  [] 
Any well-order is a well-quasi-order, any subset of a well-quagi-order 

is a well-quasi-order, and the direct product of any finite collection o f  
well-quasi-orders is a well-quasi-order. The proof of the equivalence of the 
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above five conditions uses Ramsey's theorem. See [4] for further details and 
references. 

The power set of a well-quasi-order, ordered by (3.13), is not necessarily 
a well-quasi-order. However, Nash-Williams defined the concept of better- 
quasi-order, and showed that any better-quasi-order is a well-quasi-order, and 
the power set of a better-quasi-order is a better-quasi-order [6, 7]. Since the 
definition of better-quasi-order is rather involved, we refer the reader to 
[5, 6, 7] for the definitions and basic results, from which the following lemma is 
not hard to derive: 

LEMMA 5.2. '(P(O"), <~) is a well-quasi-order, where O" is the class of 
n-tuples of ordinals, P(O") is the class of all sets of such n-tuples, and S <~ T i f f  
V fl ~ T 3 ~ ~ S ~ <~ fi. [] 

6. The Finite Model Property 

THEOREM 6.1. Every satisfable L u formula Po is satisfied in a finite model. 

PROOF. Suppose Po is satisfiable. Let Jdd = (S ~ ,  I ~) be a model and 
s o ~ S  a~ such that s o ~ Po- Label Oso = {P0}, Os = 13 for s ~ s o . By Lemma 
4.2(ii), O extends to a well-annotation O satisfying the property (4.1). 

We wish to show that ({Os[s~S~}, ~ )  is a well-quasi-order. Let 

{Po, . . . ,  Pk} = CL(Po)" By (4.1), every p ~ O~ satisfies pU = Pi for some 1 ~< i 
~< k. In other words, every p EO~ is contained in some ~-ideal  (pi) 
= {q]q ~ Pi}. Moreover, p ~ q only if p" = qU. Therefore 

~--~Vqe Ot n (pi)3pe 6)~ n (p:) p ~ q, 1 <~ i <~ k 

~-~ Os ~ (pi) % Ot n (pi), 1 ~< i ~< k. 

Since any finite product of well-quasi-orders is again a well-quasi-order, it 
suffices to show that each of the k quasi-orders 

{0~ n (pi)lseS~}, 1 < i ~< k 

is a well-quasi-order. If Pi = Pal#, . . - , /0 ,  this amounts to showing that each 

i <. i <. k 

is a well-quasi-order. But this is immediate from Lemma 5.2. 
Now by Definition 5.1(1), the set {Os]seS ~} has a finite base under %. 

Therefore there exists a finite set S ~ _~ S "e such that Vs e S~3t  ~ S~6)t ~0~ .  
Let f :  S ~ S  ~ such that OI(~)~ 0~. 

Define a new annotated model sV as follows. Take S X =  S ~ and 
Ix(P) = I~(P), but 

IX(a) = {(s, f (t))](s, t)~ l~(a)}. 
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In other words, Jff is exactly the same as Jg,  except that we cut every edge (s, t) 
in I~a(a) and replace it with the edge (s,f(t)). The annotat ion O o n ,  V is still 
a well-annotation: Definition 4.1(1-6)  is still satisfied since no labels were 
changed, and Definition 4.1(7-8)  is still satisfied since Oj-~t)~ Or. 

Now define a finite annotated model ~ = (S w, I w, @ [ S w) by restricting 
X to S ~,  i.e., IW(P)= Y"(P)c~ S w and IW(s)= IX(a)c~ S w • w. The an- 
notat ion O [-S w is still a well-annotation: Definition 4 .1(1-  6) is still satisfied 
since no labels were changed, and Definition 4.1(7-8)  is still satisfied, since 
any (s, t)~ l~(a) is also in l~(a). 

Thus ~" is a finite well-annotated model. Moreover, f (So)~ (gSOo) 
by Lemma 4.2(i), therefore f (So)~ @~o by (3.14), and po~6~,o, therefore 
f (So) ~ Po" [] 

7. An lnfinitary Deductive System 

The deductive system is the same as the one in [2], with the addition of the 
infinitary rule of inference 

nX.pX ~ q, all n < co 
(7.1) 

pX. pX --* q 

This deductive system can be ~ o w n  complete by a straightforward adaptation 
of the completeness proof of [2]. The difficult part is showing that the system is 
sound, because the above rule is not valid if interpreted as an implication; in 
other words, it is not true in general that  

nX.pX ~ ~_ qat, all n < o~--,#X.pX ~t c_ q~t, 

as easy counterexamples show (see [2]). However, it is the case that  if 
nX.pX~t~_ q~U for all n < co in all models dr ,  then #X.pX~aG q~ in 
all models rig. For, suppose there were a model ~ /  an:l state s with 
s~#X .pX~c~  --]q'*, or in other words s ~  pX.pX ^ Nq. By Theorem 6.1, 
there would be a finite model f f  and state t of ~ with t ~ #X.pX ^ ~ q. But 
since all closure ordinals in a finite model are finite, t ~ nX.pX /~ -lq for some 
n < co, thus n X . p X W ~  qW, a contradiction. We have established 

THEOREM 7.1. The deductive system of [2], auomented with the infinitary 
rule (7.1), is sound and complete for Lu. [] 

8. Conclusions and Directions for Further Work 

Streett and Emerson [10] have recently given an elementary-time decision 
procedure for L~, involving automata  on infinite trees. As a corollary to their 
construction, they obtain a finite model property. Moreover, their construction 
gives elementary bounds on the size of the model (roughly four exponentials), 
whereas ours does not, at least in the current state of (the author's) knowledge. 
Nevertheless, the construction of the present paper has the advantage that it is 
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more direct, and es{ablishes a link between finite model theorems for program 
logics and the theory of well-quasi-orders. For example, the construction of 
Theorem 6.1 shows that the size of a minimal model for a given satisfiable 
formula is related to the size of a maximal set of pairwise ~-incomparable  
elements in a particular structure on sets of ordinals. We are currently refining 
this relationship in the hope that it may shed light on the complexity of the 
decision problem for L u. 
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