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Abstract. The formal language studied in this paper contains two ecategories of
expressions, terms and formulas. Terms express events, formulas propositions. There
are infinitely many atomic terms and complex terms are made up by Boolean opera-
tions. Where « and § are terms the atomic formulas have the form ¢ = f (ais the same
as f), Forb a (ais forbidden) and Perm a (a is permitted). The formulae are truth func-
tional combinations of these. An algebraic and a model theoretic account of validity
are given and an axiomatic system is provided for which they are characteristio.

The ‘closure principle’, that what is not forbidden is permitted is shown to hold
at the level of outcomes but not at the level of events. In the two final sections some
other operators are considered and a semantics in terms of action games.

The present paper, which concentrates on formal issues, elaborates the
deontic aspects of some ideas first presented in [4]. The modelling is
inspired by both Kamp [1] and von Wright [6], and the resulting analysis
is no doubt related to the system in the last section of von Wright [7].
Except in the concluding section, familiarity with [4] is not presupposed,
but the reader who would like some motivation for the kind of modelling
studied here is referred to that paper. The best background reference for
the algebra done here is Rasiowa & Sikorski [2].

1. Formal syntax

The formal language studied in this paper will contain two categories
of expressions, terms and formulas. To understand the motivation for
this language, note that under the formal semantics to be developed in
the next section terms will express events, formulas propositions.

There are infinitely many afomic terms: denumerably many event
letters and. the two constants 0 and 1. The atomic terms are also ferms
simpliciter; and if ¢ and g are terms, then so are an f, av f, a. The latter
may be read “a and 7, “a or 87, “not a”. The atomic formulas are of three
kinds, a = B, Forba, Perma, where a and § are terms. They may be read
“q is the same.as 87, “a is forbidden”, and “a is permitted”. The atomic
formulas are also formulas simpliciter; and if A and B are formulas, then
soare AA B, Av B, 714, A—~B, A< B. The connectives involved here are
the ones familiar from classical logic. In particular, — and <> are material
implication and material equivalence, respectively.

12 — Studia Logica 2--3.20
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This completes our definition of the formal language to be studied
in this paper. (Some banal modifications are considered at the end of it.)
As a general convention let us use = for arbitrary event letters, a, 8, y
for arbitrary terms, and A, B for arbitrary formulas. We write o % §
for (o = B).

2. Formal semanties

Let us say that a structure % = {4, ~, v, —, 0, 1, F, P) is a deontic
action algebra if (i) (4, ~, v, —,0,1> is a Boolean algebra of which
(ii) ¥ and P are ideals, and (iii) Fn P = {0}. (Intuitively think of % as an
algebra of events, F' and P the sets of forbidden, respectively, permitted
events.) A wvaluation for W is a function » from the set of atomic terms
to A such that

2(0) =0,

v(l) = 1.
Any valuation v can be uniquely extended to a function defined on the
set of all terms and formulas in three steps as follows. (We continue to

write just v, even though a careful treatment would require a more elabo-
rate notation, for example, v’, v", and v""* for the three steps.)

Primary extension:

v(anf) = v(a)no(f),
v(av f) = v(a)vv(p),

, (@) = —o(a).
Secondary extension: ‘
o T, if v(a) = v(f),
o(@=p) = {F, otherwise;

] T, if v(a) e F,
- o(forba) = {F, otherwise;
T, if v(a) eP,
o(Perma) o {F', otherwise. ,
Tertiary extension: The value of v(A4) of non-atomic formulas 4 is deter-
mined by truth-tables in the usual way. (Here you are of course invited
to read “true” for T and “false” for F.) o -

A formula A is true in A under v if v(A) = T, false in A under v if
v(A)y = F. A is algebraically walid if A is true in every deontic action
algebra under every valuation. More generally, a set I" algebraically implies
A if, for every deontic action algebra % and every valuation v for o, if
every formula of I" is true in % under v, then so is A.

Turning now. to model theory, let us say that a structure § = (U,
Ill, Leg) is a deontic action frame if (i) U is a set, (ii) Ill, Leg = U, and
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(iii) Illn Leg = @. (Thus a deontic action frame is more succinectly cha-
racterized as a set U with two disjoint subsets Ill and Leg. Infinitively
think of U as a set of possible outcomes, Ill and Leg as the sets of illegal
and legal outcomes, respectively. An event is then a set of outcomes.)
A valuation for § is a function V from the set of atomic terms to the sef
of subsets of U such that

7(0) = o,
V) ="1.

Ag in the case of algebra, any valuation V can be uniquely extended to
a function defined on the set of all terms and formulas in three steps:

Primary extention:

V{anp) = V(a)n V(B),
V(avp) = V(a)u V(8),
Via) = U— V{a).

Secondary extention:

_ o T, i V() =V (p),
Vie=$ = {F, otherwise;

T, it V(a)< I,
V{Forba) = {F, otherwise

(T, i V(a) = Leg,
Vikerma) = |F, otherwise.

Tertiary expangion: By truth-tables.

Let us call M = (U, I, Leg, V) a deontic action model (based on the
frame (U, Ill, Leg>). A formula A is true in M if V(A) =T, false in
M if V(A) =F; in symbols we may render this M F 4, respectively,
M |+ A. We say that A is model theoretically valid it A is true in all deontie
action models. More generally, a set I" model theoretically implies A if, for
every deontic action model, if every formula of I" is true in this model,
then so is A. '

3. The basic open deontic logic of wrn model action

In the preceding section we introduced semantic concepts of validity
and implication. Now we shall introduce syntactic counterparts by pre-
senting an axiomatic system. As our only inference rule we appoint the
time-honoured rule of modus ponens. Of axioms we will have many more.
First of all we want a set of awioms adequate for Boolean algebra. Second,
we want some axioms for equality: all instances of the following schemata
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will do:

(Bl) a = a;
(B2) a=f>(4-4"),

where A and A’ differ only in that 4 contains an occurrence of a in some
place where A’ contains an occurrence of g. Third, we want a set of azioms
adequate for classical propositional logic. Fourth, we want the following
special axioms for the deontic operators: all instances of the following sche-
mata:

(D1)  Forb(av B)<«>(Forban Forbp);
(D2)  Perm(av B)<>(Perma A Permf);
(D3)  a =0~ (ForbanaPerma).

This defines a logic which we may perhaps call the basic deontic logic
of urn model action (B.0.D.): the notions of theoremhood and implication
are implicit.

It may be instructive to compare the axiomatic system with the defi-
nition of a deontic action algebra. The three first classes of axioms need
no comment. (D1) and part of (D3), respectively, (D2), and part of (D3)
correspond to the condition that F and P be ideals. The remaining part
of (D3) corresponds to the condition that # and P have only the null
element in common. That this correspondence is not fortuitous is shown
by the following result.

THEOREM 3.1. Let I' be any set of formulas and A any formula. Then
the following three conditions are equivalent:

) I' implies A in B.0.D.

(ii) I algebraically implies A.

(iii) I model theoretically implies A.

We give the proof in the following section.

4. Completeness of B.0.D.

‘What follows is a variation on an age-old theme. Say that X is a given
fixed maximal consistent set of formulas (consistent with respect to B.0.D.).
The following defines a binary relation in the set @ of terms:

a=pf(modr) ifand only if a=pe2.

This relation may be called the equivalence relation induced by X. The termi-
nology is not arbitrary, for, with the aid of axioms (E1) and (E2), it is
easy to show that = is reflexive, symmetric and transitive. Thus we may
define:

e/ ={f: a =X}
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and know that a/2 = §/2 if and only if ¢ = § e 2. Similarly, it is easy
to show that

" and f=f onlyif anf =d~pf,
and = only if avp =dvg,
only if a=3§,

only if Forba—Forbf e X,

only if Permo«sPermf e 2.

~
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Now define the Lindenbaum algebra (for X) as the structure
Uz =<0/, ~nyvy —, 0z, 15, Fs, Ps)
where

02 = {a|2: aeb},
o/ZABE = anp|Z,
e/2v B[E = av B[,

—a'% =alZ,
02 = 0/2,

Fy = {a/2: Forba e 2},
Py = {a/2: Perma e X}.
The preceding remarks guarantee that the definition is meaningful.

Levma 4.1. Uz 4s a deontic action algebra.

Proor. Considering that 2 iz maximal consistent, this follows at
once: from the axioms for Boolean algebra, that @/, ~, v, —, 05, 15>
is a Boolean algebra; from (D1) — (D3), that ¥ and P are ideals; and
from (D3), that Iy and Py have 0, as their unique common element. m

We define a valuation vy for %y by requiring that, for every atomie
term =,

Vgt mm[X.
The proof of the following result is immediate:

LuvMma 4.2. For all terms a and all formulas A,
B ovz(e) = e/,
(il vx(A) =T if and only if AeX.

From this lemma, half of the Completeness Theorem follows (that
is, Theorem 3.1 of the preceding section). That (i) of that theorem implies
(ii) is clear. For the converse, assume that I' does not imply A in our
logie, for some particular I" and A. Then, by the wellknown Lindenbaum’s
Lemma, there is some maximal consistent set 1™ such that I'< I'™ and
A ¢ I'*. Copsider the Lindenbaum algebra for I, By Lemma 4.2, v,.(A4)
= F, and yet, for all Be I, v (B) = T. Hence I" does not algebraically
imply A. :



274 Krister Segerberg

To obtain also the remaining half of the Completeness Theorem, we
go from Lindenbaum algebras to Stone spaces in the usual way. Thus,
with 2 as before, let Uy be the set of ultrafilters of y. By the Stone map
let us understand the map '

¢s: a/|Z—{VeUz: o/ e‘V}.

The set 8y = {¢=(¢/Z): a € B} we call the Stone field. The Stone field has
two properties which should be noted: (i) it is closed under set comple-
ment, and (ii) it is closed under finite intersection. It follows from (ii) that
if 7', is the set of all subsets of Uy that can be written as the union of
members of 8;, then T'; is & topology (of which 8 is a base). The topological
space Ty = (Uyz, Ty> is called the Stone space. Note that by (i), every
subset of U of the form ¢(a/ZX) is clopen in this topology (that is, closed
as well as open). Moreover, from M. H. Stone’s well known work we know
that ¢5 is an isomorphism from the Boclean algebra <(6/%X, ~, v, —,

0, 1> to the field of sets {8z, n, U, —, &, U), and that Ty is compact
(that is, if {A;: ¢ eI} is a collection of open sets 4, < U, for any index
set I, such that (J{A4,: 1 eI} = Uy, then there is a finite set J = I
such that U{4,: i eJ} = Uy). Let the Stone frame (for X) be defined
as the structure ©z; = {(Uy, Illy, Legs), where

Iy ={VeUs: Ja(a/ZeV & Forba e X)},
Legs = {VeUg: Fa(a/Z eV & Perma c X)}.

1t is noteworthy that both Ill; and Legs are open sets:
LE:MMA 4:.3. Illz = U{qu(a/Z): a/ZEFZ}.
Proor. For any ultrafilter V of Uy,

Vell,
iff Ha(a/Z eV & Forba )
iff da(Veds(a/2) &a/ZelFy)
iff VeU{¢s(e/X): a/XecF;}. m

LeMMA 4.4. Legy = U{dz(a/Z): a/2Z ePg}.
Proor. Similarly. =
LEMMA 4.5. ©5 is a deontic action frame.

Proor. Suppose that there is some V such that Ve Ill;n Legy. Then
there are terms o and g such that «/2, 8/2 €V and Forba, Perm f 2.
Consequently, since V is a filter, a/X~§/2 € V, and so

(1)  anpB/ZeV.

Moreover, a/X € Fy and /2 e P;. Therefore, since Fz and P are ideals,
a/Z~B|XZ e FynPyg, and 80 anf[XZ e Fgn Py, But Ay is a deontic action
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algebra, so this implies that
{2) anf|X = 0.

Since V is an ultrafilter, (1) and (2) are in contradiction. m
We now define a valuation Vy for S; by requiring that, for every
gbtomic term =,

Vi wsds(m/2).

The model My = (U, Illg, Legs, V5> we call the canonical model (for X).

LeMmA 4.6. For all terms a and all formulas A,

(1) Vz(a) = $z(a/2).
(ii) Vz(4) = vz(A).

Proor. That (i) holds is immediate. The only non-trivial part of
the proof of (ii) occurs in the basic step of the induction over the comple-
xity of 4, viz., when A is of the form Forba or Perma. However, this case
follows from the observation that, for all a,

$z(a/Z) < Il if and only if e/XeFy,
dz(a/X) < Legs if and only if a/X eP;.

‘We prove the former assertion, beginning with the argument from left to
right. Assume that ¢x(a/X) < Illy. Evidently, (Uz—¢x(a/Z)) Uy = Us.
By Lemma 4.3, then,

(1) (Ug——qu(a,/Z))U Uld=(8/2):f/X e Fy} = Us.

As was noted above, any set of type ¢5(y/2) is clopen in the Stone space.
Thus the sets appearing in (1) are all open. Therefore, by compactness,

(2) (Us—42(a/2))Udz(Bo/Z)U .. Udz(Bos/Z) = Ug,
for some B, ..., §,_; such that

(3) BolZy .oy Bpr/X € Fs.
By (2),

(4) $x(e/Z) S ¢z(Bo/Z)U +.. Udz(Byy/2).

Let V be any ultrafilter such that a/2 e V. Then V € ¢-(a/X), and so by
{4) there is some ¢ < mn such that Vedyz(;/X), whence 8,/X € V. The
filter property of V then gives us g,/Zv ... Ug,_ /2 € V. Thus in view
of the TUltrafilter Theorem our argument has established that

(5) e[Z < folEV ... VB, [
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From (3), (5), and the fact that Fy is an ideal we infer that o/ e Fy,
which is the desired conelusion.
For the converse, suppose that a/2' € F,;. Then

(6) Forba e X,
Take any V € ¢x(a/X). Then
(7) a/XeV.

From (6) and (7) it follows that V e Ill;. Consequently, ¢;(e/2) < Ili;. m

The remaining half of the Completeness Theorem now follows from
the fact that conditions (i) and (ii) have already been shown to be equiva-
lent, for Lemma 4.6 shows that (U, vs> and M verify and falsify exactly
the same formulas.

5. The basic closed deontic logic of urn model action

In normative theory, especially jurisprudence, there is a condition
called the Closure Principle which is often aired — loosely speaking,
the condition that what is not forbidden is permitted. A normative system
is closed if it satisfies this condition, open otherwise. Let us see how this
prineciple fares in the present context.

Let us begin with the observation that, in a certain weak sense, B.0.D.
satisfies the Closure Principle. The sense intended is seen from the following
result. Let us say that a deontic action frame (U, Ill, Leg>, as well ag
any model based on it, is closed if Illy Leg = U.

THEOREM b.1. Suppose that I' is a set of formulas and A is a formula.
Then the following conditions are equivalent:

(i) I implies A in B.0.D,

(i) I implies A in every closed model.

In other words: we might consider augmenting our formal semantics
by adding a condition on frames to the effect that every outcome be either
illegal or legal. But whether we do or not will have no effect on our logie.

This may seem surprising. It follows, however, from the following
fact:

LeEMMA 5.2. Let 3 = (U, 1Ill, Leg, V> be any model. Then there is
a model I* = (U*, II1*, Leg™, V*)> such that

(i) IU*uZLeg* = U*,

(i) I and D* are equivalent (that is, for all A, M E A iff M* £ A).

Proor. Let M = (U, I, Leg, V> be any model. Let us write Non
for the set of elements of U that belong to neither Iil nor to Leg (and
thus are both non-illegal and non-legal). In other words, Non == (U — Ill)n
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N (U — Leg). Define M* = (U*, IL*, Leg*, V*> by

U =K, wy: ueU &we{0,1}},
I = Ku, oy e U*: welll &ue{0,1}}u{Cu, 0>: e Non},
Leg* = {{u, ) e U": weLeg & ef{0,1}}u{lu,1>: ueNon},
V*(#) = {<u, 2> e U*: weV(n) &»e{0,1}}, for each event letter .

Note that, for all a« € @, the following three conditions are equivalent:

) weV(a),
(i) <u,0)eV(a),
(ii)  (u,1> e V¥(a).

This is readily proved by induction on a: the basis is provided by the
definition of V*, and the inductive step is trivial.

It is clear that 9™ is a deontic action model and that 11" y Leg* = U™,
But we must show that 9% and IM* are equivalent. This we do by induction
on A. The only interesting case occurs in the basic step, viz., when A is of
the form Forbo or Permo. These subcases are similar, and so it will be
enough to treat just the former here. First assume that I F Forba. Then
V (a) < Ill. Take any {u, x> € V*(a). Then « € ¥V (a), hence # € Ill, and so
{u, )y e II*. This argument shows that V*(a) < IN*. Therefore, IM*
E Forba. Next assume that 3t |= Forba. Then there exists some 4 € V(a)
such that u ¢ Ill. Consequently, {u,1> € V*(a), and, by the definition
of IT*, (u, 1> ¢ III*. Therefore, M* |» Forba. m

What all this shows is that we are justified in maintaining that the
Closure Pringiple is satisfied at the level of outcomes — it makes no differ-
ence to the present logic to think that every possible outcome is either
positively illegal or positively legal.

At the level of events the situation is different. If one would try to
express the Closure Principle — “everything is either forbidden or permit-
ted” — in formulas, then the first schema that comes to mind is probably

(C0) Forbav Perma.

However, it is certainly not the case that all instances of this schema
are valid. In particular, the instance Forblv Perml is verified only by
models (U, Ill, Leg, V> such that either U = Ill or U = Leg, and in
such models there is no need for deontic logie. Thus (CO0) is not an accept-
able schema.

A weaker and therefore more plausible candidate is this:

(01) a 7%= L= (Forbav Perma).
Indeed, one may even consider strengthening (C1) into an equivalence:

(C1) a # 1> (Forbav Perma).
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The parallel between (C1’) and (D3) is obvious, and the resulting axiom
system would be nicely symmetric. However, also this effort is mistaken,
ag the following algebraic argument shows. Let ¥ = {4, n, U, —, 0,
1, F,P) be any deontic action algebra validating (C1). Then it readily
follows that

(*) A—{I} < FuP.

Suppose now that F is a proper ideal and that there are elements @, b € F,
both distinet from 0. Since F is proper, b ¢ 7, and b = 0 implies b #= 1
therefore, by (*), b € P. Furthermore, anb € I (since a € F) and anbd eP
(since b e P), and 80 anb e FnP. But ¥ is a deontic action algebra, so
evidently anbd = 0. Consequently a < ?b. By a similar argument, b < a.
Therefore a = b.

This argument shows that, under the adopted hypothesis, F is either
improper or contains at most one element in addition to the null element.
By the same token, P too is either improper or contains at most one element
other than the null element. This obviously makes it impossible to accept
{C1) or (C1).

If the Closure Principle is to be rendered in the object language, then
the following schema may be the best candidate:

(C2) Forbnv Permm,

7 ranging over the set of event letters. We shall now state a theorem which
offers some gemantic support for this view and why the system that
results when (C2) is added to the axiom gsystem of Section 3 deserves
to be called the basic closed deontic logic of wrn model action (B.C.D.). In order
to arrive at a semantics which seems to articulate the intuitions behind
the Closure Principle, we must change the preceding modellings in some
ways. Restricting ourselves to model theory, we require that in a model
(U, I, Leg, V>

(i) INluLeg =1U,
(ii) for every =, V(n) < Ill or V(n) < Leg.

This semantics — which is no longer of the usual frame type or second-order
type (see Thomagon [5]) — is adequate for B.0.D.:

TaporEM 5.3. Let I' be any set of formulas ond A any formula. Then
the following conditions are equivalent:

(i) I implies A in B.C.D.

(ii) I model theoretically implies A.

Given the completeness proof for B.0.D., a proot is easily adapted from
the proof of the lemma at the beginning of this section.

Notice that, unlike B.0.D., B.C.D. is not closed under substitution
of arbitrary terms for event letters.
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6. Other operators

In our logic, as in ordinary deontic logic, it is possible to define other
operators in terms of the primitive ones. Thus let us introduce P-based
obligation and P-based prohibition:

OblPOC =df TPGW’md‘,
Forbpa =4 "1Perma,

and F-based obligation and F-based prohibition:

OblFa =dfF07’b('i,
Permypa =4, T\Forba.

If M =<U,IIt, Leg, V) is a deontic action model, then the semantic
conditions of the new operators work out as follows (conditions for closed
frames within brackets):

MEOblpa  iff (U—ZLeg) & V{a) liff I & V(a)];
Mk Forbpa iff (U—Leg)n Via) £ o [iff IUn V{a) # 21;
MEObla it (U—I) < V(a) [iff Leg < V(a)];

MEPermpa i (U—I0)n V(a) # o [iff ZLegn V(a) = @].
It follows that the following schemata are valid in B.0O.D.:

Oblg(an B)«>(0blga A Obl,B),
Permp(av py—(Permgpav Permgf).

Thus the F-based operators behave in important ways as the well known
operators of ordinary deontic logic. This is not the ease with the P-based
ones, for 0blp(an B)«>(0blpan OblpB) and Perm(av f)«> (Permav Perm )
are both non-valid; in their place we have the valid Oblp(an )<+ (0blpav
v Oblpf) and (D2). In other words, Perm is a strong permission concept,
expressing a kind of free choice permission, and Permy is a weak one:
a is permitted in the strong sense if and only if every a-outcome is legal,
while « is permitted in the weak sense if and only if some a-outcome
is legal.

In fact, B.O.D. has many of the virtues sought by von Wright in [6]
without suffering from the drawbacks pointed out in Ruzsa [3]. If it is
regarded as a defect that in B.O.D. the impossible is permitted as well as
forbidden, it is easy to introduce very similar operators without this
feature, for example,

Permya =4 Permanc #0,
Forbya =4, Forbona # 0,
Permga =g, Permana #0na #1,
Forbya =g Forbana =0na £ 1.
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Ot these operators, Perm,; and Perm,, respectively, Forb, and Forb, would
reduce to one another if the following natural eondition is placed on deontic
action frames <U, Ill, Leg>: that Ill and Leg be proper subsets of U.
The corresponding logic, call it B.0.D.), is of course axiomatized by
adding to the above axiomatization of B.0O.D. the further axioms

(D4)  Perml,
(Db) “1Forbl.

An operator closely related to Permyp is Perm®, with the following
truth-conditions in a model § = (U, Ill, Leg, V>:

M E Perm*a iff Legn V(a) # @.

Perhaps it is a defect of B.0.D. that this operator cannot be defined in it:
THEOREM 6.1. Perm* is not definable in B.0.D. or B.0.D. .

Proor. Suppose by contradiction that Perm* is definable in B.0.D.".
This means that we may regard Perm™ as an abbreviatory device and that,
for each a, Perm”a is a well-formed formula satisfying the truth-condition
above. Consequently, by Theorem 5.1, Permpa«sPerm”a is valid in every
closed frame and therefore provable in B.0.D. and a fortior: in B.0.D.’".
However, take any deontic action model <{U, Ill, Leg, V) such that
Il y Leg + U. Let = be any event letter and specify that V(n) = U — Leg.
Now we have a contradiction, for Permpn is true in the resulting model,
since (U—IN)n V(n) # 2, yet Perm™ = is false, since Legn V(n) = 2. &

7. An action-game

The several preceding concepts of permission should not be regarded as
competing attempts to define of the concept of permission but rather as
concepts with different fields of application. The action-games introduced
in [4] may be used to illustrate this point. Games can be tailored to model
any of the operators mentioned in this paper, but we will concentrate on
Perm, and Perm™.

Consider an arrangement where in addition to the Umpire there are
two players, Player 1 and Player 2, and where the marbles come in two
colours, white and red. The game is played as follows. First Player 1 deli-
neates & set of what is to be called “permitted” sebts of marbles. Next
Player 2 chooses a set of marbles. As in [4] he may not be able to choose
every possible set — some may literally speaking be beyond his reach —but
what is new is that he will now restriet his choice to among the permitted
sets. Finally the Umpire picks a marble from the set chosen by Player 2,
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if this set is non-empty; if the set is empty, the Umpire will pick any red
marble. At the end of the game, the marble picked by the Umpire is
given to Player 1. Player 2 also receives some return which depends in
a complicated manner on what set he chooses.

Like the games in [4] this is not a very entertaining game, yet it is
worth Player 1’s while to think about it. He knows that the white marbles
are actually made of silver, while the red ones are just clay, and so he is
anxious to do what he can to ensure that a white marble is picked by the
Umpire. This is not his only concern, though, for Player 2 is his friend,
and whatever preferences Player 2 may have, Player 1 would want for
him to have as many permitted sets to choose among as possible (as long
a8 this does not endanger his own silver marble).

‘What should Player 1 do? Evidently much will depend on the Umpire.
We consider two cases. (1) The Umpire is friendly. This means that the
Umpire understands and sympathizes with the desire of Player 1 to acquire
a white marble (or white marbles, if the game is played several times),
and so he will pick a white marble whenever he is able to under the rules
of the game. In this situation it would obviously be rational for Player 1
to resort to the concept of permission expressed by Perm”™ and designate
as permitted every set that contains at least one white marble. (2)
The Umpire is not friendly. In fact, let us suppose that he is hostile and
will pick a red marble whenever he is able to do so. In this situation it
would not be in Player 1’s interest to permit any set containing even
one red marble, nor, of course, the empty set. What he should do is to
resort to the concept of permission expressed by Perm, and permit exactly
the non-empty sets consisting of only white marbles.

The given action-game is artificial, as they all are, but it clearly brings
out the difference between Perm* and Perm,: when in command use
Perm* if you completely trust those depending on your permission, Perm,
if you completely distrust them.
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