
A Deontic Logic 
of Action 

Abstract. The formal language studied in this paper contains two categories of 
expressions, terms and formulas. Terms express events, formulas propositions. There 
are infinitely many  atomic terms and complex terms are made up by  Boolean opera- 
tions. Where a and fl are terms the atomic formulas have the form a ---- fl (a is the same 
as fl), .Forb a (a is forbidden) and P e r ~  a (a is permitted).  The formulae are t ru th  func- 
t ional  combinat ions of these. An algebraic and a model theoretic account of val idi ty  
are given and an axiomatic system is provided for which they are characteristic. 

The 'closure principle' ,  tha t  what  is not  forbidden is permit ted is shown to hold 
at the level of outcomes bu t  not  at  the level of events. In the two final sections some 
other operators are considered and a semantics in terms of action games. 

The present paper, which concentrates on formal issues, elaborates the 
deontie aspects of some ideas first presented in [4]. The modelling is 
inspired by  both Kamp [1] and yon Wright [6], and the resulting analysis 
is no doubt related to the system in the last section of yon Wright [7]. 
Except in the concluding section, familiarity with [~] is not presupposed, 
but  the reader who would like some motivation for the kind of modelling 
studied here is referred to that  paper. The best background reference for 
the algebra done here is l~asiowa & Sikorski [2]. 

1. Formal syntax 

The formal language studied in this paper will contain two categories 
of expressions, terms and formulas. To understand the motivation for 
this language, note that  under the formal semantics to be developed in 
the next section terms will express events, formulas propositions. 

There are infinitely many atomic terms: denumerably many event 
~etters and the two constants 0 and 1. The atomic terms are also terms 
siml~liciter; and if a and p are terms, then so are a ~  ~, a v  ~, a. The lat ter  
may be read "a and fl", "a or fl ' ,  "not a". The atomic formulas are of three 
kinds, a = ~, ~orb a, t~erm a, where a and fl are terms. They may  be read 
"a is the same as ~ ' ,  "a is forbidden", and "a is permitted". The atomic 
formulas are also formulas simpliciter; and if A and B are formulas,  then 
so are A ^ B,  A v B,  ~ A ,  A--~B, A+~B. The connectives involved here are 
the ones familiar from classical logic. In  particular, -+ and ~-* are material 
implication and material equivalence, respectively. 

I 2 -  S t u d l a  L o g ' c a  =--2,8." 
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This completes our definition of the  formal  language to be studied 
in this paper.  (Some banal  modifications are considered ~t  the  end of it.) 
As a general convent ion let  us use ~ for arb i t rary  event  letters, a, fl, y 
for a rb i t ra ry  terms,  and  A, B for arb i t rary  formulas. We wri te  a r fl 
for - ] (a  = fl). 

2. Formal semantics 

Let  us say tha t  a s t ruc ture  9/ = ( A ,  r~, ~ ,  - - ,  0, 1, 2~,2 ~} is a deontia 
action algebra if (i) ( A ,  r~, ~ , - - ,  0, 1} is a Boolean algebra of which 
(if) xv and  2 ~ are ideals, and  (iii) ~ N 2 ~ = {0}. ( Intui t ively  th ink  of 9 /as  a~  
algebra of events,  2' and 2 the  sets of forbidden, respectively,  pe rmi t t ed  
events.) A valuation for 9/ is  a funct ion v f rom the  set of a tomic  t e rms  
to A such that 

v(O) = O, 
v(1) = 1. 

A n y  valuat ion v can be uniquely extended to a funct ion defined on the 
set of all terms and formulas in three steps as follows. (We continue t~  
wr i te  just  v, even though a eare~l  t reatment would require a more elabo- 
rate notation~ for example, v', v",  and v" '  for the three steps.) 

Primary extension: 

Secondary  extension:  

v ( ~ / ~ )  = v(~)~v(/~), 
v(a~ ~) = v(a)~v(fl),  

v (a) = - v (a). 

T, if v(a) = v(~), 

v(a = fl) = F, otherwise; 

T,  if v(a) e~' ,  
v(~orba) = F, otherwise;  

IT, if v(a) e ~ ,  
v (l~erm a) = F, otherwise.  

Ter t i a ry  extension- The value of v (A) of non-atomic formulas A is deter-  
mined  by  t ru th- tables  in the  usual  way.  (Here you  are of course invi ted  
to read  " t rue"  for T a n d  "false" f o r  F.) 

A formula  A is tr~e in 9/ under v if v (A) = T, false in 9/under v if. 
v(A) = F. A is a~gebraiealIy valid if A is t rue  in every  deontic act io~ 
algebra under  every  valuation.  More generally, a set -P a~gebraieally implies 
A if, for  every  deontic  act ion algebra 9/ and  every  valuat ion v for 9/, is 
eve ry  formula  of / '  is t rue  in 9 / u n d e r  v, then  so is A. 

Turn ing  n o w  to model  theory,  let  us say tha t  a s t ructure  ~ = ~ U~ 
1Z1, Zeg} is ~ deontic act ion 2tame if (i) U is ~ set, (if) Ill ,  s ~_ U, and  
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(iii) Il lo .beg = z .  (Thus a deontie act ion frame is more  succinctly cha- 
racter ized as a set U with two disjoint subsets  Ill and Leg. Inf ini t ively 
thln~r of U as a set of possible outcomes, /- /1 and Leg as the  sets of illegal 
and legal outcomes,  respectively.  An event  is then a set of outcomes.)  
A valuation for ~ is a funct ion V f rom the set of a tomic terms to the  set 
of subsets  of U such tha t  

17(0) = ~ ,  

F(1) = U. 

As in the  case of algebra, any  valuat ion  V can be  uniquely  ex tended  to  
a funct ion defined on the  set of all terms and formulas in three steps:  

:Primary extention: 

1z(a,-,/~) = V ( a ) n  17(~), 
V(~, - , /~)  = V ( ~ )  u V( /~) ,  

V(a) = U -  V(a). 

Secondary  extention:  

I T, 
V(a= /~ )=  F, 

{ L 
Y(~orba) = F, 

if V(a) = V(~), 

otherwise;  

if V(a) ~ Ill ,  
otherwise 

IT, if V(a) ~_ Leg, 
V(.Perma) = ]F, otherwise. 

Ter t iary  expansion:  B y  t ruth- tables .  

Le t  us call 9J~ = < U, Ill,  Leg, V> ~ deontic action model (based on the  
f rame <U, Ill,.bcg>). A formula A is true in ~ if V(A)  = T, false in 
93t if V(9~) = F; in symbols  we m a y  render  this ~ ~ A, respectively,  
992 ]r A. W e  say t ha t  A is model theoretically valid if A is t rue in all deontie 
act ion models. ~ o r e  generally, a set _~ mode~ theoretically implies A if, for 
every  deontie action model, if every  formula of /1 is t rue  in this model,  
then  so is A.  

3. The basic open deontic logic of urn model action 

In  the  preceding section we in t roduced semantic concepts of val id i ty  
and implication. Now we shall int roduce syntact ic  counterpar ts  b y  pre- 
senting an axiomatic  system. As our only iq~ference rule we appoint  the  
t ime-honoured  rule of modus 2onens. Of axioms we will have many  more. 
:First of all we wan t  a set of axioms adequate for Boolea~ a~gebra. Second, 
we wan t  some axioms for equality: a l l  instances of the  following schemata  
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will do: 

(El) a = a; 
(E2) a = f l ~ ( A ~ A ' ) ,  

where A and A'  differ only in that  A contains an occurrence of a in some 
place where A'  contains an occurrence of ft. Third, we want a set of axioms 
adequate for classical prol~ositional logic. Fourth,  we want  the following 
special axioms for the deon~ic operators: all instances of the following sche- 
m~t~: 

(])1) ~orb(a~.'fl)+-+(l~orbaA ~orb~); 
(])2) Perm(a~ fi)++(t~ermaA_Permfl); 
(])3) a : O++(ForbaA.Perma). 

This defines a logic which we may perhaps call the basic deontie logic 
of ur~ mode~ action (B.O.D.): the notions of theoremhood and implication 
are implicit. 

I t  may be instructive to compare the axiomatic system with the deft- 
nition of a deontie action algebra. The three first classes of axioms need 
no comment. (D1) and part  of (D3), respectively, (D2), and part  of (D3) 
correspond to the condition that  2' and P be ideals. The remaining par t  
of (D3) corresponds to the condition tha t  /~ and P have only the null 
element in common. That this correspondence is not fortuitous is shown 
by the following result. 

TB-EO~E~ 3.1. Let P be any set of formulas and A any formula. The~ 
the following three conditions are equivalent: 

(i) I ~ implies A in B.O.D. 
(if) 1 ~ a~gebraically implies A .  

(iii) I ~ model theoretically implies A .  

We give the proof in the following section. 

4. Completeness of B.O.D. 

What  follows is a variation on an age-old theme. Say tha t  2: is a given 
fixed maximal consistent set of formulas (consistent with respect to B.O.D.). 
The following defines a binary relation in the set 0 of terms: 

a ~ f l ( m o d X )  if and only if a = f i e 2 : .  

This relation may be called the equivalence relation induced by X. The termi- 
nology is not  arbitrary~ for, with the aid of axioms (El)  and (E2)~ it is 
easy to show that  ~- is reflexive~ symmetric and transitive. Thus we may  
define: 
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and  know t h a t  a/,Y, = f l /Z if and  only if a = f l e  27. Similarly, i t  is easy 
to show t h a t  

a - - a '  and  /7 --= fl' only if a r ~ f l - - a ' r ~ p ' ,  
a - a '  and~=--/~' onJyif a~/~--a'~p' ,  
a - - f l  only if a - - / L  
a -~ fl only if ~orbae-~orbfl  e X,  
a -- fl only if ~ermae-~Permfl ~ Z .  

~ o w  define the  Zindenbaum algebra (for Z) as the  s t ructure  

~ = <o/z,  ,..,, ,-,, - ,  o~, s~, ~ , .P~>  

where  

= {al : a e O } ,  
a l Z ~ B l Z  = a ~ l m ,  

O~ = O/Z, 
I z = l/X, 

~ z  = { a / Z :  ~orb  a e Z } ,  
P~ -- {a/X: t ' e rma  e X}.  

The preceding remarks  guarantee  tha t  the  definition is meaningful.  

LE~_A 4.1. 9iz is a deontie action algebra. 

P~00F. Considering tha t  Z is maximal  consistent,  this follows at  
once: f rom the  axioms for Boolean algebra, t ha t  <O/Z, ~ ,  ~ ,  - - ,  0~, lz> 
is a Boolean algebra;  f rom (D1) -- (D3), t ha t  2' z a n d / ) z  axe ideals; and  
f rom (D3), t h a t / ~ z  a n d / ~ z  have Oz as their  unique common element. [] 

We define a valuat ion vz for 9iz by  requiring that ,  for every  a tomic 
t e rm ~, 

The proof of the  following result  is immediate :  

L E n A  4.2. t~or all terms a and all formulas A,  
(i) vz(a) = a/Z,  

(ii) vz(A) = T i f  and only i f  A e Z .  

F r o m  this lemma, half of the  Completeness Theorem follows ( that  
is, Theorem 3.1 of the  preceding section). Tha t  (i) of t ha t  theorem implies 
(ii) is clear. For  the  converse, assume tha t  / '  does not  imply A in our 
logic, for some par t icu la r /~  and  A.  Then, by  the  wellknown Lindenbaum's  
Lemm% there  is some maximal  consistent set / ~  such t h a t  / '  ~ _P* an4 
A ~/ '* .  Consider the  L indenbaum algebra for ~*. By  L e m m a  &.2, vr . (A) 
= F, and  yet ,  for all B e -P, vr.  (B) = T. Hence  _P does not  algebraically 
imply A. 



27~: Kr~ster Segerberg 

I t  is no tewor thy  

:Lv,~v~A ~.3. 

P~ooF. ~or  

V e//lz 

iff 

To obtai~a also the  remaining half of t h e  Completeness Theorem, we 
go f rom IAndenbaum algebras to Stone spaces in the  usual  way.  Thus, 
wi th  27 as before, let  Uz be the  set of ultrafil ters of 9~ z.  By  the  Stone map 
let us lmders tand  the  map  

Cz:  /27 {v e a/Z e V}, 

The set Sz ---- {r a e O} we call t h e  Stone field. The Stone field has 
two properties which should be noted:  (i) i t  is closed under  set comple- 
ment ,  and  (if) it is closed under  finite intersection. I t  follows f rom (if) t h a t  
if Tz is the  set of all subsets of Uz t h a t  can be wr i t ten  as the  union of 
members  of S~, t hen  Tz is a topology (of which Sz is a base). The topological 
space 2:z = <Uz, T~} is called the  Stone sl~ace, l~ote t ha t  by  (i), every  
subset of Wz of the  form r is eIopen in this topology ( tha t  is, dosed  
~s well as open). Moreover,  f rom ~ .  I t .  Stone's  well known work we know 
tha t  r is an  isomorphism f rom the  Boolean algebra <0/27, ~ ,  ~ , - - ,  

0, 1} to the  field of sets <Sz, O, u ,  -- ,  ~ ,  U}, and tha t  2:z is compact 
( tha t  is, if {A~: i e I} is a collection o f  open sets A~ ~ U, for any  index 
set I ,  such t h a t  U{A~: i e I }  = Uz, then  there  is a finite set J z I  
such tha t  U{Ai :  i e J} = Uz). Le t  the  Stone frame (for 27) be defined 
as the  s t ructure  ~ : <Uz, Il lz ,  I, eg~>, where 

Illz = {V e Uz: 3a(a/27e V &Porba eX)},  
.5egz ----- {Ve  Uz: ~a(a/Z e V &Perma e 27)}. 

t h a t  bo th  Illz and Zegz are open sets: 

Illz = U{r a/27 e.Fz}. 

any  ultr~fflter V of 9~z, 

3a(al Z e V & Eorba e Z) 
3 (v e Cz(a/Z) a/27 e Ez) 
v e [] 

Zegz = U{r a/27 ePz}.  

P~ooF.  Similarly. [] 

L~M~a 4.5. ~ z  is a deon$ic action frame. 

:P~OOF. Suppose t h a t  there  is some V such tha t  V e Itlz N Zegz. Then  
there  are terms a and fi such tha t  a/Z, fl/X e V and  .Forba, Perm fl e Z. 
Consequently,  since V is a filter, a /Z~ f l /X  e V, and so 

(1) a~f i /X  e V. 

Moreover, a/X e ~ z  and fl/X ~ t)z. Therefore,  since ~ z  a n d / ) z  are ideals, 
a/27~fl/27 e E z n P z ,  and  so a~f l /X  e EzN i~ Bu t  ~/z is a deontie  action 
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algebra, so this implies that  

(2) a ~ l Z  = oz. 

Since V is an ultr~filter, (1) and (2) are in contradiction. II 
We now define a valuation V~ for G~ by requiring that,  for every 

atomic term ~, 

V~: ~+r 

~he  model ~ (U~, Ill~, Leg~, Vz} we call the canoniea~ mode~ (for Z). 

T,I~_~A 4.6. ~or al~ terms a and a~l formulas A,  
(i) v=(~ )  = r  

(if) Vz(A) = vz(A).  

P~ooP. That (i) holds is immediate. The only ~on-trivial part  of 
r proof of (if) occurs in the basic step of the induction over the comple- 
xi ty of A, viz ,  ~vhen A is of the form ~orba or t)erma. However, this ease 
follows from the observation that, for all a, 

Cz(alZ ) ~ Ill~ if and only if n ix  ~ Fz ,  
r ~-.Leg~ if and only if a l X e P  ~. 

We prove the former assertion, beginning with the argument from left to 
right. Assume that  Cz(alX) ~_ 171~. Evidently, (Uz--r U 171z ~- U~. 
:By Lemma 4.3, then, 

(1) (V '~-- r  U U { r  ~ ~ }  = U~. 

As was noted above, any set of type r is clopen in the Stone space. 
Thus the sets appearing in (1) are all open. Therefore, by compactness, 

(2) ( v = - r  u r  u . . .  u r  = 17~, 

for some rio,---, fl~-1 such that  

(3) ~o/Z' ,  . . . ,  t~,,_,/.z' ~ ~. 

:By (2), 

(4)  r  _~ r u . . .  u r162 

Let  V be any nltrafilter such that  alX ~ V. Then V ~ Cz(alX), and so by 
{4) there is some i < n such that  V er , whence flUX e V. The 
filter property  of V then gives us flo/Xw .. .  wfl~_l/X ~ V. Thus in view 
of the Ultrafilter Theorem o~r argument has established that  

(5) <,I~'.<.</i'ol~,,.,' . . .  ' - ' /~,<-U~. 
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:From (3), (5), and  the  fact  t ha t  ~ z  is an ideal we infer t ha t  n i x  e ~ E ,  
which is the  desired conclusion. 

Fo r  t h e  converse, suppose t h a t  a l l  e ~ .  Then 

(6) ~orba e Z .  

Take  any  V e r  Then  

(7) a/Z  e V. 

:From (6) and (7) it  follows tha t  V e I l lz .  Consequently,  f z ( a / Z )  ~_ Ill~. [] 
The remaining half of the  Completeness Theorem now follows f rom 

the  fact  t h a t  conditions (i) and  (if) have  a l ready been shown to be equiva- 
lent, for L e m m a  4.6 shows tha t  (95~, v~) and ! )~  verify and  falsify exact ly  
the  same formulas. 

5. The basic closed deontic logic of  urn model action 

In  normat ive  theory,  especially jurisprudence,  there  is a condition 
called the  Closure Prineil~le which is often aired -- loosely speaking, 
the  condition tha t  wha t  is no t  forbidden is permit ted .  A normat ive  system 
is closed if i t  satisfies this condition, open otherwise. Le t  us see how this 
principle fares in the  present  context .  

:Let us begin with the  observation that ,  in a certain weak sense, B.O.D. 
satisfies the  Closure Principle. The sense in tended is seen f rom the  following 
result.  Le t  us say tha t  a deontie action f rame ( U ,  I l l ,  Zeg),  as well as 
any  model  based on it, is closed if I l l  U Zeg -= U. 

Tn-EO~]~ 5.1. Suppose that 1 ~ is a set of formulas and A is a formula.  
Then the following conditions are equivalent: 

(i) I ~ implies A in B.O.D. 
(if) I" implies A in every closed model. 

I n  other  words:  we might  consider augment ing  our formal semantics 
by  adding a condition on frames to the  effect t ha t  every  outcome be ei ther 
illegal or legal. Bu t  whe ther  we do or no t  will have  no effect on our logic. 

This m a y  seem surprising. I t  follows, however,  f rom the  following 
fact :  

L]mvi:~A 5.2. Let ~ ~ ( U ,  I l l ,  l e g ,  V )  be any model. Then there is 
a model ~ *  -~ (U*,  Ill*, Zeg ~, V*J such that 

(i) Ill* O leg* = U*, 
(if) ~ and ~ *  are equivalent (that is, for  all A ,  ~ ~ A i f f  9~* ~ A) .  

P~oor .  Le t  9:~ ---- ( U ,  I l l ,  l e g ,  V)  be any  model. Le t  us write Non 
for the  set of elements of U tha t  belong to nei ther  I l l  nor to Leg (and 
thus  are bo th  non-illegal and  non-legal). In  other  words, Non  ----- ( U- -  Ill) n 
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N (U-- Zeg). Define 97t* = < U*, Ill*, Zeg*, V*> by  

iql* = {<~, x> e V*: ~ e Il l  & �9 e {0,1}} u {<~, 0>: ~ e ~'o~}, 
Zeg* = {<~, ~> ~ v*:  ~ ~Leg , ~  ~ {o, 1}} u {<~, 1>: ,~ ~ ~Vo~}, 

V*(~) = {<u,x> e U*: u s V(~) & x  e{0 ,1}} ,  for each event  le t ter  ~ .  

lVote that ,  for all a e O, the  following three conditions are  equivalent :  

(i) ~t e V(a) ,  
(if) <u, 0> e V*(a), 
(Hi) @t, I> e V*(a). 

This is readi ly proved b y  induction on a: the  basis is provided by  the  
definition of V*, and the  induct ive step is trivial. 

I t  is clear t ha t  97t* is a deontic action model  and t h a t  Ill* U Leg* = U*. 
:But we mus t  show tha t  ~ and !}Tt* are equivalent.  This we do by  induct ion 
on A. The only interesting case occurs in the  basic step, viz., when A is of 
the  form 2'orb a or Perma.  These subcases are similar, and so it  will be 
enough to t rea t  just  the  former here. Firs t  assume tha t  !gt k 2'orb a. Then  
V(a) ~ Ill. Take any  <u, x> e V*(a). Then  q~ ~ V(a),  hence ~ ~I l l ,  and  so 
<u, x> e Ill*. This a rgument  shows tha t  V*(a) ~_ Ill*. Therefore, 97t*k 
k :Forba. :Next assume tha t  !gt l# ~orba. Then there  exists some u ~ V(a) 
such tha t  u r  Consequently, <qt, l> e V*(a), and, by  the  definition 
of Ill*, (u~ 1> r II~*. Therefor% 97t* [# _Forba. [] 

W h a t  all this shows is tha t  We are justified in mainta ining tha t  the  
Closure Principle is satisfied at  the  level of outcomes -- i t  makes no differ- 
ence to the  present  logic to th ink  tha t  every  possible outcome is ei ther 
posit ively illegM or positively legal. 

At  the  level of events the  si tuation is different.  I f  one would t ry  to 
express the  Closure Principle -- "everything is either forbidden or permi t '  
t ed"  -- in formulas, then  the  first schema tha t  comes to mind  is probably  

(CO) ~orb a v Perm a. 

However,  it is certainly not  the  case t ha t  all instances of this schema 
are valid. In part icular ,  the  instance ~ ' o r b l v P e r m l  is verified only by  
models ( U~ I l l ,  JSeg, V> such tha t  either U = I l l  or U = f~eg~ and  in 
such models there  is no need for deontie logic. Thus (CO) is not  an accept- 
able schema. 

A wea~er and therefore more plausible candidate  is this:  

(C1) a # 1 ~  (~orb a v t 'erm a). 

Indeed,  one m a y  even consider s trengthening (C1) into an ~equivalenee: 

(01') a v e  1~-+ (_~orb a v t)erm a). 
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The parallel between (CI') and (D3) is obvious, and the resulting axiom 
system would be nicely symmetric. However~ also this effort is mistaken~ 
as the following algebraic argument shows. Let 9i = < A ,  r~, w, --7 O, 
1, ~ ,  t)> be any deontic action algebra validating (C1). Then it readily 
follows that  

(*) A - - { l }  ~_ /7U.P. 

Suppose now tha t / 7  is a proper ideal and that  there are elements a, b ~/7~ 
both distinct from 0. Since/7 is proper, b r and b ~ 0 implies b r 1; 
therefore~ by (*), b e 2P. Furthermore, a n b e/v (since a e F) and a n b e P 
(since b es and so a n b  e/Tn P. But  91 is a deontic act ion algebra, so 
evidently a n  b = 0. Consequently a ~< b. By a similar argument, b ~< a. 
Therefore a =- b. 

This argument shows that,  under the adopted hypothesis, /~ is either 
improper or contains at most one element i~ addition to the null element. 
By the same token, _P too is either improper or contains at most one element 
other than the null element. This obviously makes it impossible to accept 
(01) or (013. 

If  the Closure t)rinciple is to be rendered in the object language, then 
the following schema may be the best candidate: 

(C2) ~7orb ~ v t)erm ~, 

ranging over the set of event letters. We shall now state a theorem which 
offers some semantic support for this view and why the system that  
results when (C2) is added to the axiom system of Section 3 deserves 
to be called the basic closed deontic logic of urn model action (B.C.D.). In  order 
~o arrive at a semantics which seems to articulate the intuitions behind 
the Closure Principle, we must  change the preceding modellings in some 
ways. Restricting ourselves to model theory, we require that  in a model 
< U~ Ill ,  JSeg ~ Y> 

(i) Ill  U Leg = U, 
(ii) for every g~ V(~r) _~ Ill or V(:r) _~ Leg. 

This semantics -- which is no longer of the usual frame type or second-order 
type (see Thomason [5]) -- is adequate for ]LC.D. : 

TI~EOlCE~ 5.3. Zet I ~ be any set of formulas and A any formula. Theq~ 
the following conditions are equivalent: 

(i) I" implies A in B.C.D. 
(ii) I ~ model theoretically implies A .  

Give~ the completeness proof for B.O.D., a proof is easily adapted from 
the proof of the lcmma at the beginning of this section. 

2~otice that,  unlike ]LO.D., B.C.D. is not closed under substitution 
of arbi trary terms for event letters. 
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6. Other operators 

In  our logic, as in ordinary deontic logic, it is possible to define other 
operators in terms of the primitive ones. Thus let us introduce i'-based 
obligation and P-based prohibition: 

Oblpa =el  -TPerm a, 
Forbp a =el -TPerm a, 

and ~-based obligation and F-based prohibition: 

Ob~r'a = af ~'orb a, 
PermFa =af ~Forb a. 

I f  ~ = ( U ,  I l l ,  Zeg, V} is a deontic action model, the~ the semantic 
conditions of the new operators work out as follows (conditions for closed 
frames within brackets): 

Oblea (U-Leg) $ v(a) [iff Ill r V(a)]; 
93~ ~ Forbpa iff (U- -Zeg)~  V(a) r ~ [iff Illfl  V(a) r ~] i  

~ OblFa iff (U- - I l l )  ~_ V(a) [iff Leg ~_ V(a)]; 
~ PermFa iff ( U - - I g ) N  V(a) v~ ~ [iff Leg~ V(a) r ;J]. 

I t  follows that  the following schemata are valid in B.O.D. : 

OblF(ar~ fi)++ (OblFa n OblF~ ) , 
Permv(  a~  p ) o  (Perm~a v Perm~fl). 

Thus the 2'-based operators behave in important ways as the well known 
operators of ordinary deontie logic. This is not the case with the/~-based 
ones, for Oblp(a~fl)+~(Oblpa ^ Ob~pfl) and P erm (a~  fl)+-§ Permfl) 
are both non-valid; in their place we have the valid Obl~(a,~fl)~+(Oblpav 
v Oblpfl) and (D2). In  other words, Perm is a strong permission concept, 
expressing a kind of free choice permission, and Perm F is a weak one: 
a is permitted in the strong sense if and only if every a-outcome is legal, 
while a is permitted in the weak sense if and only if some a-outcome 
is legal. 

In  fact, B.O.D. has many of the virtues sought by yon Wright in [6] 
without suffering from the drawbacks pointed out in l~uzsa [3]. If it is 
regarded as a defect that  in B.O.D. the impossible is permitted as well as 
forbidden, it is easy to introduce very similar operators without this 
feature, for example, 

~'ermla =d~-Perma^ a ~= O, 
-FOrbl a -~ ~ Forb a ^ a --~ O ~ 

Perm~a = a f P e r m a ^  a ~ O^ a ~ 1, 
:Eorb~a = a ~ o r b a ^  a ~ O^ a ~ 1. 



280 .K~.ister Segerberg 

Of these operators, Perm 1 and Perm2, respectively, Forbl and F o r b  2 would 
reduce to one another if the following natural condition is placed on deontic 
action ~ames ( U ,  Ill ,  Zeg): that  II~ and .Seg be proper subsets of U. 
The corresponding logic, call it B.O.D.', is of course axiomatized by 
adding to the above axiomatization of B.O.D. the further axioms 

(Dd) ~_Perm 1, 
(D5) ~ o r b l .  

An operator closely related to 1%rm F is t'erm*, with the following 
truth-conditions in a model ~ = ( U ,  Ill,~Seg, V):  

9~ ~ Perm*a iff Zeg~ V(a) V: ~ .  

Perhaps it is a defect of B.O.D. that  this operator cannot be defined in it :  

T~EOI~E~ 6.1. _Perm* is not definable in B.O.D. or ~.O.D.'. 

P~0OF. Suppose by contradiction that  t)erm * is definable in B.O.D.'. 
This means tha t  we may regard l='erm* as an abbreviatory device and that~ 
for each a, .Perm*a is a well-formed formula satisfying the truth-condition 
above. Consequently, by Theorem 5.1, Perm~.a,~Perm*a is valid in every 
closed frame and therefore provable in B.O.D. and a fortiori in B.O.D.'. 
However, take any deontic action model (U ,  I l l ,Leg ,  V} such that  
Ill U .Seg r U. Let ~ be any event letter and specify that  V(~) = U--Leg.  
:Now we have a contradiction, for PermFg is true in the resulting model~ 
since (U--111)~ V(z)  r ~ ,  yet  1)erm* ~ is false, since LegN V(z)  = ~. ! 

7. An action-game 

The several preceding concepts of permission should not be regarded as 
competing attempts to define of the concept of permission but rather  as 
concepts with different fields of application. The action-games introduced 
in [4] may be used to illustrate this point. Games can be tailored to model 
any of the operators mentioned in this paper, but  we will concentrate on 
t)erml and _Perm *. 

Consider an arrangement where in addition to the Umpire there are 
two players, Player 1 and Player 2, and where the marbles come in two 
colours, white and red. The game is played as follows. First Player 1 deli- 
neates a set of what is to be called "permitted" sets of marbles. :Next 
Player 2 chooses a set of marbles. As in [4] he may not be able to choose 
every possible set -- some may literally speaking be beyond his reach --but  
what is new is that  he will now restrict his choice to among the permitted 
sets. Finally the Umpire picks a marble from the set chosen by Player 2, 
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if this set is non-empty;  if the  set is empty,  the  Umpire will pick any red 
marble. At  t h e  end of the  game, the  marble picked by the  Umpire is 
given to Player 1. Player 2 also receives some re turn  which depends in 
a complicated manner  on what  set he chooses. 

Like the  games in [4] this is not  a very entertaining game, yet  it is 
worth Player  l~s while to th ink  about it. He knows tha t  the  white marbles 
are actually made  of silver, while the red ones are just  clay, and  so he is 
~nxious to do what  he can to ensure tha t  ~ white marble is picked by the  
Umpire. This is not  his only concern, though,  for Player 2 is his friend, 
~nd whatever  preferences Player  2 may  have, Player 1 would want  for 
him to have as many  permi t ted  sets to choose ~mong as possible (as long 
as this does not  endanger his own silver marble). 

Wha t  should Player 1 do ? Evident ly  much will depend on the  Umpire. 
~Ve consider two cases. (1) The Umpire is friendly. This means tha t  the  
Umpire understands and sympathizes with the desire of Player 1 to acquire 

white marble (or white marbles, if the game is played several times), 
~nd so he will pick a white marble whenever he is able to under  the  rules 
of the game. I n  this situation it would obviously be rational for Player  1 
to resort to the  concept of permission expressed by Per~* and designate 
~s permit ted  every set tha t  contains at least one white marble. (2) 
The UmTire is not friendly. In  fact, let us suppose tha t  he is hostile and 
will pick a red marble whenever he is able to do so. In  this situation it 
would not  be in Player l ' s  interest to permit  any set containing even 
one red marble, nor, of course, the  empty  set. Wha t  he should do is to 
resort to the  concept of permission expressed by Perm~ and permit  exactly 
the  non-empty  sets consisting of only white marbles. 

The given action-game is artificial, as they all are, bu t  it clearly brings 
out  the difference between Term* and Terms: when in command use 
Term* if you completely t rus t  those depending on your permission, Perm~ 
if you completely distrust  them. 
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