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Abstract. The aim of this paper is to offer a rigorous explication of statements
ascribing ability to agents and to develop the logic of such statements. A world is
said to be feasible iff it is compatible with the actual past-and-present. W is a P-world
iff W is feasible and P is true in W (where P is a proposition). P is a sufficient condition
for Q iff every P world is a @ world. P is a necessary condition for @ iff @ is a sufficient
condition for P. Each individual property § is shown to generate a rule for an agent
X. X heeds 8 iff X makes all his future choices in accordance with 8. (Note that X
may heed 8 and yet fail to have it). § is a P-strategy for X iff X’s heeding S together
with P is a necessary and sufficient condition for X to have 8. (P-strategies are thus
rules which X is able to implement on the proviso P). Provisional opporiunity: X has
the opporiunity to A provided P iff there is an § such that § is a P-strategy for X and
X’s implementing 8 is a sufficient condition for X’s doing A. P is etiologically complete
iff for every event F which P reports P also reports an etiological ancestry of &, and P
is true. Categorical opportunity: X has the opportunity to A iff there is a P such that
P is etiologically complete and X has the opportunity to 4 provided P. For X to have
the ability to 4 there must not only be an appropriate strategy, but X must have
a command of that strategy. X steadfastly intends A iff X intends A at every future
moment at which his doing 4 is not yet inevitable. X has a command of § w.r.t. A and
P iff X’s steadfastly intending A4 together with P is a sufficient condition for X to
implement 8. Provisional ability: X can A provided P iff there is an 8 such that §
is a P-strategy for X, X’s implementing § is a sufficient condition for X’s doing 4,
and X has a command. of 8 w.r.b. A and P. Categorical ability: X can A iff there is
a P such that P is etiologically complete and X can A provided P. X is free w.r.t. to
A iff X can 4 and X ean non-A. X is free iff there is an A such that X is free w.r.t. 4.

0. Introduction

The aim of this article is to offer a rigorous explication of statements
aseribing ability to agents, and to develop the logic of such statements.
The explication is framed in the system of transparent intensional logic
{t.1.1.) which is briefly sketched in sections 1 and 2. A detailed exposition
of t.i.l. can be found in [4]. For other applications of t.i.l. see [1], [2],
and [3].

The philosophical background and motivation for the present theory are
expounded in detail in [5]. The key concept of the theory is that of a stra-
tegy for an agent. An individual property S is a strategy for an agent X
just in case § provides X with a plan for any contingency that may arise.
The instantiation of § by X at the present moment thus depends solely
on whether X makes choices in accordance with the instructions given
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by 8. Roughly speaking, X has an opportunity to A if there is an § such that
8 is a strategy for X and the implementation of § by X is a sufficient
condition for X to A. X is said to have a command of § relative to A if he is
disposed to follow § in any situation in which he consistently intends to A.
X has the ability to A — i.e., X can A — if there is an 8 such that § is
a strategy for X, X’s implementing 8 is a sufficient condition for X’s Aing,
and X has a command of § relative to A. X is free with respect to A if he
can both 4 and non-4. X is a free agent if there is an A such that X is
free w.r.t. A. Finally, X is (partially) responsible for a state of affairs @
if there has been a time at which X could have done something to avert §.

1. Objecis and constructions

Any conceptual scheme (such as the one underlying ordinary language)
is based on a wuniverse of discourse, i.e., the collection of the lowest-level
objects (called individuals) coming under the purview of the scheme, and
an intensional base, i.e. , the colleetion of primitive attributes that can,
within the framework, be ascribed to varjous set-theoretical objects over
the universe. Together a universe of discourse and an intensgional base
form what we shall call an epistemic framework.

Once an epistemic framework is given, a range of possibilities arise
as to how the attributes in the intensional base are in faet distributed
through the objects over the universe. As the possession of an attribute
by an object is a time-dependent affair, the possibilities are, more parti-
cualrly, possible histories of the distribution. It is customary to speak
of those possibilities as possible worlds, and of the collection of all possible
worlds as the logical space of the epistemie framework. One of the possible
worlds is the actual world; it is, however, no part of the definition of the
framework to specify which world it is. To locate the actual world in the
logical space is the ultimate (and probably unattainable) aim of factual
inquires conducted within the framework.

Let o be the two-element class of truth-values (truth, T, and falsehood,
F), ¢« the universe of discourse, and » the logical space. Moreover, let
7 be the time scale, i.e., the linearly ordered class of moments of time.
Note that if an origin and a unit of duration — say, one second — are
fixed, moments of time can be represented in a one-to-one fashion by real
numbers. Thus = can be looked upon as the class of real numbers.

0, t, w, and = are types. Besides, where 1, &, ..., &, are arbitrary types,
the class of all (total and partial) »-ary functions from &,..., &, into
n — symbolically, (& ... &,) — is also a type. (Nothing is a fype unless
it so follows from the above.) A member of a type & is also called an object
of type &, or briefly a &-object.

Objects of type (0&) are called classes of £-objects, or briefly &-classes.
Where C is a &-class and X a & object, X is said to be an element or counter-
element of O according as the value of € at X is T or F. Objects of type
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(o&y) are called (binary) linkages between &-objects and #-objects, or
briefly &, y-linkeges. Where L is a &, y-linkage, X a &-object, and Y an
7-cbject, X is said to be linked or counterlinked by L to ¥ according as I
takes X and ¥ to T or F. '

Some particular objects deserve special mention. @, of type z, is the
number nought (or the origin of the time scale). ~, of type (oo), and o,
of type (ooo), are the familiar truth-functions, and -, of type (zzz) is
addition. = ¢, of type (0&¢), is identity between &-objects, and <, of type
(o77), is the less-then (or before) relation between numbers (or times).
I and X, both of type (0(0£)), are the universal and existential quantifiers
over £-objects: the value of II® (resp. Xf) at a &-class is T or F according
as the class does or does not contain all (resp. some) &-objects. A" is the
(né), &, n-linkage which links or counterlinks F with X and Y according
as F' dces or does not take X to Y.

Objeets of type ((Er) co) are called £-intensions. Where I is a £-intension
and W a world, the value (if any) of I at W is called the chronology of I
in W; moreover, if I’s chronology takes a moment T to &-object X, we say
that X occupies (or embodies) I in W at T. If nothing occupies I in W at T,
we say that I is vacant in W at T. A Z-intension can thus be regarded as
an office occupiable by &-objects. The American presidency, for example,
is an office occupiable by individuals; call it A. If W is the actual world
and T any moment between August 9, 1974 and Januvary 20, 1977, A is
held by Gerald R. Ford in W at 7.

Some kinds of intension are particularly noteworthy. o-intensions are
known as propositions. We shall use the letter ‘o’ to denote the type ((or) a))
of propositions. Where A is a proposition, A is said to be true or false in
W at T according as it is occupied by T or F in W at T; if A is neither
true nor false in W at T, then 4 is said to be vacuous in W at T. (0€)-in-
tensions are known as properties of £-objects, or briefly as &-properties.
Where S is a &-property and X a &-object, X is said to instantiate or counier-
instantiate S in W at T according as X is an element or counterelement of
the occupant of § in W at T. We shall use the letter ‘o’ to denote the type
(((OL) -c) w) of i-properties. Redness, call it R, is an example of a ¢-property,
Le., of a o-object; an individual instantiates R in W at T just in case it is
red in W at 7. (ofn)-intensions are known as (binary) relations between
&-objects and #-objects, or briefly as £, 5-relations. Where R is a &, -rela-
tion, X a £-object and Y an n-object, X is said to be related or counterrelated
by B to ¥ in W at T according as X is linked or counterlinked to ¥ by the
cceupant of R in W at T.

Given some cbjects, other objects can often be consiructed from them.
Thus if ¥ is o function of type (n£) and is defined at a £-object X, then
an object — namely the value of F' at X — can be constructed by applying
F to X. We shall speak of this construction as [FX]. (Note that the nota-
tion ‘[FX7] does not stand for whatever 5-object is the value of at X, but
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rather for a particular way of arriving at that object, namely by applying
F to X). By replacing F or X in [FX] with an appropriate variable we
obtain an open construction ([fX] or [Fx] or [fz]), a congtruction, that is,
which depends for what it constructs on values assigned to its variable(s).
Variables in an open construection can be abstracied upon. For example,
abstracting upon f in [fX] we get a function which takes any (n&)-object
to the value taken by that object at X. This particular construction of
that function from [fX ] will be spoken of as [Af[fX]]. A construction may
be improper in the sense of constructing nothing at all. For example,
if 7 is not defined at X, then the construetion [#X7] is improper; but it is,
nevertheless, a construction.

The proposition that the American president is red, for example, can

be constructed thus: [}tw [At[[[Rw]t] [[Aw]t]]]] (w and 1 being variables

ranging over o and v respectively). As it constructs a m-object, the constru-
ction will be also called a n-construction.
‘We shall now define the notion of &-construction inductively. In doing

~

80, it will be convenient to write ‘x,’, ‘X, ?, ‘&’ ete. respectively for* x,x,...
X, XX L X, L 8 etie, and X7, (X ete. for ‘X, X, . X,
Xy Xy eeay X7 efie.

A1. Let x be a &-object or a variable of type & Then X is a &-construction.
A#2. Let F be a (n&,)-construction, X, a &-constructron, ..., and X,

a §&,-construction. Then the application [Fi(,d of F to X, is an
n-construction. '
43. LetY be an n-construction and %, distinet variables of the respective

types Z,. Then the abstraction [1%,Y] of Y on %, is & (nén)—oonstmc-
tion.
A4, Nothing is a &-consiruction unless it so follows from A1-3.

The lettering used so far will be used throughout the paper. In parti-
cular, small Roman letters will stand for unspecified objects or variables,
capital Roman letters for unspecified constructions, small italics for
unspecified variables, capital italics for unspecified objects, and small
‘Greek letters other than o, ¢, v, w, =, and ¢ for unspecified types. Besides,
brackets will be omitted where no confusion can result, and a dot will
represent a left-hand bracket whose right-hand mate is to be imagined

a8 far to the right as is consistent with other pairs of brackets. By X(Z,/z,)
we shall understand the result of supplanting the free occurrences of zZ,
by Z, respectively.

Parentheses and the superscripts which go with the symbols ‘II7
€37, ‘=’, and ‘A’ will also be omitted where possible. Moreover, by X =Y,
A o B, ete. we shall understand = XY, o AB etc, and by (Vo)A and
(o)A shall understand I1* AzA and 3¢ isA. (where #/£). Further notational
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economy will be achieved by writing ‘Xy’, ‘0.’ ete. for ‘(XY 7, ‘(0&) ete,
and ‘Xy,, ‘0., ete. for [[XY1Z], ‘((0&)y) ete. For example, ¢, is the
same as ((¢7) o) and Awit.R,; A, is the above construction of the propo-
sition that the American president is red.

2. Derivations

An ordered couple whose first component is a &-object or a &-variable
a and whose second component is a &-construetion A, symbolically a:A,
will be called a match. An assignment v of values to the variables is said
to satisfy a:A if on v a and A construct one and the same object. We ghall
also allow for matches whose first components are missing, symbolically:
A. Assignment v satesfres : A if A is improper on ». Two matches are said
to be patently wncompatible if they are of the form A4,:A, 4,:A, where 4,
and A4, are distinet objects, or of the form a: A, : A. Patently incompatible
matches are clearly never satisfied by the same valuation.

A couple whose first component is a finite set ® of matches and whose
second component is a match YN is called a sequent and symbolized thus:
DM, The members of ® are called the antecedents and IR is called the
succedent of ©—IM. We shall write M, ..., M,—~IN for R, ..., M, }—>M.
Aggignment v satisfies @ if it satisfies every member of ®. @I is valid
if every assignment which satisfies @ also satisfies IJi.

In what follows we shall state a number of validity-preserving opera-
tions on sequents, called rules of derivation. Rules of derivation will be
stated in the following form:

{*) O, Pty O—>My; ...; D=y, E IR,

In (*), O, Op->MM,, ..., O,—>IM,, and O—-YN represent sequents
of certain specific forms, peculiar to the rule in question. A clause may
be attached to (*) whereby some additional constraints are imposed on
those sequents. Such clauses will be called conditions. {*) affirms that
whenever the sequents on the left of F are valid, the sequent on the
right is also valid. The latter sequent is then said to be derivable from the
former sequents according to the rule (*).

A finite string of sequents is said to be a derivation with respect to (w.r.t.)
a given set R of rules of derivation if each term of the string — also called
a step of the derivation — is derivable from earlier steps according to
2 member of RH. If O+ is a step of a derivation w.r.t. R it is said to be
derivable w.r.t. R, symbolically Fg ©@—91.

The following are some basic rules of derivation (stated without proof).

24 E®->IM.  Condition: M belongs to .

2.2 Y- EO>IM. Condition: ¥ is a subset of P.
2.3 D, N>W; O->NEF O,

2.4 EFa:a.
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D->Q; O, F O>IM. Condition: Q, and Q, are patently
ingompatible. '

D, :A->T; @, a:A->M. F O Condition: ¢ is not free in
D, A, and M.

Oy FX 5 O, 1:F,0,: Xy, oo, 2, X,,—>MEO->M.  Condition:
f» &, are distinet and not free in @, FX,,, and 9R.

D>y :FX,; O>x%:Xy5.00; Dox, 1 X, F sy :FE,,.

O—+y:FX,,; O-x:X;...; O>%,: X, FO>y:FX, .

@, y:i5,—~y:g8,; O, y:88,—~>y:i4, F O1f:g. Condition: %,
and y are distinct and not free in @, £, g.

0, f:78, Y->ME O@—-M. Condition: f is not free in @, i3, Y,
and 9. ‘

O—>a:[12,A]Z,, F ®>a:A(Z,/%,). Condition: for 1<i<m,
every variable free in Z; is free for z; in A.

Dszy: %150 P2y ly; O>a:A(Z,[7,) F Ps>az[i5,A1Z,,.
Condition: z,, are distinct and for 1 < ¢ < m all variables free in Z;
are iree for z in A.

The following seventeen rules are based on sundry properties of the
objects T, F, ~, o, II, 2%, A™ and =* (i, j, I, i/o; #, 2, X, Y, ©/&; ¥[n;
Finé; ¢, Clod):

2.14
2.15
2.16

2.17
218
2.19
2.20

2.21
9.99
9.23
2.24

2.25

2.26

O, T:i-M; ©,F:i-ME O,

@,4: ~i>MEO>M.  Condition: ¢ is not free in @, i, and M.
®,i:j>Qy; @, i:j—>Q k Diz ~j. Condition: Q, and Q, are
patently incompatible.

®,i: ioj>MEO>P.  Condition: ¢ is not free in @, u, v, M.
®,T: i-T:jFO0-T:io j.

O->T:I>J; O-=T:1FO-T:J.

®,i:0c—>ME PP, Condition: @ is IT¢ or =° and ¢ is not free
in ©, M.

O—-T:0xk @->T:II0. Condition: x is not free in @, C.
O-T:TICE &—-T:Cx
O-T:CX EQ->T:ZC.

o—-T:20; @, T:Co—>MF @M. Condition: » is not free in @,
C, and 3.

O, i: Mxy—->ME O-M.  Condition: ¢ is not free in O, x, y,
and M

®—-T: AFXy F &—>y:FX.
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227 O-y:FXF O0--T:AFXy.
2.28 @,i:x =z E O->IN.
229 O0-T:x=XF®->x:X,
2.30 Ouex: X FO->T:x =X,

The following is an example of a derivation w.r.t. rules 2.1-2.30. For
brevity, the numeral denoting the ordinal number of a step is also used
as an abbreviation of the succedent of that step, and steps justifiable by
2.2 are omitted.

11-T: .Siw .~ 1(2.1)/2.2-T: [Jz.~T1]2(2.1)/3.2+T: ~1I(2,2.12)/4.4
—i: 1(2.1)/5.2,4—>T: ~i(3,4,2.8)/6.6->c: I(2.1)/7.7->j: THe(L.1)/
/8.6, T—j: TAZL(T, 6,2.9)/9.9—T: j(2.1)/10.—j: §(2.4)/11.9~T: [4i1(9,
10,2.13)/12.7, 9—>T: [Ajj]. Ie(9,7,2.9)/13.6, 7, 9>T: ILirI(12,6,2.9)/
[14.6,7,9—>T: [ieIlx(13,2.2)/15.6, 7, 9->T: I(14,2.12)/16.6, 7, 9—T:
[4id]11(15, 2.13)/17.4, 6,7, 9—T: [1ii]i(16, 4, 2.8)/18.4, 6,7, 9—T: (17,
2.12)/19.2, 4, 6, 7, 9—T: ~T(5, 18, 2.8)/20.20-F: T(2.1)/21.—F: F(2.4)
/22.>F: ~T(20,21,2.16)/23.2, 4,6, T>T: ~ j(19,22,2.16)/24.2, 4, 6, 7
—T: ~. ia1(23, 8, 2.9)/25.2, 4, 6->24(24, 2.20)/26.2, 4->24 (25, 2.11)/
[27.2->24(3, 26, 2.7)/28.1->24 (1, 27, 2.24).

Thus the sequent T: . XAz .~ I+T: ~. T112T is derivable w.r.t. the rules
2.1-2.30. We shall often deal with sequents which, like the above example,
are of the form x: A,,...,x:A —x:A. In order to save space, we shall
symbolize such sequents thus: A4, ..., A, —, A. Extra notational economy
will be achieved by writing A«s B to denote the pair of sequents A— B
and B—_A. Moreover, where x is T we shall drop the subscript altogether.
A new objeet is often conveniently introduced into discourse by means
of a rule of derivation of the form F A« B, where the introduced object
appears in A but not in B and # is not free in A or B. Subtraction, for
example, can be introduced by laying down the following rule, where
(k,1,t/z; i]o):
231 k[E—1] =te,[t+1] =EF.

For the subtraction function — is the only object X such that the sequents
[kXT] = t«>;[t+1] = k are valid. Similarly, we can introduce conjunction,
disjuction, truth and implication (symbolically: &, v, Tr, and < respecti-
vely) by means of the following rules of derivation (where %, j/o):

232 ki &jor ~.i>.~j Condition: h is not free in [4 & j].

In subsequent derivation rules of this form we shall leave the appropriate
condition unstated.

2.33 Fivies, ~. [~i] &.~].
234 ETrupe,(de).[Apwe] & . ActT (p/=, ¢/o7).
2.35  Ep < g, (Vw)(Ve).[Tr,p] . Tr,g (g/7).
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In the following sections we shall state the derivability of various
sequents from hitherto stated rules. Where R is the class of rules which
have been defined before such a statement is made we shall write simply
F & for + 3. Limitations of space preclude exhibition of full derivations
in the style exemplified above. Instead, we shall confine ourselves to
citing whatever previously stated derivability results are crucial in deriving
the sequent in question and assume that the reader can construct a full
derivation in terms of previously stated rules of derivation and the well
known rules of elementary number theory governing 6, <, -+, and -—.

In order to avoid repeated type indications, a small italic letter will
always be used to refer to unspecified variables of the same type, in con-
formity with the following schedule: a/o, b/o, ¢fox, djon, e/r, g|n, hlo,
'5//07 j//O: klzy Uz, n/(on(on)), Pl7,y 4/, ¥]o, s[o, bz, 4w, v/, W/,
wit, Yyl

3. The Past, Present and Future

Consider a member of the intensional base, say a monadic attribute
instantiable by é&-objects. There is clearly a unique function which takes
every world to the function which takes every moment of time to the
extension of the attribute in that world at that time. This function is
a &-property, and we shall say that it corresponds to the attribute. &-pro-
perties which correspond to the members of the intensional basis are
primary. In general, we have the class Pr'r (of type o ((ofn)m)) of primary
En-relations. By what has been said in Section 1 a possible world is comple-
tely specified by the chronologies of the primary attributes.

A basic proposition is one which says of some specifiec objects that
they do or do not display a specific attribute in the intensional base.
Each member of the set of basic propositions (Ba/ox) is thus constructible
from some primary Z,-relation B and some specific objects X, of the
respective types &,, in one of the following ways: /Iwﬂt.th;%n, At~

o~ Rw,,fn. (Consequently, the negations of basie propositions are them-
selves bagic.) We assume that basic propositions are defined at all world-
-times, and that worlds are individuated by which basic propositions are
true in them at each moment. We thus have:

31 (a) F(Vp)(Vi).Ba, . [Tr,p] =. Trypow =0,
(b) FBa,>Baiwit.~.p,,,
(e) EBa,—>pyV .~. Py

The K-shift (Sh/zvz) of a proposition P is the proposition that P wilk
talkte place in K seconds’ time:

3.2 E Shlp >, A0t Dygs g+
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The K-shift of a class (She/(om)z (o)) of propositions (' is the class of
all K-shifts of members of C:

3.3 F Shekoeo Ap . (dq) .0, &. p = Shkq.

By the conjunction (Cj /n(oat)) of a clags of propositions ¢ we shall
undergtand the proposition which is true just in ease every member of
C is true, and false otherwise:

3.4 F Cjoes dwit. (Vp).[AcpT] =. Tr,,p
The rules of derivation stated so far yield:

3.5 Feo,~>Gj, < p.

3.6 + ShkCj,«<,Cj.Sheke.

3.7 F(Vp).[AepT] o. AdpT—Gj,; < €,
3.8 F T [Cop e p = D)oy

The tautology (Taut/z) is that proposition which is true in all worlds
at all times:

3.9 F Tauts, AwitT.
‘We have the following derivabilibty results:

310 T, Taut,,.
311 Taute, wit[Cjlp .~.p = p],; (by 3.8 and 3.10).

A proposition P is a basic past-shift (Bap/ox) (a basic future-shift (Baf]or))
just in case it is in the set of K-shifts of basic propositions for some K less
(or greater) than 0:

312  EBapp<,(3k).[k < 0] & [ShekBa]p.
313k Bafpe,(3k).[0 < k] & [ShekBalp.

P is a basic shift (Bas/on) just in case it is basic, or a basic past-shift
or a basic future shift:

314  FBasp<;.Ba,v .Bap,v Baf,.

C is a class of basic shifis (Bac/o(on)) if all members of C are basic
shifts:

3.15  FBacce;(Vp).[AcpT] > Bas, .
The above rules yield:

316 F —»Baelp .~.p =1p.
317 rO0<k, (d¢).Bap, &. g4 & p = Sh—,q—>Bap, & Pyp.y-

The present, past, future, past-and-present, and past-present-and-future
(Pre, Pst, Fut, Pstp, Ppf/=,,) are the conjunction of all the true members,
respectively, of Ba, Bap, Baf, the union of Ba and Bap, and the union
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of Ba Bap, and Baf:

318  EPre,«,Cjip.Ba, & p,y.

3.19  kPst,,Cjip.Bap, &p,,.

320  EFui,— Cjip.Baf, & p,,.

3.21  EPstp,,Cip.[p = Pst,]v [p = Pre,].
3.22  kPpf,—,Ciip.[p = Pstp,,]v [p = Fat,,].

‘We have:

3.23 Where P is Pre, Pst, Fut, Pstp, or Ppf, (a) F =[Pl
(0)  F[Pulac>Puwt = Pu (by 3.5).

324 Ppf,— Cjip.Bas, & p,,-

326 +Ppf, =Ppf,—»w =0 (by 3.5, 3.1, and 3.24).

3.26 FO<k—>Pst,;, ,; <.Sh—,Pst,;, (by 3.6, 3.7, and 3.17).

3-27 " O < k, PStp’W[t-}-k] - Pstpv[t+k] ~—>Pl'ewt = Pl‘ew .

3.28 + Where P is Pst or Pstp, FO0<Ek, Py py = Pyyirg=>Puy = Py
(by 3.26, 3.27)

A world is weakly (or strongly) K-feasible if it will be a candidate for
actuality unitl and excluding (or including) K seconds hence (Fea, Feas/

/(ozw)m):

3.30  k Feas, koo, Psip, s = Pstpyy gy -

‘We have:

3.31 Ik Feas,  kv—>Fea,kv.

3.32 Where F is Feas or FKea, (a) +—>F,kw, (b) FFu,kv
—F kw, () Fkv, Py ku—F ku.

333 Fl<k, Fea,kv—>Feas v (by 3.28).

A proposition is weakly (or strongly) K-feasible if it is true in some
weakly (or strongly) K-feasible world (Fs, Fss/(0tn),,):

3.34  EFskpes,(Av).[Fea ko] & p,y,.
3.35  E Fss,kpes;(v).[Feas,, kv] & p,.

‘We have:

3.36  FFss, kp—Fs, kp (by 3.31).

3.37 Fp—>Fss, kp  (by 3.32).

3.38  + Fea,kv, Fs, kp—Fs, kp (by 3.32).

3.39  +Feas, kv, Fss  kp—~Fss, kp (by 3.32).

340 +h<l,~. Fss, hp—~. Fs,lp (by 3.33).

3.41 + —»Fes, kPpf,, (by 3.23 and 3.3).

342  Fopg—>lAwi. [Ppfl, &k =11 < p.

3.43  Fp—~>Fss, dwit. [Ppf,. ], &0 (by 3.23 and 3.3).
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A proposition is K-inevitable (Inev/(orn)m) if it is in true every strongly
K-feasible world:

344  EImev,,kpes,;(Vv).[Feas ko] o. Tr,,p.

We have:

3.45  (a) Pstp,; < p—>Inev,0p (by 3.23).
(b) Imev,, 0p—[iwit.[Pstp,, 1, & k =11 <p (by 3.23).
346  F0<F, Iev,0p—>Inev,, ,,0.Sh—p (by 3.28).
3.47  F Inev,,0Ppf,, Feas,,0v—>w =v (by 3.23 and 3.25).
3.48  +(Vp).c, » Inev,,; kp—Inev,, kCj,.
3.49  F —>Inev,,0Pstp,; (by 3.45).
3.50  t Inev,,O0Fuat,,, Feas ,00>w =v (by 3.47, 3.48, and 3.49).

By 3.50, if the future is inevitable then the actual world is now the only
feasible world. As a consequence, if the future is always inevitable then
the actual world is the only world which is ever feasible:

3.51  F (Vi).Inev,,0Fut,,, (3t).Feas,,0v>w =v (by 3.50).

A proposition P is K-settled (Set / (om)m) if either P itself or the negation
of P is K-inevitable:

3.52  ESet,kp<yInev,, kp]v Inev,, kiwlt .~ p,,.

A proposition P is weakly (or strongly) K-sufficient for proposition ¢
[and @ weakly (or strongly) K-necessary for P] if @ is true in every weakly
(or strongly) K-feasible world in which P is true (Suf, Sufs/(ovnn),,):

3.53  F Suf,,kpg,(Vv).[Fea, kv & Tryp] o Tr,q.
8.54  F Sufs,,kpge,;(Vv).[Feas kv &. Tr,p] o Tr,q.

A proposition P is realisably weakly (or strongly) K-sufficient for pro-
position @ [and @ realisably weakly (or strongly K-necessary for P] if P
is weakly (or strongly) K-feasible and P is weakly (or strongly) K-sufficient
for @, (Sufr, Sufsr/(o-mn)m):

3.55  F Sufr,kpg—,Fs,kp &. Suf,,kpq.
3.56  k Sufsr,, kpg«s,Fss,, kp &. Sufs,, kpg.

We have:

3.57  Where 8§ is Suf, Sufs, Sufr, Sufsr,
F 8y kpg—Inev,,kiwit. S, kpq.
3.58  Where 8 is Sufs or Suf, (a) F —8,kpTaut.
(b) F Swtkﬁgb Swtquﬁswtkpr'
3.59 F Du—Sufsr,,0[Ppf,,Jp (by 3.23, 3.32 and 3.41).
3.60 —Sufs,,k|[iwkt. [Awitiz. P12 p.

10 — Studia Logica 2--3/82
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4, Connections

A proposition is inevitable (by 3.45) if it ig implied by the past-and-
present. Hence all true past-shifts of basic propositions are now inevita~
ble. However, future-shifts may also be inevitable. This is because worlds
congist not only of observable events, but also of connections between
such events. One event’s having the power to bring about or ¢ause another
event is an example of such a connection. The extension of cause-effect
relation is part of what makes a possible world the world it is. In other
words, the cause-effect relation is primary.

Causation is just one example of what will be called nexuses. A nevus

(Nex/ 0 ((on(on))m)) is any primary relation N between events and classes

of events satisfying the following condition: the proposition that event
E is related by & to a class of events D implies that one of the members
of D occurs:

41k Nexne,Prie™ & (Vo) (V). [0kt [, 68] & ey
< Awit(3¢q).d, & -

Causation is an example of what might be called strict nexuses: nexuses
which always relate events with one-element classes of events. An example
of a nexus which is not strict is the disposition relation.

Event E is connected (Con/ (on(on))m) to class D if ¥ Drings about
(one member of) .D.

4.2 k Con,ede>;Bacy & (An).Nex, & (F). M4z [Sh—ye].She—, d.

Proposition @ forces (For/(on(oaz)))l) if there is an event F such that
@ implies that ¥ brings about D:

4.3 E Forgd«,(Je).q < Awit.[Con,ed] & e,y.

The latitude (Lat/(on)mz) of an event P relative to a proposition @ is
the intersection of all classes which contain P and are forced by Q.

4.4 F Latpg«s,de. (Vd). [Forgd &. AdpT] . AdeT.

Thus the latitude of P relative to @ is the set of all alternatives to P given
all the connections and events reported by ¢. The latitude of P relative
to the actual past-present-and-future is the aciual latitude of P. The actual
latitude is thus the set of real alternatives to P given the obtaining con-
nections and history of the actual world. If the latitude of P relative
to a true proposition @ is the same as its actual latitude, it is clear that
@ reports an etiological ancestry of P. § is said to be etiologically complete
(Ecom/ (on)m) if @ is true and is the conjunction of a set of basic shifts
whose latitude relative to @ is their actual latitude:

4.5 k Ecom,,q<,q,; &. (3d).Bac; &. [g¢ = Cj;] &. (Vp).d, >. [Latpq]
=, LatpPpf,;.
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An etiologically complete proposition thus entails a full etiological ancestry
of each event which it reports.
We have:

4.6  —Ecom,,Taut (by 3.11 and 3.16).
4.7 b —Ecom,,Ppf,, (by 3.23 and 3.24).

5. Choices, rules, and strategies

Willing (Vol/(ot5),,) is a relation between an agent and a :-property.
Agent X bears the willing relation to a property just in case he wills to
have that property. X’s K-choice (Choi/(mz)m) is the conjunction of all
volitions X will perform in K seconds’ time:

5.1 F Choi,, kxe,Cjig(3r).[q = Iwit. Vol 1,2r] & qy-
5.1 yields:
5.2 F —>[Choiy, kv l,y,-

G is a feasible K-choice (Fchoi/(ovin),,) for an agent X if it will still
be feasible in K seconds’ time for & to be X’s choice.

5.3 F Fchoi,, kug«s Fs, kiwit.g =. Choi,kr.
5.4 F —Fchoi,, kz.Choi,kz  (by 3.36, and 3.37).

Each property 8 represents a rule for an agent — that is to say, 8
generates a set of instructions which the agent may or may not follow.
Basically the instructions will be of & conditional form, specifying a range
of admisgible choices for the agent for each of the ways in which the world
may develop. Let us say that the agent implements the rule if he now has
the property. (The present possession of the property may, of course, de-
pend on what happens in the future.) Then the admissible choices generated
by 8 are just those which, whenever it is still weakly feasible for the
agent to implement §, do not of themselves rule out his implementing S.
If the choices which the agent makes are all admissible then he is said to
heed 8. Note that an agent may well heed a rule (that is, do his best to
implement it) and yet fail to immplement if.

A rule (or property) 8 is K-applicable (Appl/(o7i0),,) for X if it is weakly
K-feasible for X to have S:

5.5 F Appl,; ks Fs,  klwli. s 0.

G is an admissible K-choice {Adm/ormio),,) for X w.r.t. § if it is weakly
K-feasible that @ is X’s K-choice and X has S:

5.6 F Adm,, kgws<;Fs,, kiwit.[g = Choi, k] &. s,,».

X K-heeds (Heed/(orw)m)S if either § is not K-applicable for X or
X’s K-choice is admissible for X w.r.t. 8:

5.7 F Heed,, kxs<«;[Appl,, kas] . Adm,, % [Choi,, kx]xs.
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"~ We have:

5.8 t Adm,, kgrs—>Safr,, kglwit. Heed ,kvs  (by 3.32 and 5.2).

5.9 F o~ Fs kit s, 0> (V). [Fea, ko] o. Heed,kws  (by 3.38).

510  Fs,o—>Adm, k[Choikx]les  (by 3.32).

511  + —(dg).[Fchoi,krg] &. Sufr,,kgiwit. Heed, ,kws (by 5.2, 5.4,
5.8, 5.9 and 5.10).

An agent heeds (Hed/(o:0),,) 8 if he K-heeds 8 for every positive K :

512  F Hed,us,(VE).[0 < k] >. Heed,, kus.

513  F(VE).Adm,,k [Choi,, ks ws->Hed,,s.

514  rs,x—~>Hed,2s (by 5.10 and 5.13).

515  F ~. Fss,00wlt.sux, 0 < k—>Heed,,kos (by 3.40).

516  F —Fss, 0/lwit.Hed ,xs (by 3.37, 5,14 and 5.15).

5.17  + —Sufs,,0[lwit. [Hed,, 0 witAnp ] & D1 AwAE. [Aw02TA5D 0@ -

Let Hd (of type os) be the function which takes each property 8 to the
property of heeding 8:

518  F Hds<s, witin.Hed 25
We have:

519  + Appl,kws—Appl,koEd, (by 5.14, 3.36, and 3.37).
520  + Hed,wHd,—~>Hed zs (by 3.32, 3.38, 5.10 and 5.19).
521 +Hd.Hd«, Hd, (by 5.14 and 5.20).

From 5.20 it follows that the heeding of § is a property that the agent
can acquire simply by making the right choices at the right times. It does
not matter what the world does in response to the agent’s choices; there
is always a feasible K-choice for the agent to make which will ensure
that he K-heeds 8. By continuing to make these choices the agent heeds 8.
Thus the heeding of 8 could be called a strict strategy. It generates a rule
‘whose implementation by the agent is just a matter of the agent making
appropriate choices.

Besides strategies of this sort which require for their implementation
no cooperation on the part of the world, we will consider provisional
strategies — that is to say, rules which the agent is able to implement
on. S0me Proviso.

‘Where 8 is a property and P a proposition, § is a P-strategy (Str/ (oum),,,,)
for X just in ease X’s having 8§ is strongly sufficient for P and X’s heeding
S together with P is realisably strongly sufficient for X to implement §:

5.22  F Stryusp e, [Sufs,, 0 [Awit.s,0]p] &. Sufsr,,0 [Awit.[Hed,,zs]
& Pl At .80

It follows that the property of heeding 8§ is a P-strategy for X just in case
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X’s heeding § is strongly sufficient for P:

5.23  + Sir,sHd, p<>;Sufs, 0] wit. Hed,,ws]p  (by 5.16, 5.20).
5.24 F —Swr,oHd Taut (by 5.23 and 3.58).

5.25  F Str,2sp—Inev,,0lwil. St 2sp  (by 3.57).

5.26 Fss,,0p—Str,,x[iwitiz.pJp (by 3.60, 5.14, and 5.17).
5.27 | Str,,wsp—>Fes,,0lwit. [s,,5] & Py

5.28 I Str,wsp, Inev,,,0p—Str,,wsTaut  (by 3.58, 5.16).

5.29  F —>Sw,e[iwltiz [Ppf, ]| Ppf, (by 3.41 and 5.26).

A property 8 ensures (Enms/(oi00),,) a property A for X just in case
X’s having 8 is strongly sufficient for X to have 4:

5.30  F Ensasa«;Sufs,,0[lwit.s 0] wit.a,,2.

531 F —Ens,wss.

5.32  F Emns,asa, Ens ,zab—Euns 256  (by 3.58).

5.33  + Ens, wsa—Inev,,0kwit . Ens 2sa  (by 3.57).

5.34  F Sufs,,0piwii.a,x—Ens, o [iwitizp,,la.

5.35  Faya—>Ens,»[iwitic. [Ppf,l]e (by 3.59 and 5.34).

6. Opportunity

We can now define what it takes for an agent to have an opportunity to
perform a given task on a goven proviso. Agent X has the opportunity to A
provided P (Opp/(own)m) just in case there is a P-strategy 8 for X such
that 8 ensures A for X:

6.1 E Opp,zap<; (ds). [Str,,xsp] &. Ens,,xsa.
We have:
6.2 b —Opp,,#Hd,Taut (by 5.31 and 5.24).

Hence any agent has the opportunity to heed any rule come what may.

6.3 (a) + Opp,,wap—Inev,,0iwit.Opp,,zap (by 5.33 and 5.25).
(b) F ~. Opp,,rap—>Inev,,0iwit .~. Opp,xwap  (by 6.3a).

Accordingly, opportunity is independent of the future:

6.4 F —>Set,, 0lwit.Opp,,xap  (by 6.3).
6.5 t Ens,,wab, Opp,z0p—0pp,,2bp  (by 5.32).

Hence weakening of the task preserves opportunity to perform it.

6.6 F Sufsr,, 0piwit.a,z>0pp 000  (by 5.26 and 5.34).

6.7  Opp,,vap—Fss,,0wit. [a,0] &p,, (by 3.57).

6.8 b Inev,,0iwit.a,,z, Fss,,0p—0pp,cap  (by 6.6).

6.9 F Opp,wap < Opp,,x [Awitle. Oppwap]p (DY 6.3, 6.7, and 6.8).
6.10 | a,,2->0pp,2aPpf,, (by 3.59, and 6.6).

6.11  + Opp,,xwap, Inev,,0p-—>0pp,,xaTaut (by 5.28).

6.12 | Inev,,0Fut,,, Opp,0ap—a,z (by 3.50 and 6.7).
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It might be terpting to define categorical opportunity as the possession
of a provisional opportunity on an obtaining proviso. In [5] this is shown
to be inadequate. To have the categorical opportunity (Op/(ow),,) to do
A an agent must have the opportunity to do A on some etiologically
complete proviso:

613  F Op,wacs;(Ip).[Ecom,,p] &. Opp,2ap.
We have:

6.14 I Opp,woTaui—Inev,,0lwii.Op, ra  (by 6.3 and 4.6).
6.15  + —Inev,02wit.0p,,0vHd, (by 6.14 and 6.2).

Thus, anybody inevitably has the categorical opportunity to heed any
rule.

6.16 I Ens,zab, Op,,2a—0p,2b (by 6.5).

Thus weakening of the taks preserves categorical opportunity.
6.17 Fayur—>0Opyra (by 6.10 and 4.7).

Thus, whatever the agent in fact does he hag the opportunity to do.

618  + Opp2wap, Inev,, 0p—Inev,,01wit.Op,xa  (by 6.11 and 4.6).
619  t Op,wa—>Fss,0lwit.a 2  (by 6.7).

6.20  + Op,elwitis. Oppwap—0Opp,,vap  (by 6.19 and 6.3).

6.21  + Inev,,0Fut,,, Op,2a—~>a,x (by 6.12).

Thus if the future is determined then all opportunities are realised. A num-
ber of plausible inference schemata are not derivable w.r.t. the rules
stated above. Among them are the following:

Op,26—Inev,,, 0 wit. Cp,,2a,

Op,oiwlitiz . Op, 00— 0p, 00,

8 y Doy OPPyy0D

Oppwt‘/va’p H Opwt wiwz’m'wp wi 0Pwt @,

Gppwt BAP 4 Oppwtmaqéoppwtwalwzt DusV Qusts

OPPwt“'“P H GPPwtm a’q%OPpwtmaM’UAt'_’pwt & Qust s
Sufs,,, 0 [Awli.aux]p, ~ py— ~. Op,2a,

Sufsr,, 0pwit. Op,x0—>O0pp,,xap .

Closer examination shows that each of these is a fallacy from an intuitive
point of view. For counterexamples see [5].

7. Ability

Intending, like willing, is a relation between an individual and a pro-
perty. A slightly more general relation is that of K-intention. Agent X
K-intends (Int/(ovi0),,) property A if in K seconds’ time he will intend
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to instantiate A now. X is said to steadfastly intend A (Ints/(ocw0),,) if
X will intend to have A (as of now) at every future moment at which it
will not be inevitable that he has A (as of now):

7.1 E Ints, 00, (VE).[[0 < k] & .~. Inev,, kiwit.a,,z]
o, Tr,Awit Inot kra.

X has a command (Cod [(oto0m),,) of a strategy S with respect to property
A on proviso P if X’s gteadfast intention to A together with P is realisably
strongly sufficient for X to heed S:

7.2 k Cmd, ;wsap <, Sufsr,,0 [Awlt Ints 00] & p,, ] wit. Hed, ,zs.
‘We have:

7.3 F Cmd,, sap —Inev,, 04wt Cmd ,osap  (by 3.57).
7.4 + Ints 50— Cmd,, @ [Awitiz [Ppf,, 1, oPpf,;, (by 3.59 and 5.14)

7.5(a) It Sufsr,,0[lwit. Ints oHd, Jiwit. [Hd, ], ,2—Cmnd,,»Hd Hd, Taut.
(b) F Cmd, ,asap, Inev,;0p—Cmd zxsaTaut.

An agent X can A provided P (Can/(otom),,) if there is a P-strategy
&8 for X, § ensures A for X, and X has a command of § with respect to A
on P:

7.6 F Can, wap<,(Is). [Sir,wsp] & [Ensasa] & Gmd,,asap.
We have: ‘

7.7 F Can,xap—0pp, 200 .

Thus, one can only do on a certain proviso what one has the opportunity
to do on that proviso.

7.8 F Can,,xap—Inev,,0lwit.Can ,zap  (by 5.25, 5.33 and 7.3).
7.9 b Ints 20, a,,0—Can, zaPpf,, (by 7.4 5.35 and 5.29).
710  F Can,2op—Fss,,04wit. [Ints ,xa] &. 9y &. 0.
711+ Can,wap—>Sufsr,, 0 [Awlt. [Ints ,20] &. p,]Awit. a2

(by 3.57 and 7.10).
7.12 I+ Sufsr,,0[wit. Ints oHd ] lwit. [Hd, ]2 Can,,oHd, Taut

(by 5.24, 5.31 and 7.5(a); cf. 6.2).

7.13  Can,,zap , Inev,,,0p-—Can, waTaut  (by 5.28 and 7.5(b)).
714  F Inevy,Fut,,, Can,zvap—a,ec  (by 7.7 and 6.12).

Hence if the future is determined, no one can do anything (on any proviso)
that he does not do in fact.

7.15 F Can,,x[Awliiz . Can,,wapp—Can g wap  (by 7.10 and 7.8).
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Hence provisional ability to be provisionally able to do something entails
provisional ability to do it.

716  + Inev,,04wit.[a,,2] & D, Fss,,0lwit. Ints,,za—Can,,zap
(by 5.14, 5.31).

717+ Inev,,0lwit.a,@, Fss,, 00wl . Ints 00— Can,,waTaut
(by 7.16).

Thus, if it is feasible for an agent to intend something he cannot help
doing, then he can do it come what may.

Categorical ability can now be defined in terms of provisional ability
the way categorical opportunity was defined in terms of provisional
opportunity. X can A (Cn/(ow)m) if there is an etiologically complete P
such that X can A provided P:

718  kCn,oae,(3p).[Ecom,,p] &. Can,wap.
‘We have:
719  t Cn,2a, Ints ,wa—a,,0  (by 7.11).

Thus if an agent steadfastly intends something he can do then he will
do it.

720  +Ints,za, a,0—>Con,ea  (by 7.9 and 4.7).

By 7.20, an agent can do whatever he intentionally does in fact.
721+ Coy,wa—Fss,,0/wit. a0 & Ints,,wa  (by 7.10).

By 7.21 it is strongly feasible for an agent to do what he can do.

722  + Cnyoa—0Opyra (by 7.7).

By 7.22 one can only do what one has an opportunity to do.

7.23 I Sufs,,0[iwit. Ints ,za] [Awlt .~. a,,2]> ~. Co,2a  (by 7.21).

7.23 could be called the ‘bungler theorem’. It says that if intending some-
thing prevents an agent from doing that thing, then he eannot do it (even
if he accidentally does it).

724  + Cnuedwit. Cangyrap—>Cangeap  (by 7.21 and 7.8).

If an agent can give himself a provisional ability, then he has that provisio-
nal ability. (Note that the same does not hold for categorical ability).

725  r Can,,zaTaut—>Inev,,0iwit.Cn 0a  (by 7.8 and 4.6).

If an agent has the ability to do something come what may, then it is
inevitable that he has the categorical ability to do it.

7.26 | Can,zep, Inev,,0p—Inev,,0lwit.Co2a  (by 7.13 and 7.25).
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If an agent can do something on an inevitable provise then inevitably
he has the categorical ability to do it.

7.27  F Saufs,,0[iwit. Ints, ,oHd ][ 1wit. [Hd, ], 2]
->Inev,,0dwit.Co,oHd, (by 7.12 and 7.25).

If intending to heed a strategy is realisably sufficient for an agent to heed
it then if is inevitable that he can heed it.

728  +Inev,,0iwit. a2, Fss,,0/wit.Ints ,va—Tnev,,, 0 wii. Co 00
(by 7.17 and 7.25).

Thus, if it is feasible for an agent to intend something he cannot help
doing then it is inevitable that he can do it.

Some plausible inference schemata involving ability, which are not
derivable from the rules stated above, are now listed. Again, it is possible
to construct counterexamples which demonstrate that each one is a fallacy
from an intuitive point of view. For details see [5].

a,,2—~Cn,ee  (cf. 6.17),

Can,xap , Ens  0ab—Can,abp  (cf. 6.5),
Cn,, 00, Ens ,2ab—>Cn,2b  (cf. 6.16),
Cn,,va—Inev,, 0 wit.Co, 20,

Ty pwt'écanwtma’p7

Can,,wap , Cn,,xlwitiep,,— Co 00,
Can,,wap , Can,,zaq—Can,26Awit. D,V ¢,
Can,,;wap , Can, waq—>Can,,wvalwll.p,; & q,,,
Sufs, 0 [Awit.a,x]p, ~. Py ~. Cn,00,
Sufsr,, 0piwit. ¢ 0->Can oap  (cf. 6.6),
Cu,, wiwitis . Coyoa—Cn, 0.

8. Freedom and responsibility

An agent is free (Free/(oiwn),,) with respect to A if he can A and he
can non-4.

8.1 E Free, 20 [Cn, 0] &. Co,0lwitis .~. a,,5.

‘We have that if the future is determined then an individual is not free
with respect to any property:

82 I Inev,Fut,—~ ~.Free,ra (by 7.22 and 6.21).
8.3 b ~. [Fss,, 00wt . Ints, ,z00)] &. Fss,,00wit. Ints alwitic .~. a,,2
— ~. Free,za  (by 7.21). '

By 8.3, if it is not both strongly feasible for an agent to intend A and
strongly feasible for him to intend non-A then the agent is not free with
respect to A.
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An agent is (minimally) free (Fre/c) if he is free w.r.t. some A.
8.4 E Fre,,x<;(da) . Free aa.
We have the incompatibility of freedom and determinism:

8.5 F Inev,,Fut,,— ~ (dz).Fre,2 (by 8.2).
8.6 F ~ (da).Fss,,0iwit . Ints, 00— ~. Fre 2 (by 8.3).

By 8.6, if it is not feasible for an individual to form intentions then that
individual is not free.

An agent is (partially) responsible (Resp/(owr),,) for a state of affairs
Q it @ is now inevitable and there was a time at which something the
agent could have done would have averted it:

8.7 F Resp,,#q<>;[Inev,,0¢] & (da)(3E).[0
< k] &. [Ensw[i_,q @@ [AwAA® .. G171 & Coypy_ 20,

We have:
8.8 t Resp,,,2g—>(VEk).[0 < k].Resp,;,1,%.Sh—, g (by 3.46).

Thus, if an agent is responsible for a state of affairs he will always be
responsible for it.

8.9 t Inev,,,04wit. @, Free,y . 2M0MAD . Gy, 0 @
—Resp,,, wAwit. a,,0.

If an action is irrevocably ccmpleted and X was free to do it, then X is
now responsible for it.

8.10  FInev,,0p, [Awll .~ ¢,,] < lwit .~ p,,, Resp,,,29—>Resp,,ap.

It may seem counterintuitive that if one is responsible for @ and non-Q
implies non-P then one is also responsible for P (provided P is also inevit-
able). But it is clear that if X could have done something to prevent
@ then the same thing would have prevented P, where non-{ implies
non-P. On the other hand, the following sequent is not derivable:

Inev,,0p, ¢ < p, Resp,,49—Resp,,xp.

The fact that X is responsible for @ and ¢ implies P does not entail that X
is responsible for P. For it does not follow that X could have done some-
thing to prevent P.

8.11 F Resp,2dvik.q,, & &k = t—Resp,,aq.
The following is a special case of 8.10:

8.12  F (dg).Resp,xg—>Resp,,aPstp,;, (by 3.49, 3.45(b), 8.10 and 8.11)
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Reluctance to accept 8.12 stems from committing the above mentioned
fallacy. From the fact that one is responsible for the past-and-present
{that is to say, one could have made it different) it does not follow that one
iy responsible for every past event.

813  F (¥¢) .~ (a).Fss,, 00wt . Ints, z0a—> (V1) .~ (3q) . Resp,,;2q
(by 7.21).

Thus, if it is never feasible for an individual to form intentions then that
individual is never responsible for anything.

9, Collective opportunities and abilities

What is not within the power of a single individual may be within
the power of a group of individuals. Group opportunities and abilities
are not reducible to individual opportunities and abilities. We will now
briefly outline a way in which the theory can be generalised to deal with
groups. _

Where Z is an ¢-class, Z’s K-choice is the conjunction of all the volitions
members of Z will perform in K seconds’ time. A rule for Z is any (ot)-pro-
perty. The definitions of applicability, admissibility, heeding, sirategy
and opportunity can now all be taken over simply by raising the types
wherever appropriate. For abilily a new intention relation is required.
An individual X K -intends A for Z if X will intend in K seconds’ time
for Z to have A (as of now). Z steadfastly intends A if every member of
Z intends Z to have A at every future moment at which it is not yet inevi-
table that Z has A. Command, ability, freedom and responsibility for
groups can now be defined the way the corresponding notions for indivi-
duals were defined above, except for appropriate type-raising. Once this
is done the theory of individual ability and freedom expounded above
can be reformulated as a special case of the theory of collective ability,
where the collective is a one-element clags.!
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