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Abstract. Singular integrals occur commonly in applications of the boundary element method (BEM). A simple mapping 
method is presented here for the numerical evaluation of two-dimensional integrals in which the integrands, at worst, are O(1/r) 
(r being the distance from a source to a field point). This mapping transforms such integrals over general curved triangles 
into regular 2-D integrals. Over flat and curved quadratic triangles, regular line integrals are obtained, and these can be 
easily evaluated by standard Gaussian quadrature. Numerical tests on some typical singular integrals, encountered in BEM 
applications, demonstrate the accuracy and efficacy of the method. 

Introduction 

It is generally accepted that the accuracy of numerical solutions, obtained from the boundary 
element method (BEM), is very good if the numerical implementation of the method is carried out 
with care (Mukherjee 1982). One of the key ingredients of a proper implementation of the method 
is the accurate evaluation of singular integrals. These integrals can be weakly, Cauchy or hyper 
singular and can be one, two or three dimensional. Integrals over flat two-dimensional elements 
can sometimes be evaluated analytically while integrals over curved elements usually must be 
evaluated numerically. For some BEM applications, such as axisymmetric problems or shape 
design sensitivity analysis, even integrals over flat elements cannot be evaluated analytically and 
numerical integration must be employed. 

It has been the experience of many researchers in the BEM, including the authors of this paper, 
that "brute force" evaluation of these integrals by standard numerical quadrature is extremely 
risky. While such methods may work for some problems, they may lead to unacceptable numerical 
errors in others. Accuracy demands on the computed values of such integrals are quite stringent 
for nonlinear problems (e.g. Rajiyah and Mukherjee 1987). The situation becomes even more 
critical if one tries to obtain shape sensitivities of nonlinear problems in solid mechanics (Zhang 
et al. 1992a, b). 

The focus of this paper is the numerical evaluation of integrals where the integrands are O(1/r) 
singular (r being the distance between a source and a field point) in two-dimensional regions. Such 
integrals occur in many problems. The integrals are usually of the form 

I = j" (kernel) x (physical variable)dS (1) 
B 

where the kernel is singular and B is a two-dimensional region. Usually the region B is discretized 
into elements. If the physical variable is unknown, it is expressed in terms of shape functions over 
each element. If the physical variable is known, its numerical value can be used directly in Eq. (1), or 
it can be expressed in terms of shape functions. The elements can be flat or curved and have straight 
or curved sides. 

There are many situations in BEM applications where the integrand in Eq. (1) is O(1/r) as r, the 
distance between a source and a field point, approaches zero. One example is 3-D linear elasticity 
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(Cruse 1969) where the kernel is 

1 
Ui j  --  [(3 - -  4V)(~ij 4- r , ir , j  ] (2) 

167z(1 - v)Gr 

and the physical variable is the surface traction vector with components z i. In the above, G and v 
are the shear modulus and Poisson's ratio, respectively, of the material, 6ij is the Kronecker delta 
and 

x i (q )  - -  Xi(p)  r~ - (3) 
r 

in terms of the field and source point coordinates x~(q) and x~(p), respectively. 
Other examples come up in the determination of domain integrals in 2-D elasto-plasticity. The 

domain integral for the rate of displacement has the kernel (Mukherjee 1982) 

1 
= - -  4V)rkt~ij  - -  t~ikrj 6]kri  4- 2 r i r j r , k  ] (4) Uij'k 8re(1 - v)Gr [(3 

with the plastic strain rate gl~ ) as the physical quantity. 
The domain integral for strain rate calculations in 2-D elasto-plasticity has a Cauchy singular 

kernel Uij,kt which is 0(1/1" 2) (Zhang et al. 1992a), together with the physical quantity (after 
regularization) [~Ik ) (q) -- ~Ik ) (p)]. Since this physical quantity is O(r) as p - .  q, the integrand is O(1/r) 
as r--, 0. 

The general form of these singular integrals, obtained from the kernels such as those in 
Eqs. (2) or (4) (with the source point at the origin) is 

f (x l ,  Xz)/r" 

wheref(x~, x2) is a polynomial of order m, n is an integer > 1, and m - n = fl = - 1. For example, 
Eq. (4) gives terms like 

x 1 X l  X2 
etc. 

F2 ' r 4 

There have been many papers published in the BEM literature that deal with the numerical 
evaluation of singular integrals. In the interest of brevity, attention is focussed below only on 
integrals with integrands of the type O(1/r) (weakly singular) and O(1/r 2) (Cauchy singular) on 
two-dimensional surfaces (planar or curved). Also, the papers cited below are intended to be a 
representative sample, rather than an exhaustive list. 

One could classify such papers into various categories, depending on the method used for the 
evaluation of such integrals. A possible way to categorize them follows. 

a) Gaussian integration methods with adjusted weights 

Examples of this approach are Cristescu and Loubignac (1978); Pina et al. (1981) (see also, Brebbia 
et al. 1984) and Aliabadi and Hall (1987a). 

Cristescu and Loubignac (1978) use a two-dimensional weighting function which is the inverse 
of the local planar distance from an integration point to a fixed point. One problem with this 
approach is that it is based on the assumption that the BEM integrands are of the form h(x 1, Xz)/r, 
where h is an analytic function of its arguments. In reality, however, h is typically of the form 

Polynomial of order n 
h(xl, x2) = 

r n 

e.g. (x~xZ2)/r a, which is not defined (and therefore not analytic) at the origin. As a result, when the 
Gauss points and weights from Cristescu and Loubignac (1978) were employed in a very demanding 
BEM application, that of calculation of shape sensitivities for nonlinear solid mechanics problems 
(Zhang et al. 1992b) the results were not acceptably accurate. Aliabadi and Hall (1987a) also report 
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serious problems when the method of Cristescu and Loubignac (1978) is used for integration of 
O(1/r) functions over parallelograms other than perfect rectangles. They (i.e. Aliabadi and Hall 
1987a) report success in integrating over parallelograms by using a weighting function 1/R ~, where 
R, is an approximation of the real spatial distance between a source and a field point. It should 
also be mentioned here that the work of Pina et al. (1981) is also based on the use of a weighting 
function of the same type as Cristescu and Loubignac (1978). No numerical results, using their 
proposed Gauss points and weights, are given in the paper by Pinaet  al. 

In summary, it is fair to say that this class of methods do not guarantee the exact cancellation of 
the 1/r singularity in all cases, and should be used with caution. 

b) Subtraction and addition methods 

Examples of this approach are Huang and Du (1988), Rajiyah and Mukherjee (1987) and Aliabadi, 
Hall and Phemister (1985). The idea here is to first subtract a term from the singular integral to 
make it regular and easily integrable by numerical methods. This term is then added back on and 
usually integrated analytically. Huang and Du (1988) subtract and add the physical variable (see 
Eq. (1)) while Rajiyah and Mukherjee use the leading term of the Taylor Series expansion of the 
kernel, which, in this case, was 0(1/r2). Aliabadi et al. also apply the Taylor series idea, but to the 
entire integrand. 

In general, such methods work very well but can be expensive, especially for nonlinear problems 
where such operations must be carried out repeatedly (Rajiyah and Mukherjee 1987). 

c) Mapping methods 

Examples of this approach are Sarihan and Mukherjee (1982) (see, also, Mukherjee (1982); Li et al. 
(1985); Lean and Wexler (1985); Aliabadi and Hall (1987b)). The idea here is to map the physical 
domain into a different domain in such a way that the integrand becomes regular. Polar coordinate 
mapping has been used by Sarihan and Mukherjee and by Li et al. While the polar approach is 
mathematically exact, it can, however, require several mappings, leading to a significant com- 
putational burden (especially for nonlinear problems) and accumulated round off error. Integration, 
using this approach, has been found to be of unacceptable accuracy (in some cases) in ongoing work 
of M ukherjee's group in the area of shape design sensitivity of nonlinear problems in solid mechanics. 

The work of Lean and Wexler (1985) and Aliabadi and Hall (1987a) is based on the astute 
observation that the mapping of a curved quadratic triangle to a square leads to a Jacobian that 
exactly cancels the 1/r singularity of the integrand. The resulting two-dimensional regular integral 
can even be reduced to a regular line integral (Aliabadi and Hall 1987b). This approach is really 
nice and works for other mappings such as linear triangles as well. 

d) Use of special solutions 

Special solutions of the entire boundary integral equation, when available, have been employed by 
many researchers to avoid direct computation of singular integrals. The use of rigid body motion 
(Lachat and Watson 1976) is now well established. Use of other modes, for example, appear in 
Mukherjee (1982) (inflation mode for axisymmetric problems) and Nishimura and Kobayashi 
(1989). 

Overall, special solutions are very useful, but lack generality. 

e) Regularization of singular integral 

Recently, Guiggiani and Gigante (1990) have proposed a general regularization algorithm for 
O(1/r 2) integrals on planar and curved surfaces. The original Cauchy principal value (CPV) integral 
is transformed in this work, by rigorous mathematical operations, into an element by element sum 
of regular integrals. This method is sound but is yet to be evaluated, in terms of efficiency, in 
complicated nonlinear problems. 
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The new mapping method 

This paper presents an idea for the numerical evaluation of integrals of O(1/r), over two-dimensional 
regions, based on a mapping approach. This mapping transforms such integrals over linear flat 
triangles into regular line integrals that can be easily evaluated by standard Gaussian quadrature. 
Integrals over curved quadratic triangles are first converted into regular two-dimensional integrals. 
One integration can then be carried out in closed form, leaving the other (now a regular line 
integral) to be evaluated by standard Gaussian quadrature. The situation (for curved quadratic 
triangles) is analogous to that discussed by Aliabadi and Hall (1987b). For the more general case 
of integrals over curved triangles with cubic or higher order shape functions, regular 2-D integrals 
are obtained. One integration can sometimes be carried out in closed form, leaving the remaining 
line integral to be evaluated by Gaussian quadrature. Such situations must be examined on a case 
by case basis. 

The integrand under consideration is of the form 

f (x ,  y) 
4 ) ( x ,  y )  - - -  ( 5 )  

?.n 

wheref(x,  y) is a homogeneous polynomial of degree m, n is an integer > 1 and/3 = m -  n > - 1 .  
Consideration of a homogeneous polynomial is sufficient since the integral of interest is a finite sum 
of homogeneous polynomials divided by r". Also, f ( x ,  y) includes the product of a kernel and a 
shape function for the physical variable under consideration, assuming that the physical variable 
is analytical and is written in terms of piecewise polynomials over each element. The notation 
(x, y), instead of (x~, x2) is chosen from here on for convenience. 

The regions of interest here are triangles, as shown in Fig. 1. The source point P is assumed to lie 
either at the mid-point of a side or on the vertex of the triangle. In either case, the triangle can be 
divided into two parts to yield T~ or T 2 in Fig. 1. Of course, triangles of general shape can be 
mapped onto T~. Also, T 2 can be transformed to T 1 by the mapping given below Fig. 1. In what 
follows attention is focused on T 1. 

Consider the mapping 

x = p cos 2 0, y = p sin20 (6) 

which transforms T 1 into a rectangle with sides 1 and re/2 as shown in Fig. 2. 
Noting that 

dp(x, y) _ f ( x ,  y) _ pp g(O), 
r n 

a, P b P 
y ~ 0 = ~ / 2  

(0,1) B 

(0,01 (1,01 x 

(0,1) (0.1) (1,1} 

P I  \ ~ P 
o (0,0) (1.0) x d (0,0) x 

1 2 

B' 

A' 

0=1 

Figs. 1 and 2. l a ,  b Triangle  with source poin t  at midside and  at vertex, c, d Model l ing half  of  the triangle f rom a and  b. T z 

(Fig. d) can  be t rans formed  to T 1 (Fig. c) by the m a p p i n g  2 = x, ~ = y - x. 2 The  m a p p i n g  used in this paper  x = p cos 2 0, 
y = p sin 2 0 
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f ( c o s  2 0, s in  2 0) 
where g(O) = and using the Jacobian of the transformation J = p sin 20, one gets 

(cos 4 0 + sin 4 0) "/2 

n/2 1 l n/2 
I=I f ( x 'Y !dxdy  = I dO I pP+ g(O)sin2Odp- ~ g(O)sin2OdO (7) 

a r" o o f l + 2  o 

which is a 1-D integral. This integral can be evaluated using Gaussian quadrature. 

Integrals of functions of O(l[r) over general curved and flat triangles 

Referring to Fig. 3, a general mapping from a curved triangle to T 1, with the origin (source point) 
mapped to the origin, can be expressed as 

u = a l x  + a 2 y + a 3 x  2 + "" 

v = b l x  + b 2 y + b 3  x2 + ... (8) 

so that the Jacobian 

det al a2[ J (x, y) = bl b2 + higher order terms. 

Here, it is assumed that at least one of the coefficients al, a2, bl o r  b 2 is non-zero. Further, the 
determinant above is assumed to be non-zero since, otherwise, there would be a cusp at the origin 
in physical space. 

N o w ,  r 2 = u 2 4- v 2 - -  g(x, y) where the leading term in g(x ,  y) is quadratic. In the neighborhood 
of the origin 

r ~ [ (a l x  + a2y)  2 + (blX + b2y)2] 1/2 

so that asymptotically, as Q ~ P in Fig. 3, the O(1/r) singularity is cancelled out when the mapping 
in Eq. (6) is used. Thus, this approach converts integrals of O(1/r) over general curved triangles into 
regular integrals. 

It can be demonstrated that, if the triangle in physical space is curved quadratic (see for 
example, Aliabadi and Hall 1987), one of the two regular integrations can be carried out in closed 
form and one is left with a regular line integral which can be evaluated by Gaussian quadrature. 
For higher order shape functions on curved triangles, it may also be possible to carry out the 
integral with respect to p in closed form. Such situations must be handled on a case by case basis. 

The situation for the linear flat triangle reduces to (see Fig. 4) 

U = UlX 4- u2Y, V = VlX 4- v2y (9) 

(0,1) 

P u P (1,0) 
Fig. 3. Mapping of a general curved triangle to 

x the standard triangle T 1 

v + ; ,  

I \  
v 

F) u P (1.0) Fig. 4. Mapping a general flat linear triangle to T 1 
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with again, the source point P at the origin of the (u, v) plane being mapped to the origin in the (x, y) 
plane. 

The distance r now is 

r = (u 2 + v2) 1/2 ~-- [-(UlX -1- u2Y) 2 -~- (VlX q- v2y)2-] 1/2. (10) 

Next, the mapping from Eq. (6) is used to transform T1 into the rectangle shown in Fig. 2. 
Since the mapping in Eq. (10) is globally homogeneous, p" (see below (6)) is again a common 
factor in the denominator  of the transformed integrand. Thus, the integration with respect to p for 
integrands that are, at worst, O(1/r), can be carried out easily, and one is again left with a regular 
line integral. This is evaluated by Gaussian quadrature. 

Numerical results 

a) Integration over the standard triangle T~ of Fig. I: Numerical results have been obtained for 
integrals of the form 

X m -  P yP 
I ~ = ~  r" dA (11) 

a 

where m, p, n and m - p are non-negative integers with fl --- m - n -- - 1. The region of integration 
is the triangle T~ in Fig. 1. The values of the integers are chosen so that the integrands evaluated are 

y3 1 x y x: xy yg x 3 x2y xy 2 and - -  
r '  r 2 ' / ,2 '  r 3 '  / ,3 '  r 3~ r 4 '  r 4 ' /,4- r 4 '  

which are the singular integrands from Eqs. (2) and (4). Since the method presented here reduces 
two-dimensional integrals with fl > - 1 to one-dimensional regular integrals, there should be no 
problems in accurately evaluating other integrals of the type in Eq. (11) as long as fl > - 1. Thus, 
products of singular kernels and regular shape functions can be taken care of easily provided that 
the resulting integrand satisfies the criterion fl > - 1. 

Upon substitution of Eq. (6), the integral in Eq. (11) becomes 

I 1 = 2 "/21 z with 

%2 (cos O) am- ZP(sin O) 2p sin 20d0 
I2  J0 (1 "t- COS 2 20) n/2 (12) 

Gaussian integration can be used directly to evaluate 12. It is more accurate, however, to first 

Table 1. Numerical results for O(1/r) BEM'integrals over the standard 
triangle of Fig. 1 

Percentage error 

Gauss points 

Function 3 4 5 6 

1/r 0.2582 0.0393 0.0061 0.0010 
x/r 2 0.7981 0.1381 0.0239 0.0041 
y/r z 0.7981 0.1381 0.0239 0.0041 
xZ/r 3 0.2582 0.0393 0.0061 0.0010 
xy/r 3 4.0173 0.7945 0.1527 0.0287 
y2/r3 0.2582 0.0393 0.0061 0.0010 
x3/r 4 1.7476 0.4437 0.1014 0.0217 
x2y/r 4 6.2500 1.3841 0.2922 0.0595 
xy2/r 4 6.2500 1.3841 0.2922 0.0595 
y3/r4 1.7476 0.4437 0.1014 0.0217 
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v 

(O,a) 

(_1 1 

.'- 135" N / -~. 

P (1,0) u P (1,01 u Fig. 5. Flat triangles 

Table 2. Integration ofu / (u  2 + V 2) over fiat triangles of general shape 

Percentage error 

Gauss points 

a 4 5 6 7 9 12 

I 0.1381 0.0239 0.0041 0.0007 
2 0.0241 0.0603 0.0156 0.0013 
3 0.8386 0.0039 0.0496 0.0046 
4 0.3859 0.4316 0.0168 0.0341 
5 1.1794 0.5852 0.1978 0.0288 
Obtuse 1.3836 
angled 

0.1244 0.011I 

use the substi tutions 

t = sin 2 0, dt = sin 20dO (13) 

and then to use s tandard Gaussian integration. This approach  has been used to obtain the results 
that  are presented next. 

Results are presented in Table 1. Percentage errors are defined as follows: 

abs(Numerical  value - Analytical value) 
Percentage error = x 100 

Analytical value 

with the analytical value being obtained by analytical integration using M A C S Y M A  (Rand 
1984). The numerical  results, with six Gauss points, are seen to be uniformly accurate with the 
highest error less than 0.06%. The errors in Table 1 can be further reduced, if desired, by using more  
Gauss points. 

b) Integrations over linear flat triangles of general shape 

Numerical  results are presented in Table 2 for integration over right angled triangles (for various 
values of 'a'), and an obtuse angled triangle (Fig. 5). In Table 2, the integrand is the function 
u/(u z + v 2) in the triangle in the physical domain.  Once again, numerical  results with seven Gauss 
points are very accurate for integrations over right angled triangles. The obtuse angled triangle 
requires twelve Gauss points to get very accurate results. Of course, an obtuse angled triangle can 
be broken up into two right angled triangles in a general BEM application. 

Conclusions 

A simple, efficient and accurate mapping  method  has been presented here for the numerical 
evaluation of two-dimensional  integrals that  are, at worst, 1/r singular, over triangular (curved or 
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flat) domains. In general, this mapping transforms such integrals into regular two-dimensional 
ones. Integrals over curved quadratic or flat linear triangles are further reduced to regular line 
integrals that can be easily evaluated to desired accuracy by Gaussian quadrature. 

It is expected that this method will be more accurate than polar mapping methods (Mukherjee 
1982) because far fewer arithmetic operations are involved here. Investigations along these lines, for 
nonlinear BEM applications, are currently in progress. 
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