
KI IS J R Applying Modal Logic* 
~EGERBEt~G 

Abstract.  The main purpose of the paper is to introduce philosophers and phi-  
losophical logicians to dynamic logic, a subject which promises to be of interest  also 
to philosophy. A new completeness result involving both " M t e r ' - -  and "dur ing" - -  
operators is announced. 

1. Introduction 

lV[odM logic, like other  kinds of philosophical logic, comes in two 
varieties, pure and applied. I t  is not  quite the  same distinction as the  
corresponding one in mathemat ics .  1)are modM logic is the  formal s tudy 
of certain abst ract  structures.  Applied modM logic is the study,  not  
necessarily formal,  of certain structures,  not  necessarily abstract ,  and  
with a certain purpose:  to relate to something else -- to some par t  of 
~some conception of) reali ty.  Therefore the  terminology is a bit  misleading. 
l~or one thing, applied modal  logic need not  be pure modal  logic applied 
5o something. 

Throughout  the  history of modal  logic, the  pure  and applied varieties 
have  been intertwined.  Sometimes the  dividing line is difficult to discern. 
]3ut t ha t  it is there  m a y  be seen from the different kinds of criticism 
*here are. Critics will not  dispute tha t  there is a definite body of established 
results in pure modal  logic, even though they  m a y  find those results 
trivial or unexcit ing.  In  other  words, the  existence of this discipline is 
no t  in question. The si tuation is different in applied modal  logic, for 
5hat is the  discipline critics have  in mind when they  say, as they  sometimes 
do, t ha t  there  is no such thing as modal  logic, or even tha t  there  can 
be  no such thing. A disturbing number  of competent  philosophers remain  
unconvinced  tha t  applied modal  logic makes sense, let alone has any th ing  
5o offer philosophy. 

One m a y  ask why  this is so. I t  seems to this au thor  tha t  there  are 
a t  least two impor tan t  answers. One: key  concepts of Kr ipke  semantics -- 
which is the  stuff tha t  today ' s  applied modal  logic is made  of -- are 
ev ident ly  too obscure or too badly  explained to be generally intelligible. 
Two:  the  usual analyses in terms of modal  logic of m a n y  philosophically 
interest ing concepts fail to bring out  their  logical form. Events ,  processes, 

* The work on this paper was supported in par t  by an Academy of F in land  
~ellowship fS~" l~ugre h~znna vetenskapsidkare during the former half of 1979. The 
paper  i ,  self was read as an invi ted address at the Conference on Prac*icM and Phi- 
losophical IV[or of lXYon-classical Logics held at Torufi, August 15-19, 1979. 
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and actions are examples of concepts for whose analysis modal logic has 
proved rather  unilluminating so far. 

These are sweeping verdicts! But even those who take a less pessi- 
mistic view than the author will probably agree tha t  any development 
tha t  offers the slightest promise to improve the situation deserves the 
at tention of all friends of modal logic. One recent effort emanating from 
the ~assachusetts  Insti tute of Technology that  surely falls under this 
heading is dynamic logic, a creation by Vaughan Pra t t  and his colla- 
borators. Their ideas provide a striking interpretation of possible-worlds 
semantics which, in addition to being precise and intelligible, is also. 
clMmed by its creators to be useful. Even more, dynamic logic coul4 
provide a new way of analysing action! 

Dynamic logic was born in a computer science department,  and i~ 
available accounts it appears as the offspring of computer science tha t  
it is. This paper is perhaps the first a t tempt  to present it to a philosophical 
audience. The plan of the paper is as follows. Section 2 is devoted to giving 
an ilhtstrative example. This example, which falls slightly outside the 
intended range of interpretations of dynamic logic, is meant to be helpful 
for the continued intuitive discussion in Section 3 and 4. Section 5 con- 
rains a general definition of propositional languages of dynamic logic. 
In Section 6 the fundamentals of formal semantics are developed. Some 
possible implications for philosophy are sketched in Section 7. 

~ u c h  of the material presented here is already known. The author 's  
debt to Professor Pra t t  is great, both to his papers and to conversations 
with him. Among other things Pra t t  should be credited With the idea~ 
tha t  programs are intimately connected with actions. Thus the author 's 
contribution is to have recast Prat t ' s  ideas in a form that  is more recogni- 
zably modal logic as this discipline is known traditionally; the modelling 
in Section 6 should be compared with that  of [4]. The two theorems in 
Section 6 are announced in print for the first t ime; they were presented 
.to the Fifth Scandinavian Logic Symposium in Aalborg, Denmark, on 
J~nuary 17, 1979. The author is also responsible J~or the material of Sec- 
tion 7: that  one might t ry  to analyse human action with tools devised 
to analyse machine action has not been suggested by Pratt ,  and the idea 
may indeed prove u~reMistic. 

I t  should be mentioned that  Prat t ' s  dynamic logic is not the only 
theory of its kind. There are predecessors, like the theories of Floyd 
und Hoare, and there are present day alternatives, like SMwicki's theory. 
For Prat t ' s  own work, see [2, 3, 4]. A survey of the field is given in Pratt. 
[5]. A previous a t tempt  by the author to steer dynamic logic into th~ 
mMnstre~m of traditional modM logic was made in [7]. 

2. A simple-mlnded example 
My family's washing machine is a black box-like object in the base- 

ment. I t  is operated as follows. You load the dirty laundry into the barrel. 
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You pu t  detergent  in the holder intended for this purpose.  You  select 
a program b y  inserting a program key,  made  of pink plastic, into a certain 
slot. Y o u  check tha t  the  water  and the electric power  are on. You  press 
the  s tar t  bu t ton .  Then a lamp lights up, and the machine takes  over.  
I f  there is no malfunct ion or interference, the  machine will have  cari'ied 
ou t  the  chosen program in less than  half an hour. At  the  end of a successful 
wash the lamp goes out,  indicating tha t  the  machine has stoPl~ed. I f  
half an hour  or so after  the s tar t  b u t t o n  was pressed everything is quie t  
b u t  the  lamp is still on, you  suspect  t ha t  something is wrong -- for some 
reason there is a failure. As minutes  pass with no fur ther  act ion and  
wi thout  the  lamp going out, your  suspicion rapidly  grows into conviction : 
ve ry  soon you  "know" tha t  something is wrong. 

The programs on the program keys have short  mnemonic names or labels, 
like W~gTE; WaZTE~ VErY DI~Tu COLORED ; COLORED, VERY DI~TY; COTTON; 
1NTYLON; DELICATE; DRIP-DRY; SYNTHETIC DRAPES; etc. The effect of each 
program is outl ined briefly in the  instruction book. For  example,  this is 
the  information given abou t  W~I~E, VERY Dm~Y: 

Fills cold water  to high level. 
Kea ts  to 50~ during tumbling. 
Fills cold wa te r  to low level. 
]=feats to 95~ during tumbling. 
Fills cold water .  
4 rinse cycles with short  in termi t ten t  spin cycles. 
Spin cycle 3 minutes  45 seconds. 

Ex ac t l y  how the machine funct ions is not  explained to the  customer.  
There exists of course an extensive theory  for the hardware  of the  machine,  
a theory  which m a y  be said to form a subtheory  of physics (mainly me- 
chanics and the theory  of electricity). The local dis t r ibutor  prospers due  
to the  fact  t ha t  this theory  is known to his service man  b u t  not  to custo- 
mers like myself.  For  all I know, this theory  m a y  be interesting in i ts  
own right, b u t  as a customer  I take  no interest  in it. W h a t  directly inte- 
rests me is t ha t  m y  laundry  gets done properly,  meaning:  t ha t  the  l aundry  
gets washed wi thout  get t ing damaged.  The reasoning I employ when I set  
out  to use the  machine on m y  laundry  will not  be in terms of electricity 
etc. bu t  ra ther  in terms resembling the idiom of the  instruct ion book.  

Suppose~ for example,  t ha t  I have  a load of ve ry  di r ty  terylene shirts. 
A quick check shows tha t  none of the  programs on the  program keys  
is designed expressly for this category.  So I will have to th ink a b o u t  
which program, if any~ would be suitable for this load. I t  is easy to th ink  
of necessary conditions on such a program a. Above  all there  is this:  

After  a, the  load is clean. 
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To effect this~ it m a y  be t h a t  the following condition would be sufficient:  

During some of a, the  tempera ture  is a t  least ~0~ 

On the  other hand  we are also concerned tha t  the shirts be handled with  
, c a r e :  

After  a, the load is not  spoiled. 

F o r  this reason we requh~e, say, 

During all of a, the tempera ture  is less t han  50~ 

There  m a y  be various other conditions to consider (on torque, for example). 
I f  I can find at  least one program satisfying all these conditions, f ine: 
then  I can use t h a t  one. I f  not,  then  I shall have to wash the shirts by  
hand.  

This is no doubt  a simplified picture of wha t  goes on in a launderer 's  
mind .  Bu t  hopefully i t  is not  too far from the t ru th  either. Now, this 
k ind of reasoning can be described in a slightly more abst ract  way as 
follows. Fi rs t  I enumera te  a number  of conditions A0, . . .  , A~_~, all of 
which are to hold a t  all t ime during the wash~ and  a number  of conditions 
Be, ...,B~,_~, each of which is to hold a t  some t ime during the  wash. 
Then  I go through the finite list of available programs to see if there is 
one, a say, such t h a t  every member  of the set 

F = {rduring all of a, A~ ~ : i < m} 

is t rue ;  every lnember of the set 

O = {rduring some of a, Bi~: i < n} 

is t rue ;  and~ furthermore,  

/~, O F ~after a, the load is clean ~, 
F, 0 ~- rafter a, the  load is not  spoiled ~, 

where the  tu rns ty le  refers to the theory  I have developed on the  basis 
of whatever  knowledge I have of fabrics, detergents and m a n y  other 
things as well as m y  previous experience with the washing machine. 
A n y  such program a can be used to wash m y  shirts. On the  other hand,  
if  there is no such a, then  the  shirts will either be ruined or not  properly 
washed ff I foolishly insist on using the  machine anyway.  

Thus, even though I don ' t  know (and real ly don ' t  care to know) 
any th ing  about  wha t  goes on inside the machine, I can -- and do -- 
re~son about  ~spects or consequences of these goings-on. 

Now some final remarks on the  determinis t ic /nondeterminis t ic  distinc- 
t ion.  The washing machine has been presented as determinist ic:  given 
the  initial conditions (the loading eta.) ~nd the  program, the  action of 
the  machine is determined.  At  least, this is what  thr instruct ion book 
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gives you  to unders tand.  Actually,  things sometimes go awry. That  is 
to say, m y  presenta t ion  of the  machine does not  give the  whole picture.  
A presenta t ion  closer to the  t ru th  m a y  be obta ined b y  representing the  
machine as nondeterminist ic  in the  following way.  

During the five years  we have had the machine,  every  b reakdown 
I have  encountered has fallen under  one of the  following headings:  a fuse 
blows;  the  barrel jams, the  p u m p  breaks ;  and (most expensively) some-, 
thing happens  to the  computer  unit.  Fo r  some reason, each of these 
b reakdowns  occurs only in connection with certain programs.  Thus a fuse 
is known to blow only if W~TE, VERY DIRTY or  COLORED, VERY DIRTY is ,rlln. 
Fo r tuna te ly ,  i t  doesn ' t  happen  every  t ime one of those programs is 
run. In  fact ,  i t  happens  ra ther  infrequent ly (not tha t  I have  been able 
to figure out  a frequency).  Bu t  so far, every t ime a fuse has blown, i t  
has  been while one of these programs was being run. Furthermore~ none 
of the  other  breakdowns  has ever occurred in connection with either one. 

I t  appears,  then, tha t  it would be more informative if the  p rogram 
l abe l s  WHITE, VERY DIRTY and COLORED, VERY DIRTY would be  replaced 
b y  new program labels like WHITE, VERY DIRTY, OR FUSE, BLOW A and 
COLORED, VERY DIRTY, OR I~USE, BLOW A, respectively.  To be  sure, this  
is not  ~ change tha t  the  manufac turer  is likely to initiate. Yet  to a custo-  
mer  such a change would make  sense. When  he uses the  program labeled 
WHITE, VERY DIRTY he may  think of himself as issuing a command to  
his servant ,  the  machine, " R u n  the very-di r ty-whi te  rout ine!" .  B u t  a t  
least  in the  light of the  experience repor ted  here it would be more realistic 
if he thought  of himself as telling the  m~chine, " R u n  the very-d i r ty-  
-white routine,  or blow a fuse!".  For  this is wha t  the  machine will d o  
if p rogrammed with the  W~ITE, VERY DIRTY program, no mat te r  w h a t  
the  label of the  program. 

Not ice  tha t  nothing has been said abou t  probabil i t ies here. However~ 
under  some addit ional  assumptions the washing machine could be  given 
a probabil is t ic  representa t ion as well. Suppose that ,  cont rary  to what, 
was said above,  I have been able to figure out  the  f requency with which  
a fuse blows during a run of the  WHITE, VERY DIRTY program. Suppose 
t h a t  the  f requency in question is p, where thus p is a real number  be tween  
0 and 1. Then it  would make  sense to replace the  manufac turer ' s  label  
wi th  another  one: (1 --p) (WHITE, VERY DIRTY) OR p (FVSE, BLOW A). 
This label brings to mind the intui t ive command,  "Wi th  p r o b a b i l i t y  
( l - - p )  run  the very-di r ty-whi te  rout ine wi thout  breaking a fuse, or~ 
if you  don ' t  run  the very-di r ty-whi te  routine, blow a fuse!".  Under  t h e  
present  assumptions,  this is wha t  the  machine will do if p rogrammed  
wi th  the  WILITE, VERY DIRTY program, no ma t t e r  how the  program is 
labelled. 

However ,  probabil ist ie  machines are a different topic, and f rom now 
on we shall say no more abou t  them. 
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3. Automata and programs 

There are a u t o m a t a  of m a n y  different kinds, fl'om sophist icuted 
comput ing  machinery  to washing machines to simple gadgets  ordinari ly 
no t  though t  of as uu toma ta  a t  all (like ball  poin t  pens and electric switches). 

As logicians we  are interested only in' the  most  general propert ies  of 
au tomata .  Le t  us therefore th ink  of them as b lack  boxes (BB's)  in the  
usuM way.  The mMn assumptions  we make  abou t  them are the  following. 
(1) At  every  ins tunt  of t ime,  the  B B  is in some welldefined s ta te  ( = t o t M  
s~tate). (2) There is a definite set  of programs for the  BB.  (3) The 
B B  c~n be programmed,  the  purt icular  program, u given initial s ta te  
(und perhups a randomizing device) determining the  act ion of BB.  (4) 
I f  a p rogram is chosen ~nd the B B  is s tar ted,  the  B B  gets b y  proceeding" 
f rom s ta te  to s tute in a discrete fashion, the  transi t ions taking no t ime 
a~t all. (5) When  the  B B  is through with a program, it  stops. (6) 
One curt Mwuys tell whether  the  B B  has Mready s topped;  b u t  if the  B B  
has no t  .yet s topped,  there  m a y  be  no w a y  of telling whether  it ever  will 
stop. (7) I t  is possible for a BB to fM1; this occm~s when the B B  remains 
in a certain s ta te  with no fur ther  act ion forthcoming,  and ye t  has not  
s topped.  (8) The B B  is perfect  in the  sense tha t  i t  does not  b reak  
down -- there  is no malfunct ion,  nor any  interference f rom the  outside. 
(The lust assumpt ion  is sometimes negotiuble.) 

Think of a purt icular  B B  as given. I t  m a y  not  be  necessary to pos tu-  
late  tha t  the  set of programs ussociuted with it be  "wellfounded" in the  
sense of contuining a smM1 subset  of "pr imit ive"  or "basic" programs in 
terms of which M1 others are definable. B u t  here we do:  we shall ussume 
t h a t  there  are  some pr imit ive  programs so, s~, . . . ,  s ~  (, . . .)  f ini te ly or 
infinitely many.  We  Mso assume tha t  the  set o f  programs is closed under  
wha t  is culled the  three  regular operations,  the  b inary  d- and  �9 (actual ly  
the  dot  is often omi t ted  in formulas!)  and the  una ry  *. They  m a y  be  
given a heurist ic account  as follows. 

�9 I t  is helpful  to huve some intui t ive  pic ture  or pictures of programs.  
Two ways  of unders tunding t hem are as actions ~nd as imperatives. On 
the  former lmders tanding one thinks of a progrum a us an act ion (uetion 
t y p e  ra ther  thun  part iculur  action):  " the  act ion a" or " the uetion con- 
sisting of doing a". On the  la t ter  unders tanding  one thinks of a as an 
imperut ive  such as "Do a!" or "Carry ou t  the  a-rout ine!"  

These re~dings allow us to explain a §  aft, and a*, given t ha t  a 
and  fi are programs.  H a und fl are though t  of as " the  uetion a" und " the  
act ion fi", respectively,  these three are though t  of us 

" the  act ion consisting of doing a or fl", 
" the act ion consisting of doing first a and then  fl", 
" the  act ion consisting of doing a some number  of t imes".  
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If  a and fl are thought  of as "Carry out  the  a-routincY' and "Carry 
out  the  f l-routine! ' ,  respectively, the  three instead become, 

"Carry out  the  a-routine or the  fl-routine!", 
"Carry out  first  the a-routine and then  the fl-routine! '~, 
"Carry out  the  a-routine some number  of t ime!".  

Yet  another  way  of visualizing a program is as a list of instr~vtions 
of this fo rmat :  

BEm-----~ 

STOP 

where  ~Oo, . . . ,  ~%-1 are themselves programs. ( I t  is a conception of this 
k ind  tha t  often makes authors of textbooks refer to the  advice given to 
the  Whi te  Rabbi t  in Alive in Wonderland: ' "Begin at  the  beginning",  
the  King said, ve ry  gravely,  "and go on till you  come to the  end:  then  
s top. ' " )  Viewing programs this way  m a y  be bewildering when it comes 
to composite programs of type  a-~- fl o r  a*~ bu t  sometimes it can be helpflfl: 
For  example, the  list in terpre ta t ion elucidates the  distinction between 
the  impossible program, which cannot  be executed,  and the  identity pro- 
gram, which executes nothing. For  the  impossible program m a y  be though t  
of as the  list 

}~EGIN 
Verify tha t  0 = 1! 
STop 

whereas the  ident i ty  program m a y  be thought  of as the  list 

STo~ 1 

Thus the  difference is t ha t  if you embark  on the  impossible program 
you never  get to STOP, while if you embark  on the  ident i ty  program you 
get  there instanbly. The impossible program is denoted by  0 and the  
ident i ty  program by  1. They  m a y  or m a y  not  be available as pr imit ive 
programs;  if t hey  are, t hey  m a y  or m a y  not  be among the  a~'s. 

All this is of course ra ther  loosely speaking. But  even here it is clear 
t h a t  the  question of determinism enters. :Note tha t  the  readings of a + fl 
and  a* become unintelligible in connection with determinist ic  BB's. ~or  
in the  case of -k it is left open which al ternative,  a or fl, is to be chosen�9 
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Similarly in the  case of * the  precise number  of i terations of a, 0 or 1 
or . . . ,  is left  open. The idea here is tha t  it is the  BB itscl~ tha t  decides 
on these questions (with the  help of the  randomizing device pos tu l a t ed  
under  (3) above).  

4. Languages and models for automata 

Continue to th ink  of a par t icular  BB as given. We  shall now t ry  to  
discuss two notions, the  not ion of modal logical language suitable for t h e  
B B  in question, and the  not ion of model based on the  BB.  Our discussion 
is still informal, and we do not  r igorously define the  notions jus t  mentio-  
ned. Formal  definitions of re la ted formal concepts are given later  -- see 
Section 5 for languages and Section 6 for models. 

F i r s t  the  languages. There will a lways be some pr imit ive or bas ic  
proposi t ions;  perhaps  T or  • is one. Exac t ly  wha t  t hey  are will depend 
on the  B B  and on wha t  we are interested in -- we will no t  go into tha~ 
question,  b u t  the  discussion in Section 2 should be  suggestive. Then  
there  are the  more  complex proposit ions tha t  can be  obta ined b y  t he  
use of proposi t ional  operators .  The Boolean ones are wel lknown:  if 2k 
and B are proposit ions,  then  so are -1A, A ^ B ,  A v B ,  A->B, A ~ B ,  and  
perhaps still others.  B u t  we also need proposi t ional  operators  of a novel  
kind, as indicated b y  the washing machine example.  The following ones 
seem to be  among the  simplest  and most  na tura l  ones (notat ion to th~ 
left, impor t  to the  r ight) :  

[a] af ter  every  computa t ion  according to a, 
(a}  after  some computa t ion  according to a, 
[a] a lways during every  computa t ion  according to a, 
((a}> sometimes during some computa t ion  according to a, 
((a~ a lways during some computa t ion  according to a, 
In>} sometimes during every  computa t ion  according to a. 

(Actually,  the  readings as given are ambiguous.  The ambigui ty  will b e  
r emoved  below.) 

As presented  here, programs and modal  logical languages can b e  
described independent ly  of one another.  B u t  this is not  necessarily so;  
if so-called tes t  programs are allowed, it is no longer the  case. If  A is a pro-  
position, i t  makes  sense to ask whether  A obtains.  So A?,  codifying th is  
question,  can be  in t roduced as a new program. On the act ion i~terpre-  
ta t ion,  th ink of A? as " the  act ion consisting of verifying tha t  A ''~ ( ra ther  
than  the  misleading formul~Jtion " the  act ion consisting in test ing whe the r  
A"). On the  impera t ive  interpretat ion,  th ink of A? as "Verify t ha t  A[ '~  
Of course, if A is not  the  case, then the  program A ? cannot  be  carried out= 

Le t  us now see wha t  we can do for  semantics.  B y  our a~sumptions~ 
the re  is ~ welldefined set of all the  s tates  of our BB.  Such a s ta te  should: 
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be thought  of as a to ta l  s tate:  a momen ta ry  state-of-affairs inside t h e  
BB or, if you  prefer~ a cross-section of the BB as an object in space-t imer 
the  contents  of its input ,  output ,  memories~ . . .  (The program is not  con- 
sidered par t  of the  state.) 

Now suppose t h a t  the  BB is in some state x. Le t  the  BB be p rogramme4  
with  a program a. When s tar ted the  BB will go into action s proceeding 
from state to s tate  in a discrete fashion. In  principle a t  least it  is possible 
to plot  its journey through state space. Let  us call any  sequence of states~ 
a path. Thus there is an obvious sense in which the  BB, when star ted,  
will produce a pa th  s viz., the  sequence of states in the  order the  BB passes. 
them through.  Under certain conditions, such a pa th  will be what  we 
shall call a computation according to a or a-computation. There are fou r  
cases to consider. 

Case 1. The BB ceases to act after  f initely m a n y  steps, and t h e  
pa th  produced is an a-computati0n.  This computa t ion  s then,  is of t y p e  
(z0, . . . ,  zn}, with z0 -= x and n >~ 0. The length of the  computa t ion  is n.. 

Case 2. The BB ceases to act  after  f initely m a n y  stepss bu t  t h e  
pa th  does not  qualify as an a-computat ion.  (This pa th  is called a failure, 
of a at x or an a-failure.) 

Case 3. The action of the BB goes on for ever, and  the pa th  pro- 
duced is an a-computat ion.  This computations then s is of type  (zoo. . ,  
. . . ,  %~ . . .},  with zo --~ x bu t  wi thout  a last  element. The length of t h e  
computa t ion  is o~. 

Case 4. The action of the BB goes on for ever, bu t  the pa th  pro-  
duced does not  qualify as an a-computat ion.  

Case 4 m a y  not  be of any  practical  interest,  bu t  it  has been included 
as a logicM possibility. Of the other three, case 2 is par t icular ly  interesting.  
Two instances of it  are worth  mentioning here. One is obtained by  let t ing 
a be the  impossible program. In  fact~ the difference between the  impos- 
sible program and the ident i ty  program now comes out  clearly. The 
only computat ions  according to the ident i ty  program are those of length 0s. 
for nothing "happens"  during such a computat ion.  On the other hand ,  
there can be no computa t ion  at  all according to the impossible program -- 
no computa t ion  in the  world could verify t ha t  0 = 1. 

The other example of Case 2 is provided by  the  ?-operator. Suppose 
t h a t  A does not  obtain,  and let a be the  complex program A? �9 fi ("Carry 
out  first  a verification t h a t  A and then  the  /?-routine!"). Under the cir- 
cumstances this program is seen to funct ion more like a conditional im~ 
perative t han  a categorical one: " I f  A is the  case, then  carry out  the  
f l - rout ine! ' ;  what  is to be done if A is not  the case is not  specified. The  
BB, unable to verify t ha t  A, is left suspended in mid-air~ as it  were. 
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With  the not ion of computa t ion  according to a program a t  hand,  
w e  m a y  now ar t iculate  ou r - in tu i t ive  semantics more precisely. F r o m  

semantic  poin t  of view, our object  language is indexical:  proposit ions 
a re  not  t rue  or false b y  themselves  b u t  t rue  or false only with respect  
to a state.  W e  wri te  ~ A to indicate  t ha t  a proposi t ion A is t rue  at  a s ta te  
x (still referring" to the  given BB).  We  take  the  t ru th  or fMsity s,t s tates 
of pr imit ive  proposi t ions for granted.  The Boolean conditions work  out  
~s usual. I t  is the  new proposi t ional  operators  tha t  a t t r ac t  interest .  

Fo r  the  two '%fter"-operators  we would p resumab ly  have  these 

iff, for every  finite a -computa t ion  <zo, . . . ,  zn> such tha t  
Zo ~ x, ~% A. 
iff, for some finite a -computa t ion  <Zo,. . . ,  zn> such tha t  
zo = x, ~z,~ A. 

the  "dur ing ' -opera to rs  we would have these condit ions:  

iff, for every  (finite or infinite) a -computa t ion  @o, ...> 
such tha t  Zo = x, for all i such tha t  z i is defined, ~ i  A. 
iff, for some (finite or infinite) a -computa t ion  (Zo, ...> 
such tha t  zo = x, there  is some i such tha t  z, is defined 
and ~ i  A. 

#, (a~ A iff, for some (finite or infinite) a -computa t ion  (Zo, ...> such 
t h a t  Zo = x, for all i such t ha t  z~ is defined, ~z~ A. 

~ [a}}A iff, for every  (finite or infinite) a -computa t ion  (z0~ . . .}  
such tha t  Zo = x, there  is some i such tha t  z, is defined 

and ~ i  A. 

We have  now developed a semantics of a sort. To make  it  quite  explicit  
w e  might  back t r ack  and in t roduce a not ion of model  as follows. Let  U 
be the set of M1 to ta l  s tates of the  BB.  For  each program a, let  C(a) be 
%he set of all (finite or infinite) computa t ions  according to a. Define 

C = {C(a): a is a program}.  

:For each proposi t ional  le t ter  P, let  V(P) be  the  set of s tates in which P 
holds. Then all the  informat ion used in the  preceding t ru th  conditions 
~ean be re t r ieved @ore the  t r ip le  <U, C, V>, which therefore m a y  be 
ca l led  a model  based on the given BB. 

The final s tep in making the semantics  explicit  is to define a propo- 
sition as true for the  B B  if i t  t rue  a t  every  state.  The set of all formulas 
t r u e  for the  B B  m a y  be called the theory of the  BB.  The logician can 
now formula te  the  usual  questions abou t  theories:  whether  it is axio- 
mat izab le ,  decidable, etc. 

There are several o ther  concepts  tha t  can be  handled quite  na turMly 
w i t h i n  the  present  f ramework  (of. [1, 2, 4]). Equivalence  be tween  pro- 

condi t ions  : 

~x [a] A 

;Similarly, for 

~ ~a~ A 
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gwams is one. Suppose tha t  z is pa r t  of the  object  language and tha t  
a --= fl is a formula whenever  a and fl are programs,  asserting tha t  a and  fl 
are "really the  same program" or "come to the  same thing".  The vagueness 
of this suggestion is removed b y  the following t ru th  condit ion:  

~ a z fl iff every  a-computa t ion  is a fi-computation~ and vice versa 
(that  is, iff C(a) = C(fl)). 

Another  example  is offerred b y  the concepts of convergence and 
divergence. Suppose tha t  we have in our object  language, for each pro- 
gram a, proposit ional  constants  v o n v .  and d ie  a. Their t ru th  conditions 
are the  following: 

~ vonva iff every  a-computat ion (zo, . . . )  such tha t  z 0 = x is finite. 
~ diva iff there  is an infinite a-computat ion (Zo, . . . )  such tha t  

Z 0 ~ X .  

This dist inction could be  bui l t  into a compet ing not ion of "af te r" :  

~ [ a ] t A  iff every  a-computat ion (Zo, . . . )  such tha t  Zo----x is 
finite, and, for every finite a-computat ion (~o, .--,  u~) 
such tha t  Uo -~ x, ~ A.  

~ (a)*A iff either some a-computat ion (z0, . . . )  such tha t  Zo ----x 
is infinite, or there  is some finite a -computa t ion  (~0, . . .  
. . . ,  % )  such tha t  uo ---- x and ~% A. 

A more complicated example involves the  notion of preservat ion.  
Le t  us say tha t  a program a preserves a proposi t ion A if, during every  
a-computat ion,  if A is ever true, then A stays true. Assume tha t  our 
objec t  language contains, for each program a, a proposit ional  operator  
a-pres.  The corresponding t ru th  condition would seem to be  this one: 

~ a-pres  A iff for every  (finite or infinite) a -computa t ion  (Zo, . . . )  
such tha t  zo = x, for all i, if V~t A and z,+~ is defined, 
then V~+~ A. 

Preserva t ion  is a complex concept,  and it m a y  b e  possible to analyse 
it  in terms of simpler ones. For  example,  one might  t r y  to define a new 
proposi t ional  operator  n e x t  so tha t  a-pres  A is rendered b y  [a] (A->nex t  A). 
Such an operator  would be  indexical not  only wi th  respect  to s ta te  bu t  
also with respect  to program;  so the  semantical  appara tus  would  have  
to be revised. 

One concept  tha t  does not  seem amenable  to t r ea tmen t  within to 
suggested semantics is tha t  of failure. Suppose tha t  the  object  language 
contains,  for each program a, a proposit ional  cons tant  [affa. No t ru th  
condit ion in terms of U, C and V would seem to do just ice to the  intui t ive  
impor t  of these new constants.  One way  to proceed would  be  the  follo- 
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wing. Fo r  each a, let ~ ( a )  be the  set of all states at  which there is at. 
least  one a-fMlure. Define 

= {iV(a): a is a program}.  

E x p a n d  the  not ion of model  based  on the given B B  from the t r ip le  
<U,  C, V> to the  quadruple  (U, C, 1~, V>. Then the previous t ru th  con- 
ditions arc unchanged,  and the following one is added :  

~xfail~ iff x eF(a ) .  

A much greater  revision would be the  following. First ,  for each progran~ 
a, define P(a) as the  set of (finite or infinite) pa ths  (zo~ . . .7 t ha t  can b e  
p roduced  b y  the B B  under  a if s ta r ted  while in s ta te  z0; thus  C(a) c P(a)~ 
Then define model  as the  quadruple  (U,  C,P, V}. The same n o t i o a  
of failure would now be captured  b y  this t ru th-condi t ion:  

~xfail. iff there  is a finite element  (Zo, . . . ,  zn} in P(a) such tha~ 
Zo = x which is not  also an a-computat ion.  

Other  concepts  of failure can be defined in a similar manner.  
Thus we see tha t ,  jus t  as the  concept  of modal  logical language su i tab le  

for the  given BB allows m a n y  instances, so the  concept  of model  b a s e d  
on the given BB is not  uniquely  determined.  Roughly  speaking, t he re  
is a lways more  informat ion abou t  the  B B  than  can be buil t  into any one  
tuple.  Y o u r  choice of bo th  language and model  depends on wha t  y o a  
are interested in. 

I t  is t ime to end the  intui t ive discussion. So as to make  sure that~ 
intui t ion and formM development  are not  confused, we s tar t  all ove r  
again when we now go to the  next  section, moving f rom applied logia 
to pure.  

5. Abstract languages and logics 

In  this section we shall first  give a definition of language for (pro- 
positional) dynamic logic, which will be  seen to be  an abs t rac t ion  of t h e  
intui t ive  not ion of modal  logical language suitable for a BB,  discusse4 
in the  preceding section. In  laying down such a definition, it is convenient. 
to use a wel lknown idea due to Ajdukiewicz and recent ly  revived b y  
Montague.  

A language of this kind is defined in three  steps. F i rs t  one defines, 
the  s t ructure  of syntact ic  categories. They  are, b y  our definition, a lways  
the  same: there are two basic syntact ic  categories, f (propositional expres- 
sions, or formulas) and p (program expressions, or jus t  programs). Fur -  
thermore,  whenever  a, bo,...,bn_ 1 are syntact ic  categories, basic o r  
derived, then 

abo . . . . .  bn~ l  

is a new derived category.  
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The second step of the  definition of language consists in defining, 
for  each syntact ic  category s, the  set B(s) of basic expressions of category s~ 
a n y  two of which are disjoint. (Usually all bu t  f ini tely m a n y  of the  cate- 
gories will be empty.)  We shall make the  following assumptions:  B([), 
t h e  set of basic formulas, will always contain a set of elements called 
propositiona~ letters; the  others are called propositional constants. Similarly, 
B(p),  the  set of basic programs, will always contain a set of elements 
eMled program letters; the  others ~re called program constants. 

The th i rd  and finM step in the  definition of a language consists in 
recursively defining, for e~ch syntact ic  e~tegory s, the  full sets C(s) of 
.expressions of category s. This step is the  simplest since it can be t aken  
~are of once and for all: the  sets O(s) are to be the  smallest sets such tha t  
~i) for each category s, B(s)~_ C(s), and (if) whenever  

X e C(a), Yo e C(b0), . . .  u e O(b~_l) , 
~hen 

X(Yo, . . . ,  Y,~-I) eO(abo ..... b~-l). 

2r assures us t ha t  a definition of this kind is correct. 
Wi th  the  first  and th i rd  steps in the  definition of l~nguage fixed, 

i t  is the  second one tha t  m~tters.  ~ e n e e  a language might  be identified 
~vith the  funct ion B assigning to e~ch synt~etie category s the  set B(s). 

In  the light of this, let us now review some of the  m~teriM of Section 4. 
:First this example:  suppose tha t  we have a language such tha t  whenever  
a is a program (expression of category p)~ then  [a] is a propositional ope- 
ra tor  (expression of category ff). The general i ty of the  present  approach 
,-would then make  it naturM to introduce an operator  [ ] of c~tegory 
~[~)' and agree to write [a] instead of [ ](a). Alternat ively,  i t  would 
be  possible to introduce [ ] as an expression of one of the  c~tegories 
~f", f~[', and ([P)[ instead. In  the  former two c~ses, if A is a formula,  we 
would agree to write [a ]A for [ ](A, a) or [ ] (a ,  A), respectively. In  
~he last case we would ~gree to write [ ]A for [ ] (A) -- which would 
,be an expression of category [ ' :  a formula-making program operator  -- 
~nd [a]A for [ ]A(a). 

The following is a list of possible expressions suggested by  the  discussion 
in Section & The idea is t ha t  if the expression indicated on the  left is in 
t h e  language, t h e n  it  is of the  category listed on the  right.  The typogra-  
phicM shapes should encode enough information to make  the  list self- 
-explana tory  : 

T,I__ f 
-1 ff 
A~ V~ -~,  ~ ~ 'f  

O~ ] 
-, p~, 

"-t-, ~ 'P 
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? pf 
[ ], <>, [[ ] ,  (()),  (( If, I[)), p r e s  (ff)~ or (f~)f or ff'~ or f~,f 
~_. fP'P 

cony, div, fail f" 
We take  this oppor tun i ty  to list some conventions regarding notation~ 

W e  use A, B as generic names of formulas;  a, fl as generic names of pro- 
grams;  P as a generic name  of propositional let ters;  z as a generic name  
of program let ters;  i, j ,  t~, l, m, ~ as generic names of the  members  of 
the  set ~ of na tura l  numbers  0, 1, 2, . . .  ; s as a generic name  of syntact ic  
categories. Our use of parentheses is informal.  Ins tead  of -7(A), -~(A, B)~ 
etc., we write 7 A ,  A->B, etc. Ins tead  of § (a, fl), �9 (a, fl), *(a) we wri te  

a + f l ,  aft, a*. 
In  the  present  context ,  classical modal  logic m a y  be character ized 

as the  s tudy  of operators of category ff. A good deal is known abou~ 
such operators,  and when one develops dynamic  logic -- which used to 
be called the  modal  logic of programs -- it seems na tura l  to  t ry  to draw 
on this knowledge. I~et us quickly repeat  some wellknown concepts in 
this are~. 

A logic (in a given language) is a set of formulas containing all t ru th -  
-functional  tautologies, closed under  modus ponens and subst i tut ion 
(of formulas for propositional letters). If  L is a logic we write ~ LA or 
even ~ A, when confusion does not  arise, for A e L. 

An operator  ~ is congruential in a logic L if ~ A*~B implies t h a t  
~ r A o ~ B .  Fur thermore ,  ~r is regular in L if ~r is congruential  in L and  

distr ibutes over conjunct ion;  t ha t  is, ~ ~r(A A B) ~ ( ~ A  A ~B).  Finally,  
is normal in L if ~r is regular  and ~ A implies t ha t  ~ ~A.  Notice tha t  t he  
so-called Kripke  schema is derivable for operators t ha t  are at  least regular-  
if ~r is regular  then  F ~(A~B)->(~rA-~rB). 

Extend ing  this terminology,  let us say tha t  an operator  A of ca tegory  
(~f)' is congruential  (regular, normal)  if, for each a, h (a) is a congruentiaI  
(regular, normal)  operator  of ca tegory ff. 

The recent  his tory of modal  logic shows tha t  m a n y  normal  propo- 
sitional operators can be given an extensive analysis within relationa~ 
Kr ipke  semantics, while regular operators can be handled in a slightly 
modified Kr ipke  semantics. The s tudy  of congTuential operators has  
a t t r ac ted  much  less a t tent ion,  bu t  some work has been done with t he  
neighborhood semantics usually ascribed to Montague and Scott. (The 
much  older algebraic semantics due to Tarski and his followers is no t  
considered here.) 

6.- Formalizing "after" and "durlng" 

Of the  intui t ive operators listed in Section 4, a t  least [a] and ~a~ seem 
to be normal.  For  this reason we single t hem out  for s tudy  in this section 
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and  will t r y  to give them the usual Kripke type  t rea tment .  (Of the  others, 
[a] t seems to be regular, ((a~ and [a}} congruentiM. Concerning the  former,  
see [2, 5, 8]. One would conjecture tha t  the  la t te r  two could be given 
some kind of neighborhood analysis.) 

To be quite specific, let us list a part icular  object language to be 
used in this section. All basic categories are to be emp ty  except  the  follo- 
wing: 

B ( f) = {propo , p r o p 1 ,  . . . ,  p r o p ~  , . . . } ;  
B(O) = {pvOgro, p r o y r l  , . . . ,  p r o g r ~  , . . . } ;  

B(f~) = { q } ;  
B(f ~a) = {^,  v , - %  ~};  
B(~P) = {*}; 
B(# ,~ )  = { + ,  .}; 
B ( ( r  = {[  ], ~ ~}. 

Thus < > and << }, duals of [ ] and ~ ~, respectively, are not  pr imit ive  
here. But  they  can be in t roduced by  definition in the  usual way:  

<a> A = ~  -1 [a] --] A,  
<<a>> A =a~ -q ~a~ -1 A.  

The next  task is to develop a semantics for this language. InsteadL 
of directly building a concept of model along the  lines of Section ~, we. 
shall proceed more obliquely. The reason for this s t ra tegy will become 
apparent .  

By a model let us mean  a quadruple 9~ = <U, R ,  S ,  V> such t h a t  
the  following conditions obtain:  

(i) U is a set (the domain);  
(if) {R(a): a e C ( p ) }  and {N(a): a e C ( p ) }  are families of b ina ry  

relations on U (the R-a~terq~ative relations and the  N-alternative 
relations, respectively);  

(iii) V is a funct ion f rom B(f) to the  power set of U (the valuation).  

With our definition of language it can easily be shown tha t  the  for- 
mulas -- the  elements of C(f) -- are exact ly  the  basic ones -- the  elements 
of B(f)  --, Boolean compounds of other  formulas,  and expressions of  
type  [a] A or [a~ A. The semantic definition of truth in  ~ of  a formula 
A at a point  x e U can therefore be given in the  expected way. We write, 

~x A for this notion. 

~ P  iff o0 e V(P), if P e B ( f ) ;  
9 X ~ A A B  iff 9 X ~ A  and 9XV~B; 

and similarly for the  other  Boolean operators;  
9J~ ~ [a] A iff Vy(a~R(a)y~fO~ ~v A); 
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A fo r mu l a  is s~id to be true in 9~t if i t  is t rue  a t  every  po in t  of the  model .  
So fa r  i t  is n o t  all clear w h a t  the  preceding  model l ing  has  to do w i t h  

t he  in tu i t i ve  " a f t e r "  a n d  " d u r i n g " .  I n  fac t ,  as i t  s t ands  t he  model l ing  ju s t  
i n t r o d u c e d  is too  general  to  be  of o ther  t h a n  technica l  in teres t .  I n  order  
t o  def ine t he  k ind  of mode l  we rea l ly  wan t ,  we need  some concepts  f r o m  
a u t o m a t a  t heo ry ,  a n d  we shall  now t u r n  to t hem.  

A word is a n y  sequence,  f in i te  or inf ini te ,  of p r o g r a m  le t ters  (and is 
t h u s  of o rder  t y p e  ~ ~). A special case is t he  e m p t y  sequence,  2, which  
is cal led the empty word ( there is on ly  one!).  W e  shall  use a, v as generic  
n a m e s  of words.  (The r eade r  will no t e  t h a t  even a f in i te  word  ~o .-- ~ 
is n o t  a p r o g r a m  expression,  even  t h o u g h  our  in fo rmal  m o d e  of n o t a t i o n  
m a y  suggest  t h a t  i t  is. F o r  example~ a word  ~ o ~  is a sequence ~nd would  
be  wr i t t e n  (Zo, ~ )  or  even {(0~ z0}, (1 ,  ~ } }  in a e~reful exposi t ion.  
The  p r o g r a m  express ion ZOO1, on the  o ther  hand ,  is a c t u a l l y  a shape 
"(Zo, ~ ) ,  a n d  t h u s  some th ing  qui te  di f ferent .  This  is n o t  to  say  t h a t  t he  
two  no t ions  are n o t  i n t i m a t e l y  re la ted  -- t h e y  are, as will be seen pre- 
s en t l y . )  

I f  a a n d  ~ are words  a n d  a is f ini te ,  t h e n  the eonoatenation av of a ~nd 
v -- t he  sequence o b t a i n e d  b y  c o n c a t e n a t i n g  a a n d  v, in t h a t  order  -- is 
also a word,  f in i te  if a n d  on ly  if v is f ini te .  W h e n  below we wri te  av or, 
in  general ,  ao . . .  a~ w i th  n > 0, we impl ic i t ly  a s sume  t h a t  a respec t ive ly  

express ion a, d e n o t e d  b y  [al, is def ined  
~r o, . . . ,  a~_ ~ are f ini te .  

The  language of a p r o g r a m  
.~s follows : 

[~I ={~}~ if ~ e B ( p ) ;  

-la+~l = lalul~l; 
lafll ---- {a:  (~ e lal a n d  ~ is inf ini te)  or 

3~ x e [al 3~'2 e lfll(a --- ~'1~'~); 
ta*l -- {a: 3nV~o, . . . ,  ~ - 1  e lal(a -- ~o . . .  ~ - 1 )  or 

Vn  -~v n e Ial((r = ~oT~... wn.-.)" 
~Notice t h a t  ~ e ]a*l, for  all  a. 

I f  a e [al, t h e n  we say  t h a t  ~ instantiates a. (The preceding  def in i t ions  
a r e  r e l a t e d  to,  t h o u g h  s l ight ly  d i f fe ren t  f rom,  those  of Sa lomaa  [6] (where 
words  are f in i te  sequences).  The  use of t he  word  " l anguage"  in th is  tech-  
nical  sense m a y  be s o m e w h a t  a w k w a r d  in the  p re sen t  con tex t ,  b u t  i t  
has  seemed  desi rable  to fol low s t a n d a r d  usage.)  

L e t  ~ - - - - ( U ,  t t ,  S ,  V)  be a n y  mode l ;  ac tua l ly ,  for the  fol lowing 
de f in i t i ons  we on ly  need  U gnd  R as def ined  on B(p) .  W e  say  t h a t  a 
n o n e m p t y ,  f in i te  sequence z ---- (zo, . . . ,  z~} of n o t  necessar i ly  d i s t inc t  ele- 
m e n t s  of U is a f in i t e  a-eoml~utation (in 9~) if the re  is a word  ~o .- .  s ~ - i  ~ ia l  
such  t h a t ,  for  all  i < n, z~R(zc~)zi+~; t he  length of ~. is n. S imi la r ly  we 
say  t h a t  an  inf in i te  sequence  z ----(zo, zl ,  . . . ,  %,  . . .~  of e lements  of U~ 
aga in  n o t  necessar i ly  d is t inc t ,  is an  inf ini te a-eomloutation (in 93~) if the re  
is an  inf in i te  word  sos1 . . .  z~ . . .  ~ la l  such t h a t ,  for  all i < co, z~R(st)z~+~; 
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Che length of z is of course ~. In  both  cases we say t h a t  the computa t ion  
is f rom z o or t h a t  i t  starts at zo; ~ r t h e r m o r e ,  t h a t  it  is through each z~ in 
the computat ion.  In  the  finite case we also s.~y t h a t  the computa t ion  
is to zn or t h a t  it  terminates at z , .  Finally,  go . . .  ~ - 1  respectively ~ogl . . .  
-. .  gn . . .  is said to be a word of z (notice the indefinite article -- a com- 
pu ta t ion  m a y  have more than  one word). 

Notice that~ for every x ~ U~ <x> is an a-computat ion of length O, 
whenever  ~ e la[. Fur thermore ,  for any  program let ter  ~ if <zo~ ...~ zn} 
is a z-computat ion,  then  n =-1 and zoR(g)Zl .  

We remarked above t h a t  our not ion of model is too general for our 
purposes. Kowever,  in possession of the formal concept of computat ion,  
we can now define a more re levant  not ion of model. Le t  us say t h a t  a model 

= <U, ~ ,  S,  V> is a standard model if and only if the  following two 
conditions are satisfied~ for each a: 

x R ( a ) y  iff 3z(z is an a-computat ion from x to y); 
xS (a )y  iff 3z(z is an a-computat ion from x through y). 

t t  is an interesting problem whether  s tandard  models can be characte- 
rized by  simple set theoretic conditions on R and ~q. For  a large class 
of s tandard  models an aff i rmative answer is given by  Theorem 1. Le t  
us say t h a t  a b inary  relat ion T is serial if V x  3y (xTy); t ha t  a model 
<U, R~ S~ V> is serial if R(a)  is serial, for every a. 

THEO~]~_~ 1. A necessary and sufficient condition for a serial model 
= <U, R ,  S ,  V} to be standard is that the following conditions are satis- 

f ied: 

(!r  R(a+fl) = R(a)u_~(~).  

(R.) R(afl) = R(a) [R(fi).  
(R*) R(a*) = R*(a). 
(R~) ~(~) = R ( ~ ) u ( i x ,  x>: x ~ U}. 
( S + )  ~ ( ~ + f l )  = S (a )uS( f l ) .  
(~') S(a,8) = S(a)wR(a) ] S(,6). 
(~*) ~(a*) = R(a*) I ~(a) .  

The proof is s t raightforward bu t  too long to be included here. 
The theorem is interesting in its own right. Bu t  i t  is also a useful 

lemma for the proof of the following result :  

THEORE~ 2. The set of formulas true in  all serial standard models 
is the smallest logic in which both [ ] and ~ ~ are normal and all instances 
of  the following schemata appear as elements: 

(a~-) [a~-fl] A~+[a] A A  [fl] A. 
(a .) [aft] A~L+[a] [fi] A. 
(a 'T)  [a*] A-+A. 
(a~) [a*] A-+[a] A. 
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(a* ind) 
(aD) 
(aT) 
(adl) 
(ad ) 
(d+) 
(a .) 
(d*) 

[a*] A-+[a*] [a*] A. 
A~([a*](A-+[a]  A)-~[a*] A). 
[x~] A-+<zr> A. 
( ~a~ A-+A). 
~a~ A-~[a] A. 
A.-+([z] A - ~ : ~  A). 
[a + fl~ A ~ ~a~ A ^ ]Iflll A. 
~afl~ Ao~a~ A^ [a]~fl~ A. 
~[a*ll A~-~[a*]~a~ A. 

Unfortunately,  the  proof is much too long to be reproduced here. 
Suffice it to say tha t  it is of the canonical models/fil trations type ,  
similar to ~hat given in [7], and so it also yields as a by-product  the  f .m.p.  
with bounds tha t  can be estimated.  The author  hopes to publish the proof 
elsewhere. 

This marks the  end of the  formal work. I t  is submit ted  tha t  the  for- 
real not ion of s tandard model  successfully formalizes an impor tant  par~ 
of the  intuit ions described in Sections 2- 4. Theorem 2 also gives a feeling 
for what  the  logic of these notions is like. I t  is of some interest to note  
tha t  it  is not  closed under  subst i tut ion of program expressions for pro- 
gram letters. To be certain, every subst i tut ion of a program expressio~ 
for the  program letter in an instance of (aD) yields a derivable formula~ 
us is readily checked. Bu t  in the  case of (ad2) this is not  so: it is easy to  
find, for any given propositional letter P and program letters no an4 
u~, a serial s tandard model rejecting the formula 

P-+([(zo nO*]P~ ~(:% ~1)*~ P). 

7. Philosophical relevance of dynamic logic 

With  formalities out  of the  way it is t ime to take stock of the  situa- 
tion. Wha t  has this paper  got to do with the philosophical problems. 
pertaining to applying modal  logic ? Even a hostile critic of applied modal  
logic will admi t  tha t  dynamic logic offers an interpretat ion of modal  
logic tha t  is beyond formal reproach--frui t ful  or not, it  is precise an4  
perfectly intelligible. But ,  such a critic might  continue, apart  from some 
possible methodological interest, what  does it  mat te r  to philosophy whe- 
ther  dynamic logic is going to benefit computer  science? 

5Tot much,  perhaps. Yet  this paper has been w-zitten in the belief 
tha t  Pra t t ' s  dynamic logic has something to offer philosophy. I ts  main  
virtue, according to this belief, is tha t  it points to a new way o~ approa-  
ching the  logic of action. The formalism of dynamic logic separates talk 
about  actions from talk about  states-of-affMrs. That  it does, and t h e  
way it  does it~ is what  seems so interesting. 

I t  is not  possible to go deeply into this issue here. But  to lend some 
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subs tance  to the  preceding paragraph we will briefly consider two exam- 
ples, emphasizing tha t  they  are no more than  sketches, and quick ones 
at  that .  

As the  first  example,  take  "Anyone who is killed dies". I t  is not  a ve ry  
interesting proposit ion,  b u t  it is t rue nevertheless,  and in a peculiar way :  
no t  for empirical reasons bu t  because of wha t  the  words mean. Whether  
y o u  choose to call it  an analyt ic  t ru th  or a logical truth~ you  will want  
to see to it t ha t  it becomes a t ru th  in your  formalization i linguists in 
effect  do when they  analyse "kill" as "cause to die", us they  sometimes 
do. Disregarding various subtleties,  we would formalize this proposi t ion 
in (lynamic logic b y  something like 

[kill x] (x is dead), 

the  brackets  being the b y  now familiar ones. Or, to s idetrack for now the  
difficulties a t taching to free variables and to individuals, consider the  
simpler instance 

[kill Caesar] (Caesar is dead). 

Here  kill Caesar is wha t  might  be called an action program, s tanding 
for a certain t ype  of action. On the other  hand, Caesar is dead is a pro-  
position, report ing a certain state-of-affairs. The proposit ional  operator  
[kill Caesar] can be read "after  Caesar is killed" or, more carefully, "af ter  
Caesar is killed, no ma t t e r  how".  

On the semantic side, proposit ions are identified with sets of possible 
worlds, as before, while actions are identified with sets of sequences os 
possible worlds. There would be a notion of model  in general, as in Section 6,. 
b u t  the  interest  would focus on the s tandard  models. The la t ter  would  
have  to be defined in such ~ way  that ,  among other  things, Caesar is 
left  dead a t  the  end of every possible run  of the  kill Caesar-action program.  
Other  models are logicMly possible, b u t  t hey  would not  be  s tandard.  

The second example is f rom deontic logic. Suppose Kim receives his 
fa ther ' s  permission to go to the  beach or to the movies. If  this is forma- 
lized in the  usual  way  -- writ ing p e v m  in place of the  more wel lknow~ 
P - as 

p e r m  (Kim is at the beach v Kim is at the movies), 

then  we also encounter  the  usual  difficulties; for exampl% even though  
we c~n infer the  disjunction of the  two proposit ions 

p e r m  (Kim is at the beach), 
p e r m  (Kim is at She movies), 

we cannot  infer either one b y  itself. ~ a n y  authors  have poin ted  o u t  
t ha t  this does not  seem intui t ively sat isfactory (the problem of free choice 
permission). Now, the  operator  p e r m  is of category ~f. I f  instead w e  
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introduced u new operator P E R M  of category ~ it becomes n~turM to 
render Kim's permission as 

P E R M  (go to the beach -~ go to the movies), 

and it is possible to argue that  this proposition implies both of the follo- 
wing two: 

P E R M  (go to the beach), 
PERNI  (go to the movies). 

That  is to say, we have at least two concepts of permission, of different 
grarmnaticM categories and with different logical properties: 

($) p e r m  ( A v B ) o p e r m  A v p e r m  B, 
($$) P E R M  (a + fl) ~--~PERMa ^ PERMfl .  

To support this ~nMysis one might t ry  to use an idea originally due 
to Alan l~oss Anderson and Stig Kanger:  tha t  something is permitted 
if it can be realized without incurring any sanction or without making 
the  world worse, in a certain sense -- the world remMns "deontieMly 
satisfactory", as it were. Let us use OK as a propositionM constant ex- 
pressing the proposition tha t  the world is deonticMly satisfactory, in 
this sense. Then one way of rendering the Anderson/K~nger suggestion 
in dynamic logic -- there may be other candidates -- would be this: 

P E R M a ~ [ a ]  O K .  

(Actually this definition must  be improved in view of wellknown diffi- 
culties discussed at length in the literature -- as it stands it can only 
be used in situations in which no obligation has already been violated.) 

Using this simple-minded analysis we readily derive 

P E R M  a A P E R M  fi~--,[a] O K ^  [fl] O K ,  
P E R M ( a  ~- {~) +-~[a -~ fl] O K ,  

whence ($$) follows from schema (a-~) in Theorem 2. 
What  is interesting in this example is not tha t  we have hit upon a new 

permission operator of ~ certain intuitive plausibility -- by now, several 
have been suggested - -  but  tha t  both our permission operators ~rise 
within the system in such a natural way. 

8.  Conclusion 

Pioneers in applied modal logic were preoccupied with propositional 
operators (taking propositions into propositions). From them we may  
have inherited an exaggerated tendency to expect that  intensional no- 
tions must be represented by such operators. If so, it is a tendency tha t  
needs tempering. Already Montague's work gives some perspective on 
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this issue. So does tha t  of P ra t t ,  b u t  a different perspective.  Phi losophers  
outside modal  logic have  a l ready argued tha t  ~ctions -- ~nd events  -- 
ought  to be  considered ~ basic eutegory.  Dynamic  logic suggests one w a y  
to do so~ and it deserves to be  explored. 
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