Larsa L. Interpolation Properties
Maxsmwovs  of Superintuitionistic Logics

Abstract. A family of propositional logics is considered to be intermediate
between the intuitionistic and classical ones. The generalized interpolation property
is defined and proved is the following.

Theorem on interpolation. For every intermediate logic L the following sta-
tements are equivalent:

(i) Craig’s interpolation theorem holds in L,

(ii) L possesses the generalized interpolation property,

(iii) Robinson’s consistency statement is true in L.

There are just 7 intermediate logics in which Craig’s theorem holds.

Besides, Craig’s interpolation theorem holds in L iff all the modal companions
of L possess Craig’s interpolation property restricted to those formulas in which
every variable is preceeded by necessity symbol.

1. Imterpolation properties of logical theories are of interest for
logicians. W. Craig [1] stated interpolation theorem for the classical pre-
dicate logic in 1957. Interpolation theorem for intuitionistic predicate
logic was proved by K. Schiitte [19], D. M. Gabbay [3, 4] investigated
interpolation properties of some extensions of intuitionistic predicate
logie. Interpolation theorems are obtained for some modal logics in
[2, B, 18] and for many-valued predicate calculi in [15].

We consider a family of propositional logics to be intermediate between
the intuitionistic and the clagsical logies.

It is proved in [11, 12] that there exist just 7 intermediate logics in
which Craig’s interpolation theorem holds; there are only 3 positive logies
with the interpolation property. There are no more than 38 modal logics
which are normal extensions of 84 and have the interpolation property [13].

We take &, v, >, 7], 1 as primitive logical symbols of languages .#; of
propositional logic.

Craig’s interpolation theorem in a logic L is formulated as follows:

“If (A > B)isin L, then there exists a formula O such that (4 > C) e L
and (C > B) e L and all the variables of € are contained in both A and B”.

This formula € is called an interpolant of 4 and B in L. In classical
logic €l Craig’s interpolation theorem has a number of equivalent for-
mulations. For instance, interpolation theorem for disjunctions:

“Ift (Av B) is in L, A and B are formulae of languages %, and %,,
respectively, then there exists a formula C of the langnage &, = ¥, NYZ,,
sach that both (4v () and (C = B) are in L”.

It is easy to get this sentence from Craig’s theorem replacing (4 v B)
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by its equivalent (in CI) (7] 4 > B). In intermediate logics different from
Cl formulae (Av B) and (7] A > B) are not equivalent. Of course, the
abovementioned theorem for disjunctions holds in intuitionistic logic
Int due to the well-known Godel’s theorem on disjunctions. However,
Int is the only intermediate logic in which both Craig’s interpolation
theorem and Godel’s theorem hold.

Consider now formulae of the kind (#, > F,), where F, and F, are
produced from A; € %,, B; € £, by means of &and v. Such formulae
are reduced in In# to conjunctions of formulas ((A, & B;) © (4,V By)).
The usual Craig’s interpolation theorem seems not to be useful for the
latter formulas. Only in CI we can reduce such a formula to ((A1 & 7145
> (T1B;v B2)) and then apply Craig’s theorem. In the present article we
prove that any intermediate logic L with Craig’s interpolation theorem
possesses the generalized interpolation property:

“Let (4, © A,), (B; @ B,) be formulas of langunages &,, %,, respecti-
vely. If (4, & B,) ® (4,v B,)} is in L, then there exist an » and for-
mulas Cy,;, Ogyy Csa, ..., C,y, O, of the language &, = £, NY,, such that
L contains

(A1 > (4,v Om))y {Al & Ctap) @ (4yv 0]01))7
((On & By) > Bz); ((C(Ic-H)l & Bx) = (G(k+1)2v Bz))

for any k£ =1,...,n-1".
The converse to the generalized interpolation property is the statement
in any intermediate logic since

n—1 ’
Int b ((4; 2 (4ev O)) & & (41 & (Can) @ (4sV Cn) ) & ((By &C1i)
n— k=1

> By & & ((B1 & Cpesny) 2 (Ome v Ba)) > (41 & By) = (4. v Bo)).

Thus, (see [12]), there are just 7 intermediate logics with the generalized
interpolation property:

L, = Int,

L, =KC =Int+(T1Av 1714),

L, = Int+(Av (4 = (Bv 71 B)),

L, = L3+((A > B)v(B> A4)v((4> T1B)&(T1B > 4)),
Ls =L2+L3y

L, = LC = Int4-{(4 > B)v (B > 4)),

L, =Cl =Int+{4dv ]4).

Obviously, one can take n = 1 in the generalized interpolation pro-
perty for L = Cl which is the only intermediate logie of the first slice [6].
One can take n = 2 for three logics of the second slice with the inter-
polation property. It is impossible to limit n for the remaining logies
LC, KC and Int. :
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REMARK. It is easy to derive Craig’s theorem from the generalized
interpolation property. Take B, =1, 4, = 0 = 1. For instance,
1

n—
C =0, &'78_51(0(%1)2 > Oh)

is an interpola,ht of 4, and B, in L.

Craig’s interpolation theorem is equivalent to Robinson’s consistency
statement [17] in theories based on the classical predicate logic. Robinson’s
consistency statement for intermediate logic L can be formulated as
follows:

“Let (T,, F;, {Ts, F,> be consistent L-theories in languages ¥, and
Z,, respectively, and let (T',NnT,, F.NF;> be a complete L-theory in
the common language &£, = £ N¥,. Then (T,VT,, F,UF,> is a com-
plete L-theory”.

Remember, [3], that a consistent L-theory in a language & is a pair
T, F) of sets of formulas of # which satisfies the condition: there are
no formulag 44, ..., 4, T; By, ..., Be Fsuchthat L + (4, & ... & 4;) =
2 (B;V ... v B)). L-theory (T, F) is complete, if TUF = 2.

Gabbay [3, 4] has stated that in the family of extensions of intmi-
tionistic predicate logic Robinson’s statement implies Craig’s theorem
but the converse is not true, in particular, Robinson’s statement does
not hold in intuitionistic predicate logic. On the contrary, for propositional
logies we prove

THEOREM 1 (on interpolation). For any intermediate logic L the fol-
lowing statements are equivalent:

1) Craig’s interpolation theorem in L,

2) the generalized interpolation property of L,

3) [Robinson’s consistency statement for L.

ProoF. 1-2 is a consequence of theorems 2-4, which will follow,
3—+1 can be stated in the same way as in [3]. Now, we prove 2->3. Let
L possess the generalized interpolation property. Let <T',, F,> and {T,, Fy>
be consistent L-theories in languages %, and %,, respectively, and
IynTy, FynF,> be a complete L-theory in the common language
Ly =L NE,.

Suppose for reduction ad absurdum that <T,uT,, F,UF,> is incon-
sistent. Then there exist formulas Al,...,A4%eT,; Bl, ..., B eTy;
Ay ...,AeFy; B),...,BjeF,, such that LI ((4, & B,) > (4,V B,)
where A, =A]&...& A%, B, =Bl &... & B}, A, =4; v ...vAl,
B, = B3v ... v Bi. Using the generalized interpolation property we have
an » and Oy, Gy, Cyy, ...y Cpq, Cpp € £, such that

(al) Lt (Al > (dyv Om)) (a2) Lt ((Al & G(k+1)2) > (4,v le))
(b1) L+t ((On & B,) = Bz) (b2) Lt ((0(k+1)1 & By) 2 (Cpprpe vV Bz))
where kb =1,...,n—1.
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Due to (al) we have C,; ¢ I, because of consistency of (T,, F,>.
So, 0, ¢Fy, =F, NP, and C,, Ty =T, nT, as T, F,> is complete.
Now, G, €T,, so (b2) and consistency of <(T,, F,> imply C,, ¢ F, and
02 € Ty. Further, 0,, € T, and Cy,_y ¢ F, because of (a2), so Cy,_yy; € T.
Applying (b2) and (a2) again we receive C; € T, for all ¢, j. In particular,
CpeTy =T, and {T,, F,> is an inconsistent L-theory because of (bl).
Contradiction.

We adduce now two corollaries of Craig’s interpolation theorem.
In the same way as for classical logic ome can prove

STATEMENT 1. If in intermediate logic L Craig’s interpolation theorem
holds, then L satisfies Beth’s definability theorem.

There is one problem still open, if Beth’s theorem implies Craig’s
theorem in intermediate logics.

In [147 there were formulated some principles of variables separation,
in particular:

If ((A1 & B,) = (4,v B2)) e L and formulae (4, > 4,) and (B, > B,)
have no eommon variables, then {4, > 4,}e L or (B, = B,) € L.

StATEMENT 2. If L is an imtermediate logic in which Craig’s inter-
polation theorem holds,then L satisfiesthe abovementioned separation principle.
In particular, all intermediate logics with the interpolation property are
Hallden-reasonable.

One can prove it using the generalized interpolation property. All
the formulas €y, Oy, Cyey ...y Cpy, O, are to belong to {@,1}. Let
(B, ® B,) ¢ L. Then, Cy; =0 from L} ((C;; & B,) @ B,). Further, we
obtain O, ., = 8 and O,y =0fork =1,...,2—1 from the conditions
Lt{(4; & Clearye) = (4av le)); L+ ((C(k+1)l & By) = (Cgynye Vv -Bz))- Conse-
quently, we have L + (4, > A,) because L + (4, > (4,v C,,)}. Hallden-
-completeness is obtained at 4, =1, B, = 1.

Note that the principle of variables separation is valid, for example,
in all extensions of LC.

2. We use the interpretation of intermediate logics in extensions of
modal logic S84 to prove the generalized interpolation property of logics
L,—L, Take &,v,>, ~, [1,{,1 as primitive logical symbols o
modal logie. :

Remember, [7], that one can accord to every formula 4 of intuitionistic
logic its translation T(4) — a formula of modal logic which satisfies
the following condition:

A e Int < T(A) e §4.
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The translation T is defined as follows:

T(P) = QP if P is a variable,
T{A & B) = T(A4) & T(B),
T(Av B) = T(4)v T(B),
T(4 > B) = O(~T(4)vT(B),
T(T4) = O~T(4),
T(1) =L
A formula of modal logic is said to be speeial if each of its variables
is preceded by the necessity symbol [J.

TRANSLATION LEMMA. For any special modal formula D there exists
a formula D’ of intuitionistic logic, such that

S4+(OD =T(D)).

Proof by induction on the construetion of D.
Let NE(S4) be a family of all the normal extensions of S4. If M is
in NE(84), o(M) (see [8]) is its superintuitionistic fragment, i.e.,
o(M) = {4|T(4) e M}.
Each M in NE(S4) is called a modal companion of o(M).
The weak Craig’s theorem in modal logics is Craig’s interpolation

theorem with the additional condition that the (modal) formula (4 o B)
is special.

THEOREM 2. Let M <NE(S4). Then the weak Craig’s theorem holds
in M iff o(M) possesses the generalized interpolation property.

Proor. Let the weak Craig’s theorem hold in M and let o(M) -
F((4, & B,) @ (A;v By)). Then, M F ((T(4,) & ~T(4,) > (~T(By)v
v T(B,)). By the weak Craig’s theorem there exists an interpolant C of
(T(A4,) & ~T(4,)) and (~T(B,)v T(B,)) in M. Replacing all variables
P, by [P, we obtain a special formula ¢’, such that

1) MH(T(4) & ~T(4,)) > C), M (0> (~T(B) v T(B)).

The formula ¢’ is a Boolean combination of subformulas [JC;. Therefore,
by Lemma 5 of [10] there exists an » such that

(2) S4F(C =0V (On & ~Op)V ... v (O & ~Cy)),

where 0y, = 0, O(k+1)1 = O(0'v 0(k+1)2)’ Opine = O(~C"v Oyy).
Hence,

(3) S4 F (O’ = Gnl & (O(n__l)lv Nan) & P & (011\/ NOzz)).

By translation lemina there exist non-modal formulae D,;, Dy, D,,, ...
vesy Dy Dy, such that
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S84 + (0 = T(Dy)).

From (1) and (3)

M+ ((T(A) & ~T(4y)) = Oyl

M ((T(4y) & ~T(4y)) 2 (CuV ~Cun)) (B =1,...,n—1)
Then

o(B) + (Al > (4,v Dm))’
o(M) + ((Al & Dynys) @ (Aav Dy)) (k=1,...,n-1)

Similarly, from (1) and (2)

e(M) + (D & By) @ By),
Q(M) F ((D(k+1)1 & B,) © (D(k+1)2v Bz)) (k= 1,..., n—1)

So, ¢{M) has the generalized interpolation property.

Sufficiency. Let (M) have the generalized interpolation property
and let M F (4 > B), where (4 = B) is a special formula. Reduce 4 to
the form \/ (4;, & ~A4y), and B — to the form & (~B;; v By), where

i

Ay = A}, By = [OBj,. Then, the formula (A = B) is equivalent in
S4 to the conjunction of formulas ((4,; & ~A4,) = (~B; v By,)) for all
1, j. By translation lemma,

S4+ 03 ((-Ail & ~Ay) > (~Buv sz)) = T((Afl & B;l) > (4A5v Bj‘z))

L

for some non-modal 43, A%, B}, Bj;. Now we have
o(M) + (A:;l &B;) = (AZVB;)-
Using the generalized interpolation property of ¢(M) we have
M+ (T(Afl) & NT(A;-’;)) 20, MrO;> (~T(B;-"1)v T(B;;)),
where O, is a Boolean combination of formulae Cjy, Cy — non-modal

formulae containing only eommon variables of (4}, © Aj;) and (B}, > Bj,).
Then, ¢ = v & C; is an interpolant of 4 and B in M. Q.E.D.
i i

Note that if M is a logic of the second slice [10], one can replace (2)
in the proof by M + 0’ = C;;v ~0C,,. So, the generalized interpolation
property can be formulated for intermediate logics of the second slice
as follows: ,

If Lt (4, & B,) © (4,v B,), there exist formulae C, and O, such that

LE(4,&0;) > (4,v 0y), .
L0, &B,)> B,, LI B;=>(0,vB,)

and all the variables of C; and C, are contained in both (4, > 4,) and
(By @ B,).

Due to theorem 2, Craig’s interpolation theorem for M implies the
generalized interpolation property of ¢(M). Craig’s interpolation theorem
was proved in S4, §4.2 [5], and in S4.4, S5 [18]. Hence, it follows that
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intermediate logics L, = Ini, L, = KC, L, = KC’+(AV(A > (Bv “']B))),
L, = C1 have the generalized interpolation property and the weak Craig’s
theorem holds in all modal companions of L,, L,, L, L,, i.e., in infinitely
many logics. Remember, [13], that Craig’s interpolation theorem is valid
only for finitely many logics in NE(S§4). :

It remains to prove the weak Craig’s theorem for modal companions
of Ly, L,, L,. It is stated [13], that Craig’s interpolation theorem in
M e NE(S4) is equivalent to the superamalgamation property of the
corresponding variety M, of closure algebras defined by the identities
{4 =1|4 € M}. We prove that the weak Craig’s theorem holds in M
iff the class M3, of all special closure algebras in M, has the superamalga-
mation property. Remember, [10], that closure algebra % is special if
it is generated by the set G(U) = {OOx|v e A}

To any pseudo-Boolean algebra U there corresponds a special closure
algebra S(%), such that G(S(A)) =

A class K is said to possess the superamalgamation property, if for
any Uy, Ay, A, e K, such that A, is the common subalgebra of ¥A; and
A,, there exist A e K and monomorphisms &2 Wy—A, & Wy - A, such
that & [ Uy = &, [, and

(Vo e¥,) (Vy e A;) [ej(2) < &(y) =
<(dzel) (w202 <)

where {i,j} = {1, 2}.

THEOREM 3. Let M be in NE(S4). Then the following statements are
equivalent:

a) The weak Craig’s theorem holds in M,

b) M3, has the superamalgamation property.

c) For any o, Uy, Ay € M3, such that A, is the common subalgebra
of Ny, s, and for any a € A,, b e A,, satisfying the condition ~1(Iz e A,)
(@< 2A2< , b), there ewist W eIM,, and homomorphisms hy: AN,
Byt Wy—A, such thai hy(a) <L hy(d) and by Ay = hy[U,.

Proor of a-+b is analogous to lemma 2 of [13].

Obviously, b—c. We prove c-—>a.

Let A, B be special formulas and there be no interpolant of A and
B in M. Let &,, #, be the sets of all special formulas with variables of
A and B, respectively, #, = #,N%F,,and let F be the set of all the special
formulas. Then the algebra %, = A, = F |~y is in M5;, where

A~y Ay, s M FOA4, = A4,).

Take a subalgebra A, of algebra A, with the universe {O/_j O & F,}. Let
o =A] ;€U b =B[_y €Wy, then there is no ¢ €W, such that a, < ¢
and ¢<b. By condition c¢) there exist W e My, byt W=, hy: Uy A,
such that h,(a) <K ky(b) and h, 1Ay = ha [Y,.
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Define now a valuation » in Y as follows:

fhy (P [ ~y), if the variable P is contained in 4
1h2(DP/~M), if P is in B.

Note that if P is a common variable of A and B, then
hy(OP[~p) = ho(OP [ ~y)

and v is defined correctly. Therefore, we have ’U(D) = h;(D/]~y) for any
D e, (1 =1, 2). Hence,

v(4 2 B) = v(4) > v(B) = hy(a) > hy(b) + 1.

Because of ¥ € My, we obtain M|+ 4 > B. Q.E.D.

THEOREM 4. All modal companions of L,—L, satisfy condition ¢) of
Theorem 3.

Proor. In [11, statements 1-6] it was in fact proved for L = L, ...
..., L, that for any strongly compact pseudo-Boolean algebras %, , U, € MWy,
with a common subalgebra %, there exist a strongly compact pseudo-
-Boolean algebra U € My, and monomorphisms &: W, —A, & Us—UA,
such that & [, = & [Us. '

Now, let Ay, Ay, A, be special closure algebras in My, x, e Ay, ¥ €N,
2 e Wp)(wo < 1272, yy). Then, by lemma 3 from [11] there exist
ultrafilters @, on A; and @, on UA,, such that 2y € D, Yy, ¢ D, and &N Uy =
= @,NW,. Let

Vi ={zedy|0% c &y}, Ve = {we 4|0 e Dy}

Then V,, V, are I-filters [16] on A, and UA,, respectively, hence, there
exist natural homomorphisms

gt WUV, =B, g2 U Wy [V, =B,

onto special closure algebras B, and B,. Algebras B, and B, are strongly
compact since

2(P) =

(OevOy)eV,=0ceV, or Oyel,.

Let Vo =V NnUY, = VynUy, By = Uy/V,. Then there exist mono-
morphisms

6;t Bo—>B; where j =1,2, §(z/V,) =2[V; for ze¥U,.

Maps J; = &;] G(B,) are monomorphisms of a pseudo-Boolean algebra
G(B,) into G(B;). Since pseudo-Boolean algebras G(B,), 6(B,), 6(B,) are
strongly compact and belong to M, ,,, then by above mentioned pro-
perty of M, , there exist strongly compaet € e M,4,) and monomor-

phisms &;: G(B,)—>C, &5: G(B,)—E, such that £, 3, = &, 5,. Monomorphisms
g of pseudo-Boolean algebras can be extended [8] to monomorphisms
£;: 8(G(B;))—>s(C) of special closure algebras. If

(4) z = \_/(zn & ~z;), where 2;,e€G(B), j=1,2

%
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then
&(2) = V(g (2n) & ~e;(2;))-
If z is of the form (4), where z;<c G(B,), then
(B) &04(2) = \_/(8161(%'1) & ~e;8,(2) =
1]
= V (32 02(211) & ~e&, sz(ziz)) = &3 0,(2).
Since € is strongly compaet, {1¢} is a prime filter on €. There exists
an ultrafilter @ on A = §(C), such that PNE = {14} (see lemma 5 in [9]).
Now, let je{1,2}, 2e¥U;, 2 = V(21 & ~23), 2; € G(A;). Prove that

(6) £9i(2) e Doz € §;.
In fact, for any z; € G(U;):
9;(2i) € Pe>g;0;(2n) = 1g;(2y) =
= 23[V; = lozge Viwz, e 9,
Therefore,
&9;(2) € P (i < n) ((sjgj(zﬂ) & Nejgj(ziz)) € D)«
< (3 < n)(g;9;(2n) € PA 9;(22) ¢ D)=
(A <)y € DAz, ¢ D)z ed;.
Now, for any z € ; let
hi(2) = &g;(2).
Due to (6) we have hy(x,) € D, hy(y,) € D, hence hy(x,) &K ha(¥,)
For ze A, on account of (5)
hi(2) = £,91(2) = &,(2/V1) = & 6,(2/V,) =
= §,0,(2/V,) = hy(?). Q.B.D.
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