
KI IS J R Applying Modal Logic*
~EGERBEt~G

Abstract. The main purpose of the paper is to introduce philosophers and phi-
losophical logicians to dynamic logic, a subject which promises to be of interest also
to philosophy. A new completeness result involving both " M t e r ' - - and "dur ing" - -
operators is announced.

1. Introduction

lV[odM logic, like other kinds of philosophical logic, comes in two
varieties, pure and applied. I t is not quite the same distinction as the
corresponding one in mathemat ics . 1)are modM logic is the formal s tudy
of certain abst ract structures. Applied modM logic is the study, not
necessarily formal, of certain structures, not necessarily abstract , and
with a certain purpose: to relate to something else -- to some par t of
~some conception of) reali ty. Therefore the terminology is a bit misleading.
l~or one thing, applied modal logic need not be pure modal logic applied
5o something.

Throughout the history of modal logic, the pure and applied varieties
have been intertwined. Sometimes the dividing line is difficult to discern.
]3ut t ha t it is there m a y be seen from the different kinds of criticism
*here are. Critics will not dispute tha t there is a definite body of established
results in pure modal logic, even though they m a y find those results
trivial or unexcit ing. In other words, the existence of this discipline is
no t in question. The si tuation is different in applied modal logic, for
5hat is the discipline critics have in mind when they say, as they sometimes
do, t ha t there is no such thing as modal logic, or even tha t there can
be no such thing. A disturbing number of competent philosophers remain
unconvinced tha t applied modal logic makes sense, let alone has any th ing
5o offer philosophy.

One m a y ask why this is so. I t seems to this au thor tha t there are
a t least two impor tan t answers. One: key concepts of Kr ipke semantics --
which is the stuff tha t today ' s applied modal logic is made of -- are
ev ident ly too obscure or too badly explained to be generally intelligible.
Two: the usual analyses in terms of modal logic of m a n y philosophically
interest ing concepts fail to bring out their logical form. Events , processes,

* The work on this paper was supported in par t by an Academy of F in land
~ellowship fS~" l~ugre h~znna vetenskapsidkare during the former half of 1979. The
paper i , self was read as an invi ted address at the Conference on Prac*icM and Phi-
losophical IV[or of lXYon-classical Logics held at Torufi, August 15-19, 1979.

1 2 - Studia Logica 2-3/80

276 K. ~egerbeqr~

and actions are examples of concepts for whose analysis modal logic has
proved rather unilluminating so far.

These are sweeping verdicts! But even those who take a less pessi-
mistic view than the author will probably agree tha t any development
tha t offers the slightest promise to improve the situation deserves the
at tention of all friends of modal logic. One recent effort emanating from
the ~assachusetts Insti tute of Technology that surely falls under this
heading is dynamic logic, a creation by Vaughan Pra t t and his colla-
borators. Their ideas provide a striking interpretation of possible-worlds
semantics which, in addition to being precise and intelligible, is also.
clMmed by its creators to be useful. Even more, dynamic logic coul4
provide a new way of analysing action!

Dynamic logic was born in a computer science department, and i~
available accounts it appears as the offspring of computer science tha t
it is. This paper is perhaps the first a t tempt to present it to a philosophical
audience. The plan of the paper is as follows. Section 2 is devoted to giving
an ilhtstrative example. This example, which falls slightly outside the
intended range of interpretations of dynamic logic, is meant to be helpful
for the continued intuitive discussion in Section 3 and 4. Section 5 con-
rains a general definition of propositional languages of dynamic logic.
In Section 6 the fundamentals of formal semantics are developed. Some
possible implications for philosophy are sketched in Section 7.

~ u c h of the material presented here is already known. The author 's
debt to Professor Pra t t is great, both to his papers and to conversations
with him. Among other things Pra t t should be credited With the idea~
tha t programs are intimately connected with actions. Thus the author 's
contribution is to have recast Prat t ' s ideas in a form that is more recogni-
zably modal logic as this discipline is known traditionally; the modelling
in Section 6 should be compared with that of [4]. The two theorems in
Section 6 are announced in print for the first t ime; they were presented
.to the Fifth Scandinavian Logic Symposium in Aalborg, Denmark, on
J~nuary 17, 1979. The author is also responsible J~or the material of Sec-
tion 7: that one might t ry to analyse human action with tools devised
to analyse machine action has not been suggested by Pratt , and the idea
may indeed prove u~reMistic.

I t should be mentioned that Prat t ' s dynamic logic is not the only
theory of its kind. There are predecessors, like the theories of Floyd
und Hoare, and there are present day alternatives, like SMwicki's theory.
For Prat t ' s own work, see [2, 3, 4]. A survey of the field is given in Pratt.
[5]. A previous a t tempt by the author to steer dynamic logic into th~
mMnstre~m of traditional modM logic was made in [7].

2. A simple-mlnded example
My family's washing machine is a black box-like object in the base-

ment. I t is operated as follows. You load the dirty laundry into the barrel.

Applying modal logic 277

You pu t detergent in the holder intended for this purpose. You select
a program b y inserting a program key, made of pink plastic, into a certain
slot. Y o u check tha t the water and the electric power are on. You press
the s tar t bu t ton . Then a lamp lights up, and the machine takes over.
I f there is no malfunct ion or interference, the machine will have cari'ied
ou t the chosen program in less than half an hour. At the end of a successful
wash the lamp goes out, indicating tha t the machine has stoPl~ed. I f
half an hour or so after the s tar t b u t t o n was pressed everything is quie t
b u t the lamp is still on, you suspect t ha t something is wrong -- for some
reason there is a failure. As minutes pass with no fur ther act ion and
wi thout the lamp going out, your suspicion rapidly grows into conviction :
ve ry soon you "know" tha t something is wrong.

The programs on the program keys have short mnemonic names or labels,
like W~gTE; WaZTE~ VErY DI~Tu COLORED ; COLORED, VERY DI~TY; COTTON;
1NTYLON; DELICATE; DRIP-DRY; SYNTHETIC DRAPES; etc. The effect of each
program is outl ined briefly in the instruction book. For example, this is
the information given abou t W~I~E, VERY Dm~Y:

Fills cold water to high level.
Kea ts to 50~ during tumbling.
Fills cold wa te r to low level.
]=feats to 95~ during tumbling.
Fills cold water .
4 rinse cycles with short in termi t ten t spin cycles.
Spin cycle 3 minutes 45 seconds.

Ex ac t l y how the machine funct ions is not explained to the customer.
There exists of course an extensive theory for the hardware of the machine,
a theory which m a y be said to form a subtheory of physics (mainly me-
chanics and the theory of electricity). The local dis t r ibutor prospers due
to the fact t ha t this theory is known to his service man b u t not to custo-
mers like myself. For all I know, this theory m a y be interesting in i ts
own right, b u t as a customer I take no interest in it. W h a t directly inte-
rests me is t ha t m y laundry gets done properly, meaning: t ha t the l aundry
gets washed wi thout get t ing damaged. The reasoning I employ when I set
out to use the machine on m y laundry will not be in terms of electricity
etc. bu t ra ther in terms resembling the idiom of the instruct ion book.

Suppose~ for example, t ha t I have a load of ve ry di r ty terylene shirts.
A quick check shows tha t none of the programs on the program keys
is designed expressly for this category. So I will have to th ink a b o u t
which program, if any~ would be suitable for this load. I t is easy to th ink
of necessary conditions on such a program a. Above all there is this:

After a, the load is clean.

278 .K. Soge~'berg

To effect this~ it m a y be t h a t the following condition would be sufficient:

During some of a, the tempera ture is a t least ~0~

On the other hand we are also concerned tha t the shirts be handled with
, c a r e :

After a, the load is not spoiled.

F o r this reason we requh~e, say,

During all of a, the tempera ture is less t han 50~

There m a y be various other conditions to consider (on torque, for example).
I f I can find at least one program satisfying all these conditions, f ine:
then I can use t h a t one. I f not, then I shall have to wash the shirts by
hand.

This is no doubt a simplified picture of wha t goes on in a launderer 's
mind . Bu t hopefully i t is not too far from the t ru th either. Now, this
k ind of reasoning can be described in a slightly more abst ract way as
follows. Fi rs t I enumera te a number of conditions A0, . . . , A~_~, all of
which are to hold a t all t ime during the wash~ and a number of conditions
Be, ...,B~,_~, each of which is to hold a t some t ime during the wash.
Then I go through the finite list of available programs to see if there is
one, a say, such t h a t every member of the set

F = {rduring all of a, A~ ~ : i < m}

is t rue ; every lnember of the set

O = {rduring some of a, Bi~: i < n}

is t rue ; and~ furthermore,

/~, O F ~after a, the load is clean ~,
F, 0 ~- rafter a, the load is not spoiled ~,

where the tu rns ty le refers to the theory I have developed on the basis
of whatever knowledge I have of fabrics, detergents and m a n y other
things as well as m y previous experience with the washing machine.
A n y such program a can be used to wash m y shirts. On the other hand,
if there is no such a, then the shirts will either be ruined or not properly
washed ff I foolishly insist on using the machine anyway.

Thus, even though I don ' t know (and real ly don ' t care to know)
any th ing about wha t goes on inside the machine, I can -- and do --
re~son about ~spects or consequences of these goings-on.

Now some final remarks on the determinis t ic /nondeterminis t ic distinc-
t ion. The washing machine has been presented as determinist ic: given
the initial conditions (the loading eta.) ~nd the program, the action of
the machine is determined. At least, this is what thr instruct ion book

Applying modal logiv 279

gives you to unders tand. Actually, things sometimes go awry. That is
to say, m y presenta t ion of the machine does not give the whole picture.
A presenta t ion closer to the t ru th m a y be obta ined b y representing the
machine as nondeterminist ic in the following way.

During the five years we have had the machine, every b reakdown
I have encountered has fallen under one of the following headings: a fuse
blows; the barrel jams, the p u m p breaks ; and (most expensively) some-,
thing happens to the computer unit. Fo r some reason, each of these
b reakdowns occurs only in connection with certain programs. Thus a fuse
is known to blow only if W~TE, VERY DIRTY or COLORED, VERY DIRTY is ,rlln.
Fo r tuna te ly , i t doesn ' t happen every t ime one of those programs is
run. In fact , i t happens ra ther infrequent ly (not tha t I have been able
to figure out a frequency). Bu t so far, every t ime a fuse has blown, i t
has been while one of these programs was being run. Furthermore~ none
of the other breakdowns has ever occurred in connection with either one.

I t appears, then, tha t it would be more informative if the p rogram
l abe l s WHITE, VERY DIRTY and COLORED, VERY DIRTY would be replaced
b y new program labels like WHITE, VERY DIRTY, OR FUSE, BLOW A and
COLORED, VERY DIRTY, OR I~USE, BLOW A, respectively. To be sure, this
is not ~ change tha t the manufac turer is likely to initiate. Yet to a custo-
mer such a change would make sense. When he uses the program labeled
WHITE, VERY DIRTY he may think of himself as issuing a command to
his servant , the machine, " R u n the very-di r ty-whi te rout ine!" . B u t a t
least in the light of the experience repor ted here it would be more realistic
if he thought of himself as telling the m~chine, " R u n the very-d i r ty-
-white routine, or blow a fuse!". For this is wha t the machine will d o
if p rogrammed with the W~ITE, VERY DIRTY program, no mat te r w h a t
the label of the program.

Not ice tha t nothing has been said abou t probabil i t ies here. However~
under some addit ional assumptions the washing machine could be given
a probabil is t ic representa t ion as well. Suppose that , cont rary to what,
was said above, I have been able to figure out the f requency with which
a fuse blows during a run of the WHITE, VERY DIRTY program. Suppose
t h a t the f requency in question is p, where thus p is a real number be tween
0 and 1. Then it would make sense to replace the manufac turer ' s label
wi th another one: (1 --p) (WHITE, VERY DIRTY) OR p (FVSE, BLOW A).
This label brings to mind the intui t ive command, "Wi th p r o b a b i l i t y
(l - - p) run the very-di r ty-whi te rout ine wi thout breaking a fuse, or~
if you don ' t run the very-di r ty-whi te routine, blow a fuse!". Under t h e
present assumptions, this is wha t the machine will do if p rogrammed
wi th the WILITE, VERY DIRTY program, no ma t t e r how the program is
labelled.

However , probabil ist ie machines are a different topic, and f rom now
on we shall say no more abou t them.

280 K. Segevberg

3. Automata and programs

There are a u t o m a t a of m a n y different kinds, fl'om sophist icuted
comput ing machinery to washing machines to simple gadgets ordinari ly
no t though t of as uu toma ta a t all (like ball poin t pens and electric switches).

As logicians we are interested only in' the most general propert ies of
au tomata . Le t us therefore th ink of them as b lack boxes (BB's) in the
usuM way. The mMn assumptions we make abou t them are the following.
(1) At every ins tunt of t ime, the B B is in some welldefined s ta te (= t o t M
s~tate). (2) There is a definite set of programs for the BB. (3) The
B B c~n be programmed, the purt icular program, u given initial s ta te
(und perhups a randomizing device) determining the act ion of BB. (4)
I f a p rogram is chosen ~nd the B B is s tar ted, the B B gets b y proceeding"
f rom s ta te to s tute in a discrete fashion, the transi t ions taking no t ime
a~t all. (5) When the B B is through with a program, it stops. (6)
One curt Mwuys tell whether the B B has Mready s topped; b u t if the B B
has no t .yet s topped, there m a y be no w a y of telling whether it ever will
stop. (7) I t is possible for a BB to fM1; this occm~s when the B B remains
in a certain s ta te with no fur ther act ion forthcoming, and ye t has not
s topped. (8) The B B is perfect in the sense tha t i t does not b reak
down -- there is no malfunct ion, nor any interference f rom the outside.
(The lust assumpt ion is sometimes negotiuble.)

Think of a purt icular B B as given. I t m a y not be necessary to pos tu-
late tha t the set of programs ussociuted with it be "wellfounded" in the
sense of contuining a smM1 subset of "pr imit ive" or "basic" programs in
terms of which M1 others are definable. B u t here we do: we shall ussume
t h a t there are some pr imit ive programs so, s~, . . . , s ~ (, . . .) f ini te ly or
infinitely many. We Mso assume tha t the set o f programs is closed under
wha t is culled the three regular operations, the b inary d- and �9 (actual ly
the dot is often omi t ted in formulas!) and the una ry *. They m a y be
given a heurist ic account as follows.

�9 I t is helpful to huve some intui t ive pic ture or pictures of programs.
Two ways of unders tunding t hem are as actions ~nd as imperatives. On
the former lmders tanding one thinks of a progrum a us an act ion (uetion
t y p e ra ther thun part iculur action): " the act ion a" or " the uetion con-
sisting of doing a". On the la t ter unders tanding one thinks of a as an
imperut ive such as "Do a!" or "Carry ou t the a-rout ine!"

These re~dings allow us to explain a § aft, and a*, given t ha t a
and fi are programs. H a und fl are though t of as " the uetion a" und " the
act ion fi", respectively, these three are though t of us

" the act ion consisting of doing a or fl",
" the act ion consisting of doing first a and then fl",
" the act ion consisting of doing a some number of t imes".

Applying modal log@ 281

If a and fl are thought of as "Carry out the a-routincY' and "Carry
out the f l-routine! ' , respectively, the three instead become,

"Carry out the a-routine or the fl-routine!",
"Carry out first the a-routine and then the fl-routine! '~,
"Carry out the a-routine some number of t ime!".

Yet another way of visualizing a program is as a list of instr~vtions
of this fo rmat :

BEm-----~

STOP

where ~Oo, . . . , ~%-1 are themselves programs. (I t is a conception of this
k ind tha t often makes authors of textbooks refer to the advice given to
the Whi te Rabbi t in Alive in Wonderland: ' "Begin at the beginning",
the King said, ve ry gravely, "and go on till you come to the end: then
s top. ' ") Viewing programs this way m a y be bewildering when it comes
to composite programs of type a-~- fl o r a*~ bu t sometimes it can be helpflfl:
For example, the list in terpre ta t ion elucidates the distinction between
the impossible program, which cannot be executed, and the identity pro-
gram, which executes nothing. For the impossible program m a y be though t
of as the list

}~EGIN
Verify tha t 0 = 1!
STop

whereas the ident i ty program m a y be thought of as the list

STo~ 1

Thus the difference is t ha t if you embark on the impossible program
you never get to STOP, while if you embark on the ident i ty program you
get there instanbly. The impossible program is denoted by 0 and the
ident i ty program by 1. They m a y or m a y not be available as pr imit ive
programs; if t hey are, t hey m a y or m a y not be among the a~'s.

All this is of course ra ther loosely speaking. But even here it is clear
t h a t the question of determinism enters. :Note tha t the readings of a + fl
and a* become unintelligible in connection with determinist ic BB's. ~or
in the case of -k it is left open which al ternative, a or fl, is to be chosen�9

282 K. Segerberg

Similarly in the case of * the precise number of i terations of a, 0 or 1
or . . . , is left open. The idea here is tha t it is the BB itscl~ tha t decides
on these questions (with the help of the randomizing device pos tu l a t ed
under (3) above).

4. Languages and models for automata

Continue to th ink of a par t icular BB as given. We shall now t ry to
discuss two notions, the not ion of modal logical language suitable for t h e
B B in question, and the not ion of model based on the BB. Our discussion
is still informal, and we do not r igorously define the notions jus t mentio-
ned. Formal definitions of re la ted formal concepts are given later -- see
Section 5 for languages and Section 6 for models.

F i r s t the languages. There will a lways be some pr imit ive or bas ic
proposi t ions; perhaps T or • is one. Exac t ly wha t t hey are will depend
on the B B and on wha t we are interested in -- we will no t go into tha~
question, b u t the discussion in Section 2 should be suggestive. Then
there are the more complex proposit ions tha t can be obta ined b y t he
use of proposi t ional operators . The Boolean ones are wel lknown: if 2k
and B are proposit ions, then so are -1A, A ^ B , A v B , A->B, A ~ B , and
perhaps still others. B u t we also need proposi t ional operators of a novel
kind, as indicated b y the washing machine example. The following ones
seem to be among the simplest and most na tura l ones (notat ion to th~
left, impor t to the r ight) :

[a] af ter every computa t ion according to a,
(a} after some computa t ion according to a,
[a] a lways during every computa t ion according to a,
((a}> sometimes during some computa t ion according to a,
((a~ a lways during some computa t ion according to a,
In>} sometimes during every computa t ion according to a.

(Actually, the readings as given are ambiguous. The ambigui ty will b e
r emoved below.)

As presented here, programs and modal logical languages can b e
described independent ly of one another. B u t this is not necessarily so;
if so-called tes t programs are allowed, it is no longer the case. If A is a pro-
position, i t makes sense to ask whether A obtains. So A?, codifying th is
question, can be in t roduced as a new program. On the act ion i~terpre-
ta t ion, th ink of A? as " the act ion consisting of verifying tha t A ''~ (ra ther
than the misleading formul~Jtion " the act ion consisting in test ing whe the r
A"). On the impera t ive interpretat ion, th ink of A? as "Verify t ha t A['~
Of course, if A is not the case, then the program A ? cannot be carried out=

Le t us now see wha t we can do for semantics. B y our a~sumptions~
the re is ~ welldefined set of all the s tates of our BB. Such a s ta te should:

Applying modal logic 28~

be thought of as a to ta l s tate: a momen ta ry state-of-affairs inside t h e
BB or, if you prefer~ a cross-section of the BB as an object in space-t imer
the contents of its input , output , memories~ . . . (The program is not con-
sidered par t of the state.)

Now suppose t h a t the BB is in some state x. Le t the BB be p rogramme4
with a program a. When s tar ted the BB will go into action s proceeding
from state to s tate in a discrete fashion. In principle a t least it is possible
to plot its journey through state space. Let us call any sequence of states~
a path. Thus there is an obvious sense in which the BB, when star ted,
will produce a pa th s viz., the sequence of states in the order the BB passes.
them through. Under certain conditions, such a pa th will be what we
shall call a computation according to a or a-computation. There are fou r
cases to consider.

Case 1. The BB ceases to act after f initely m a n y steps, and t h e
pa th produced is an a-computati0n. This computa t ion s then, is of t y p e
(z0, . . . , zn}, with z0 -= x and n >~ 0. The length of the computa t ion is n..

Case 2. The BB ceases to act after f initely m a n y stepss bu t t h e
pa th does not qualify as an a-computat ion. (This pa th is called a failure,
of a at x or an a-failure.)

Case 3. The action of the BB goes on for ever, and the pa th pro-
duced is an a-computat ion. This computations then s is of type (zoo. . ,
. . . , %~ . . .}, with zo --~ x bu t wi thout a last element. The length of t h e
computa t ion is o~.

Case 4. The action of the BB goes on for ever, bu t the pa th pro-
duced does not qualify as an a-computat ion.

Case 4 m a y not be of any practical interest, bu t it has been included
as a logicM possibility. Of the other three, case 2 is par t icular ly interesting.
Two instances of it are worth mentioning here. One is obtained by let t ing
a be the impossible program. In fact~ the difference between the impos-
sible program and the ident i ty program now comes out clearly. The
only computat ions according to the ident i ty program are those of length 0s.
for nothing "happens" during such a computat ion. On the other hand ,
there can be no computa t ion at all according to the impossible program --
no computa t ion in the world could verify t ha t 0 = 1.

The other example of Case 2 is provided by the ?-operator. Suppose
t h a t A does not obtain, and let a be the complex program A? �9 fi ("Carry
out first a verification t h a t A and then the /?-routine!"). Under the cir-
cumstances this program is seen to funct ion more like a conditional im~
perative t han a categorical one: " I f A is the case, then carry out the
f l - rout ine! ' ; what is to be done if A is not the case is not specified. The
BB, unable to verify t ha t A, is left suspended in mid-air~ as it were.

284 K. ~egerberg

With the not ion of computa t ion according to a program a t hand,
w e m a y now ar t iculate ou r - in tu i t ive semantics more precisely. F r o m

semantic poin t of view, our object language is indexical: proposit ions
a re not t rue or false b y themselves b u t t rue or false only with respect
to a state. W e wri te ~ A to indicate t ha t a proposi t ion A is t rue at a s ta te
x (still referring" to the given BB). We take the t ru th or fMsity s,t s tates
of pr imit ive proposi t ions for granted. The Boolean conditions work out
~s usual. I t is the new proposi t ional operators tha t a t t r ac t interest .

Fo r the two '%fter"-operators we would p resumab ly have these

iff, for every finite a -computa t ion <zo, . . . , zn> such tha t
Zo ~ x, ~% A.
iff, for some finite a -computa t ion <Zo,. . . , zn> such tha t
zo = x, ~z,~ A.

the "dur ing ' -opera to rs we would have these condit ions:

iff, for every (finite or infinite) a -computa t ion @o, ...>
such tha t Zo = x, for all i such tha t z i is defined, ~ i A.
iff, for some (finite or infinite) a -computa t ion (Zo, ...>
such tha t zo = x, there is some i such tha t z, is defined
and ~ i A.

#, (a~ A iff, for some (finite or infinite) a -computa t ion (Zo, ...> such
t h a t Zo = x, for all i such t ha t z~ is defined, ~z~ A.

~ [a}}A iff, for every (finite or infinite) a -computa t ion (z0~ . . .}
such tha t Zo = x, there is some i such tha t z, is defined

and ~ i A.

We have now developed a semantics of a sort. To make it quite explicit
w e might back t r ack and in t roduce a not ion of model as follows. Let U
be the set of M1 to ta l s tates of the BB. For each program a, let C(a) be
%he set of all (finite or infinite) computa t ions according to a. Define

C = {C(a): a is a program}.

:For each proposi t ional le t ter P, let V(P) be the set of s tates in which P
holds. Then all the informat ion used in the preceding t ru th conditions
~ean be re t r ieved @ore the t r ip le <U, C, V>, which therefore m a y be
ca l led a model based on the given BB.

The final s tep in making the semantics explicit is to define a propo-
sition as true for the B B if i t t rue a t every state. The set of all formulas
t r u e for the B B m a y be called the theory of the BB. The logician can
now formula te the usual questions abou t theories: whether it is axio-
mat izab le , decidable, etc.

There are several o ther concepts tha t can be handled quite na turMly
w i t h i n the present f ramework (of. [1, 2, 4]). Equivalence be tween pro-

condi t ions :

~x [a] A

;Similarly, for

~ ~a~ A

Applying modal logic 285

gwams is one. Suppose tha t z is pa r t of the object language and tha t
a --= fl is a formula whenever a and fl are programs, asserting tha t a and fl
are "really the same program" or "come to the same thing". The vagueness
of this suggestion is removed b y the following t ru th condit ion:

~ a z fl iff every a-computa t ion is a fi-computation~ and vice versa
(that is, iff C(a) = C(fl)).

Another example is offerred b y the concepts of convergence and
divergence. Suppose tha t we have in our object language, for each pro-
gram a, proposit ional constants v o n v . and d ie a. Their t ru th conditions
are the following:

~ vonva iff every a-computat ion (zo, . . .) such tha t z 0 = x is finite.
~ diva iff there is an infinite a-computat ion (Zo, . . .) such tha t

Z 0 ~ X .

This dist inction could be bui l t into a compet ing not ion of "af te r" :

~ [a] t A iff every a-computat ion (Zo, . . .) such tha t Zo----x is
finite, and, for every finite a-computat ion (~o, .--, u~)
such tha t Uo -~ x, ~ A.

~ (a)*A iff either some a-computat ion (z0, . . .) such tha t Zo ----x
is infinite, or there is some finite a -computa t ion (~0, . . .
. . . , %) such tha t uo ---- x and ~% A.

A more complicated example involves the notion of preservat ion.
Le t us say tha t a program a preserves a proposi t ion A if, during every
a-computat ion, if A is ever true, then A stays true. Assume tha t our
objec t language contains, for each program a, a proposit ional operator
a-pres. The corresponding t ru th condition would seem to be this one:

~ a-pres A iff for every (finite or infinite) a -computa t ion (Zo, . . .)
such tha t zo = x, for all i, if V~t A and z,+~ is defined,
then V~+~ A.

Preserva t ion is a complex concept, and it m a y b e possible to analyse
it in terms of simpler ones. For example, one might t r y to define a new
proposi t ional operator n e x t so tha t a-pres A is rendered b y [a] (A->nex t A).
Such an operator would be indexical not only wi th respect to s ta te bu t
also with respect to program; so the semantical appara tus would have
to be revised.

One concept tha t does not seem amenable to t r ea tmen t within to
suggested semantics is tha t of failure. Suppose tha t the object language
contains, for each program a, a proposit ional cons tant [affa. No t ru th
condit ion in terms of U, C and V would seem to do just ice to the intui t ive
impor t of these new constants. One way to proceed would be the follo-

286 K. ~egevbe~'g"

wing. Fo r each a, let ~ (a) be the set of all states at which there is at.
least one a-fMlure. Define

= {iV(a): a is a program}.

E x p a n d the not ion of model based on the given B B from the t r ip le
<U, C, V> to the quadruple (U, C, 1~, V>. Then the previous t ru th con-
ditions arc unchanged, and the following one is added :

~xfail~ iff x eF(a) .

A much greater revision would be the following. First , for each progran~
a, define P(a) as the set of (finite or infinite) pa ths (zo~ . . .7 t ha t can b e
p roduced b y the B B under a if s ta r ted while in s ta te z0; thus C(a) c P(a)~
Then define model as the quadruple (U, C,P, V}. The same n o t i o a
of failure would now be captured b y this t ru th-condi t ion:

~xfail. iff there is a finite element (Zo, . . . , zn} in P(a) such tha~
Zo = x which is not also an a-computat ion.

Other concepts of failure can be defined in a similar manner.
Thus we see tha t , jus t as the concept of modal logical language su i tab le

for the given BB allows m a n y instances, so the concept of model b a s e d
on the given BB is not uniquely determined. Roughly speaking, t he re
is a lways more informat ion abou t the B B than can be buil t into any one
tuple. Y o u r choice of bo th language and model depends on wha t y o a
are interested in.

I t is t ime to end the intui t ive discussion. So as to make sure that~
intui t ion and formM development are not confused, we s tar t all ove r
again when we now go to the next section, moving f rom applied logia
to pure.

5. Abstract languages and logics

In this section we shall first give a definition of language for (pro-
positional) dynamic logic, which will be seen to be an abs t rac t ion of t h e
intui t ive not ion of modal logical language suitable for a BB, discusse4
in the preceding section. In laying down such a definition, it is convenient.
to use a wel lknown idea due to Ajdukiewicz and recent ly revived b y
Montague.

A language of this kind is defined in three steps. F i rs t one defines,
the s t ructure of syntact ic categories. They are, b y our definition, a lways
the same: there are two basic syntact ic categories, f (propositional expres-
sions, or formulas) and p (program expressions, or jus t programs). Fur -
thermore, whenever a, bo,...,bn_ 1 are syntact ic categories, basic o r
derived, then

abo bn~ l

is a new derived category.

.Applying modal logic 287

The second step of the definition of language consists in defining,
for each syntact ic category s, the set B(s) of basic expressions of category s~
a n y two of which are disjoint. (Usually all bu t f ini tely m a n y of the cate-
gories will be empty.) We shall make the following assumptions: B([),
t h e set of basic formulas, will always contain a set of elements called
propositiona~ letters; the others are called propositional constants. Similarly,
B(p), the set of basic programs, will always contain a set of elements
eMled program letters; the others ~re called program constants.

The th i rd and finM step in the definition of a language consists in
recursively defining, for e~ch syntact ic e~tegory s, the full sets C(s) of
.expressions of category s. This step is the simplest since it can be t aken
~are of once and for all: the sets O(s) are to be the smallest sets such tha t
~i) for each category s, B(s)~_ C(s), and (if) whenever

X e C(a), Yo e C(b0), . . . u e O(b~_l) ,
~hen

X(Yo, . . . , Y,~-I) eO(abo b~-l).

2r assures us t ha t a definition of this kind is correct.
Wi th the first and th i rd steps in the definition of l~nguage fixed,

i t is the second one tha t m~tters. ~ e n e e a language might be identified
~vith the funct ion B assigning to e~ch synt~etie category s the set B(s).

In the light of this, let us now review some of the m~teriM of Section 4.
:First this example: suppose tha t we have a language such tha t whenever
a is a program (expression of category p)~ then [a] is a propositional ope-
ra tor (expression of category ff). The general i ty of the present approach
,-would then make it naturM to introduce an operator [] of c~tegory
~[~)' and agree to write [a] instead of [](a). Alternat ively, i t would
be possible to introduce [] as an expression of one of the c~tegories
~f", f~[', and ([P)[instead. In the former two c~ses, if A is a formula, we
would agree to write [a]A for [](A, a) or [] (a , A), respectively. In
~he last case we would ~gree to write []A for [] (A) -- which would
,be an expression of category [' : a formula-making program operator --
~nd [a]A for []A(a).

The following is a list of possible expressions suggested by the discussion
in Section & The idea is t ha t if the expression indicated on the left is in
t h e language, t h e n it is of the category listed on the right. The typogra-
phicM shapes should encode enough information to make the list self-
-explana tory :

T,I__ f
-1 ff
A~ V~ -~, ~ ~ 'f

O~]
-, p~,

"-t-, ~ 'P

288 .K. Segerberg

? pf
[], <>, [[] , (()), ((If, I[)), p r e s (ff)~ or (f~)f or ff'~ or f~,f
~_. fP'P

cony, div, fail f"
We take this oppor tun i ty to list some conventions regarding notation~

W e use A, B as generic names of formulas; a, fl as generic names of pro-
grams; P as a generic name of propositional let ters; z as a generic name
of program let ters; i, j , t~, l, m, ~ as generic names of the members of
the set ~ of na tura l numbers 0, 1, 2, . . . ; s as a generic name of syntact ic
categories. Our use of parentheses is informal. Ins tead of -7(A), -~(A, B)~
etc., we write 7 A , A->B, etc. Ins tead of § (a, fl), �9 (a, fl), *(a) we wri te

a + f l , aft, a*.
In the present context , classical modal logic m a y be character ized

as the s tudy of operators of category ff. A good deal is known abou~
such operators, and when one develops dynamic logic -- which used to
be called the modal logic of programs -- it seems na tura l to t ry to draw
on this knowledge. I~et us quickly repeat some wellknown concepts in
this are~.

A logic (in a given language) is a set of formulas containing all t ru th -
-functional tautologies, closed under modus ponens and subst i tut ion
(of formulas for propositional letters). If L is a logic we write ~ LA or
even ~ A, when confusion does not arise, for A e L.

An operator ~ is congruential in a logic L if ~ A*~B implies t h a t
~ r A o ~ B . Fur thermore , ~r is regular in L if ~r is congruential in L and

distr ibutes over conjunct ion; t ha t is, ~ ~r(A A B) ~ (~ A A ~B). Finally,
is normal in L if ~r is regular and ~ A implies t ha t ~ ~A. Notice tha t t he
so-called Kripke schema is derivable for operators t ha t are at least regular-
if ~r is regular then F ~(A~B)->(~rA-~rB).

Extend ing this terminology, let us say tha t an operator A of ca tegory
(~f)' is congruential (regular, normal) if, for each a, h (a) is a congruentiaI
(regular, normal) operator of ca tegory ff.

The recent his tory of modal logic shows tha t m a n y normal propo-
sitional operators can be given an extensive analysis within relationa~
Kr ipke semantics, while regular operators can be handled in a slightly
modified Kr ipke semantics. The s tudy of congTuential operators has
a t t r ac ted much less a t tent ion, bu t some work has been done with t he
neighborhood semantics usually ascribed to Montague and Scott. (The
much older algebraic semantics due to Tarski and his followers is no t
considered here.)

6.- Formalizing "after" and "durlng"

Of the intui t ive operators listed in Section 4, a t least [a] and ~a~ seem
to be normal. For this reason we single t hem out for s tudy in this section

A2ptyi~g modal logic 289

and will t r y to give them the usual Kripke type t rea tment . (Of the others,
[a] t seems to be regular, ((a~ and [a}} congruentiM. Concerning the former,
see [2, 5, 8]. One would conjecture tha t the la t te r two could be given
some kind of neighborhood analysis.)

To be quite specific, let us list a part icular object language to be
used in this section. All basic categories are to be emp ty except the follo-
wing:

B (f) = {propo , p r o p 1 , . . . , p r o p ~ , . . . } ;
B(O) = {pvOgro, p r o y r l , . . . , p r o g r ~ , . . . } ;

B(f~) = { q } ;
B(f ~a) = {^, v , - % ~};
B(~P) = {*};
B(# ,~) = { + , .};
B ((r = {[], ~ ~}.

Thus < > and << }, duals of [] and ~ ~, respectively, are not pr imit ive
here. But they can be in t roduced by definition in the usual way:

<a> A = ~ -1 [a] --] A,
<<a>> A =a~ -q ~a~ -1 A.

The next task is to develop a semantics for this language. InsteadL
of directly building a concept of model along the lines of Section ~, we.
shall proceed more obliquely. The reason for this s t ra tegy will become
apparent .

By a model let us mean a quadruple 9~ = <U, R , S , V> such t h a t
the following conditions obtain:

(i) U is a set (the domain);
(if) {R(a): a e C (p) } and {N(a): a e C (p) } are families of b ina ry

relations on U (the R-a~terq~ative relations and the N-alternative
relations, respectively);

(iii) V is a funct ion f rom B(f) to the power set of U (the valuation).

With our definition of language it can easily be shown tha t the for-
mulas -- the elements of C(f) -- are exact ly the basic ones -- the elements
of B(f) --, Boolean compounds of other formulas, and expressions of
type [a] A or [a~ A. The semantic definition of truth in ~ of a formula
A at a point x e U can therefore be given in the expected way. We write,

~x A for this notion.

~ P iff o0 e V(P), if P e B (f) ;
9 X ~ A A B iff 9 X ~ A and 9XV~B;

and similarly for the other Boolean operators;
9J~ ~ [a] A iff Vy(a~R(a)y~fO~ ~v A);

:290 I~. Segerberg

A fo r mu l a is s~id to be true in 9~t if i t is t rue a t every po in t of the model .
So fa r i t is n o t all clear w h a t the preceding model l ing has to do w i t h

t he in tu i t i ve " a f t e r " a n d " d u r i n g " . I n fac t , as i t s t ands t he model l ing ju s t
i n t r o d u c e d is too general to be of o ther t h a n technica l in teres t . I n order
t o def ine t he k ind of mode l we rea l ly wan t , we need some concepts f r o m
a u t o m a t a t heo ry , a n d we shall now t u r n to t hem.

A word is a n y sequence, f in i te or inf ini te , of p r o g r a m le t ters (and is
t h u s of o rder t y p e ~ ~). A special case is t he e m p t y sequence, 2, which
is cal led the empty word (there is on ly one!). W e shall use a, v as generic
n a m e s of words. (The r eade r will no t e t h a t even a f in i te word ~o .-- ~
is n o t a p r o g r a m expression, even t h o u g h our in fo rmal m o d e of n o t a t i o n
m a y suggest t h a t i t is. F o r example~ a word ~ o ~ is a sequence ~nd would
be wr i t t e n (Zo, ~) or even {(0~ z0}, (1 , ~ } } in a e~reful exposi t ion.
The p r o g r a m express ion ZOO1, on the o ther hand , is a c t u a l l y a shape
"(Zo, ~) , a n d t h u s some th ing qui te di f ferent . This is n o t to say t h a t t he
two no t ions are n o t i n t i m a t e l y re la ted -- t h e y are, as will be seen pre-
s en t l y .)

I f a a n d ~ are words a n d a is f ini te , t h e n the eonoatenation av of a ~nd
v -- t he sequence o b t a i n e d b y c o n c a t e n a t i n g a a n d v, in t h a t order -- is
also a word, f in i te if a n d on ly if v is f ini te . W h e n below we wri te av or,
in general , ao . . . a~ w i th n > 0, we impl ic i t ly a s sume t h a t a respec t ive ly

express ion a, d e n o t e d b y [al, is def ined
~r o, . . . , a~_ ~ are f ini te .

The language of a p r o g r a m
.~s follows :

[~I ={~}~ if ~ e B (p) ;

-la+~l = lalul~l;
lafll ---- {a: (~ e lal a n d ~ is inf ini te) or

3~ x e [al 3~'2 e lfll(a --- ~'1~'~);
ta*l -- {a: 3nV~o, . . . , ~ - 1 e lal(a -- ~o . . . ~ - 1) or

Vn -~v n e Ial((r = ~oT~... wn.-.)"
~Notice t h a t ~ e]a*l, for all a.

I f a e [al, t h e n we say t h a t ~ instantiates a. (The preceding def in i t ions
a r e r e l a t e d to, t h o u g h s l ight ly d i f fe ren t f rom, those of Sa lomaa [6] (where
words are f in i te sequences). The use of t he word " l anguage" in th is tech-
nical sense m a y be s o m e w h a t a w k w a r d in the p re sen t con tex t , b u t i t
has seemed desi rable to fol low s t a n d a r d usage.)

L e t ~ - - - - (U , t t , S , V) be a n y mode l ; ac tua l ly , for the fol lowing
de f in i t i ons we on ly need U gnd R as def ined on B(p) . W e say t h a t a
n o n e m p t y , f in i te sequence z ---- (zo, . . . , z~} of n o t necessar i ly d i s t inc t ele-
m e n t s of U is a f in i t e a-eoml~utation (in 9~) if the re is a word ~o .- . s ~ - i ~ ia l
such t h a t , for all i < n, z~R(zc~)zi+~; t he length of ~. is n. S imi la r ly we
say t h a t an inf in i te sequence z ----(zo, zl , . . . , %, . . .~ of e lements of U~
aga in n o t necessar i ly d is t inc t , is an inf ini te a-eomloutation (in 93~) if the re
is an inf in i te word sos1 . . . z~ . . . ~ la l such t h a t , for all i < co, z~R(st)z~+~;

Applying modal logic 29:L

Che length of z is of course ~. In both cases we say t h a t the computa t ion
is f rom z o or t h a t i t starts at zo; ~ r t h e r m o r e , t h a t it is through each z~ in
the computat ion. In the finite case we also s.~y t h a t the computa t ion
is to zn or t h a t it terminates at z , . Finally, go . . . ~ - 1 respectively ~ogl . . .
-. . gn . . . is said to be a word of z (notice the indefinite article -- a com-
pu ta t ion m a y have more than one word).

Notice that~ for every x ~ U~ <x> is an a-computat ion of length O,
whenever ~ e la[. Fur thermore , for any program let ter ~ if <zo~ ...~ zn}
is a z-computat ion, then n =-1 and zoR(g)Zl .

We remarked above t h a t our not ion of model is too general for our
purposes. Kowever, in possession of the formal concept of computat ion,
we can now define a more re levant not ion of model. Le t us say t h a t a model

= <U, ~ , S, V> is a standard model if and only if the following two
conditions are satisfied~ for each a:

x R (a) y iff 3z(z is an a-computat ion from x to y);
xS (a)y iff 3z(z is an a-computat ion from x through y).

t t is an interesting problem whether s tandard models can be characte-
rized by simple set theoretic conditions on R and ~q. For a large class
of s tandard models an aff i rmative answer is given by Theorem 1. Le t
us say t h a t a b inary relat ion T is serial if V x 3y (xTy); t ha t a model
<U, R~ S~ V> is serial if R(a) is serial, for every a.

THEO~]~_~ 1. A necessary and sufficient condition for a serial model
= <U, R , S , V} to be standard is that the following conditions are satis-

f ied:

(!r R(a+fl) = R(a)u_~(~).

(R.) R(afl) = R(a) [R(fi).
(R*) R(a*) = R*(a).
(R~) ~(~) = R (~) u (i x , x>: x ~ U}.
(S +) ~ (~ + f l) = S (a)uS(f l) .
(~') S(a,8) = S(a)wR(a)] S(,6).
(~*) ~(a*) = R(a*) I ~(a) .

The proof is s t raightforward bu t too long to be included here.
The theorem is interesting in its own right. Bu t i t is also a useful

lemma for the proof of the following result :

THEORE~ 2. The set of formulas true in all serial standard models
is the smallest logic in which both [] and ~ ~ are normal and all instances
of the following schemata appear as elements:

(a~-) [a~-fl] A~+[a] A A [fl] A.
(a .) [aft] A~L+[a] [fi] A.
(a 'T) [a*] A-+A.
(a~) [a*] A-+[a] A.

13 ~ S t u d i a L o g i c a 2-3/80

292 K. Segerbe~f~

(a* ind)
(aD)
(aT)
(adl)
(ad)
(d+)
(a .)
(d*)

[a*] A-+[a*] [a*] A.
A~([a*](A-+[a] A)-~[a*] A).
[x~] A-+<zr> A.
(~a~ A-+A).
~a~ A-~[a] A.
A.-+([z] A - ~ : ~ A).
[a + fl~ A ~ ~a~ A ^]Iflll A.
~afl~ Ao~a~ A^ [a]~fl~ A.
~[a*ll A~-~[a*]~a~ A.

Unfortunately, the proof is much too long to be reproduced here.
Suffice it to say tha t it is of the canonical models/fil trations type ,
similar to ~hat given in [7], and so it also yields as a by-product the f .m.p.
with bounds tha t can be estimated. The author hopes to publish the proof
elsewhere.

This marks the end of the formal work. I t is submit ted tha t the for-
real not ion of s tandard model successfully formalizes an impor tant par~
of the intuit ions described in Sections 2- 4. Theorem 2 also gives a feeling
for what the logic of these notions is like. I t is of some interest to note
tha t it is not closed under subst i tut ion of program expressions for pro-
gram letters. To be certain, every subst i tut ion of a program expressio~
for the program letter in an instance of (aD) yields a derivable formula~
us is readily checked. Bu t in the case of (ad2) this is not so: it is easy to
find, for any given propositional letter P and program letters no an4
u~, a serial s tandard model rejecting the formula

P-+([(zo nO*]P~ ~(:% ~1)*~ P).

7. Philosophical relevance of dynamic logic

With formalities out of the way it is t ime to take stock of the situa-
tion. Wha t has this paper got to do with the philosophical problems.
pertaining to applying modal logic ? Even a hostile critic of applied modal
logic will admi t tha t dynamic logic offers an interpretat ion of modal
logic tha t is beyond formal reproach--frui t ful or not, it is precise an4
perfectly intelligible. But , such a critic might continue, apart from some
possible methodological interest, what does it mat te r to philosophy whe-
ther dynamic logic is going to benefit computer science?

5Tot much, perhaps. Yet this paper has been w-zitten in the belief
tha t Pra t t ' s dynamic logic has something to offer philosophy. I ts main
virtue, according to this belief, is tha t it points to a new way o~ approa-
ching the logic of action. The formalism of dynamic logic separates talk
about actions from talk about states-of-affMrs. That it does, and t h e
way it does it~ is what seems so interesting.

I t is not possible to go deeply into this issue here. But to lend some

Applying modal logic 29~

subs tance to the preceding paragraph we will briefly consider two exam-
ples, emphasizing tha t they are no more than sketches, and quick ones
at that .

As the first example, take "Anyone who is killed dies". I t is not a ve ry
interesting proposit ion, b u t it is t rue nevertheless, and in a peculiar way :
no t for empirical reasons bu t because of wha t the words mean. Whether
y o u choose to call it an analyt ic t ru th or a logical truth~ you will want
to see to it t ha t it becomes a t ru th in your formalization i linguists in
effect do when they analyse "kill" as "cause to die", us they sometimes
do. Disregarding various subtleties, we would formalize this proposi t ion
in (lynamic logic b y something like

[kill x] (x is dead),

the brackets being the b y now familiar ones. Or, to s idetrack for now the
difficulties a t taching to free variables and to individuals, consider the
simpler instance

[kill Caesar] (Caesar is dead).

Here kill Caesar is wha t might be called an action program, s tanding
for a certain t ype of action. On the other hand, Caesar is dead is a pro-
position, report ing a certain state-of-affairs. The proposit ional operator
[kill Caesar] can be read "after Caesar is killed" or, more carefully, "af ter
Caesar is killed, no ma t t e r how".

On the semantic side, proposit ions are identified with sets of possible
worlds, as before, while actions are identified with sets of sequences os
possible worlds. There would be a notion of model in general, as in Section 6,.
b u t the interest would focus on the s tandard models. The la t ter would
have to be defined in such ~ way that , among other things, Caesar is
left dead a t the end of every possible run of the kill Caesar-action program.
Other models are logicMly possible, b u t t hey would not be s tandard.

The second example is f rom deontic logic. Suppose Kim receives his
fa ther ' s permission to go to the beach or to the movies. If this is forma-
lized in the usual way -- writ ing p e v m in place of the more wel lknow~
P - as

p e r m (Kim is at the beach v Kim is at the movies),

then we also encounter the usual difficulties; for exampl% even though
we c~n infer the disjunction of the two proposit ions

p e r m (Kim is at the beach),
p e r m (Kim is at She movies),

we cannot infer either one b y itself. ~ a n y authors have poin ted o u t
t ha t this does not seem intui t ively sat isfactory (the problem of free choice
permission). Now, the operator p e r m is of category ~f. I f instead w e

294 t~. Segerberg

introduced u new operator P E R M of category ~ it becomes n~turM to
render Kim's permission as

P E R M (go to the beach -~ go to the movies),

and it is possible to argue that this proposition implies both of the follo-
wing two:

P E R M (go to the beach),
PERNI (go to the movies).

That is to say, we have at least two concepts of permission, of different
grarmnaticM categories and with different logical properties:

($) p e r m (A v B) o p e r m A v p e r m B,
($$) P E R M (a + fl) ~--~PERMa ^ PERMfl .

To support this ~nMysis one might t ry to use an idea originally due
to Alan l~oss Anderson and Stig Kanger: tha t something is permitted
if it can be realized without incurring any sanction or without making
the world worse, in a certain sense -- the world remMns "deontieMly
satisfactory", as it were. Let us use OK as a propositionM constant ex-
pressing the proposition tha t the world is deonticMly satisfactory, in
this sense. Then one way of rendering the Anderson/K~nger suggestion
in dynamic logic -- there may be other candidates -- would be this:

P E R M a ~ [a] O K .

(Actually this definition must be improved in view of wellknown diffi-
culties discussed at length in the literature -- as it stands it can only
be used in situations in which no obligation has already been violated.)

Using this simple-minded analysis we readily derive

P E R M a A P E R M fi~--,[a] O K ^ [fl] O K ,
P E R M (a ~- {~) +-~[a -~ fl] O K ,

whence ($$) follows from schema (a-~) in Theorem 2.
What is interesting in this example is not tha t we have hit upon a new

permission operator of ~ certain intuitive plausibility -- by now, several
have been suggested - - but tha t both our permission operators ~rise
within the system in such a natural way.

8. Conclusion

Pioneers in applied modal logic were preoccupied with propositional
operators (taking propositions into propositions). From them we may
have inherited an exaggerated tendency to expect that intensional no-
tions must be represented by such operators. If so, it is a tendency tha t
needs tempering. Already Montague's work gives some perspective on

Applying modal logic 295

this issue. So does tha t of P ra t t , b u t a different perspective. Phi losophers
outside modal logic have a l ready argued tha t ~ctions -- ~nd events --
ought to be considered ~ basic eutegory. Dynamic logic suggests one w a y
to do so~ and it deserves to be explored.

References

[1] M. 5. FISOItER and R. E. LAD~EI~, 2~ropositional modal logic of programs, extended
abstract, presented a~ the Ninth A. C. ~ . Symposium on the Theory of Computing,
Boulder, Colorado, May 2-4, 1977.

[2.] D. ! tA~L and V. R. PRATT, _~Yondeterminism in logics of programs, manuseript~
dated November 10, 1977.

[3] V.R. PI~ATT, Semantical considerations on .Floyd-Heart logic, 1T th I.E.E,.E.
S y m p o s i u m on Foundat ions of Computer Sciatica (1977), pp. 109-121.

[4] - , fLogic of 2recesses: manuscript, dated November 29, 1977.
[5] --, Applications of modal logic to programming, this issue of Studla Logiva.
[6] A. SALO~AA, Theory of Au tomata , Pergamon Press, London, 1969.
[7] K. SEGv.RB~O, A completeness theorem in the modal logic of programs, to appear

in the Stefan Banach International Mathematical Centre publications series.
[8] - , A conjecture in dynamic logic, in: Min~essays in honor o f Juhan~

Pietarinen, -~bo, 1978, pp. 23-26.

~BO ACADEMY
~BO, FINLAND

Received September 10, 1979.

Stadia Logica XXXIX, 2/3

