Kesrue - Applying Modal Logic *

SEGERBERG

Abstract. The main purpose of the paper is to introduce philosophers and phi-
losophical logicians to dynamic logic, a subjeet which promises to be of interest also
to philosophy. A new completeness result involving both “after” — and “during” —
operators is announced.

1. Imtroduction

Modal logic, like other kinds of philosophical logic, comes in two
varieties, pure and applied. It is not quite the same distinction as the
corresponding one in mathematics. Pure modal logic is the formal study
of certain abstract structures. Applied modal logic is the study, not
neecessarily formal, of certain structures, not necessarily abstract, and
with a certain purpose: to relate to something else — to some part of
{some conception of) reality. Therefore the terminology is a bit misleading.
For one thing, applied modal logic need not be pure modal logic applied
to something.

Throughout the history of modal logic, the pure and applied varieties
have been intertwined. Sometimes the dividing line is difficult to discern.
But that it is there may be seen from the different kinds of criticism
there are. Critics will not dispute that there is a definite body of established
results in pure modal logie, even though they may find those results
trivial or unexeciting. In other words, the existence of this discipline is
not in question. The situation is different in applied modal logic, for
that is the discipline critics have in mind when they say, as they sometimes
do, that there is no such thing as modal logic, or even that there can
be no such thing. A disturbing number of competent philosophers remain
unconvinced that applied modal logic makes sense, let alone has anything
to offer philosophy.

One may ask why this is so. It seems to this author that there are
at least two important answers. One: key concepts of Kripke semanties —
which is the stuff that today’s applied modal logic is made of — are
evidently too obseure or too badly explained to be generally intelligible.
Two: the nsual analyses in terms of modal logic of many philosophically
interesting concepts fail to bring out their logical form. Events, processes,

* The work on this paper was supported in part by an Academy of Finland
fellowship for lingre hunna velenskapsidkare during the former half of 1979. The
paper itself was read as an invited address at the Conference on Practical and Phi-
Josophical Motivations of Non-classical Logics held at Torud, August 15-19, 1979.

12 — studia Logica 2-3/80

276 K. Segerberg

and actions are examples of concepts for whose analysis modal logic has
proved rather unilluminating so far.

These are sweeping verdicts! But even those who take a less pessi-
mistic view than the author will probably agree that any development
that offers the slightest promise to improve the situation deserves the
attention of all friends of modal logic. One recent effort emanating from
the Massachugetts Institute of Technology that surely falls under this
heading is dynamic logic, a creation by Vaughan Pratt and his colla-
borators. Their ideas provide a striking interpretation of possible-worlds
semantics which, in addition to being precise and intelligible, is also
claimed by its creators to be useful. Even more, dynamic logic could
provide a new way of analysing action!

Dynamic logic was born in a computer science department, and im
available accounts it appears as the offspring of computer science that
it is. This paper is perhaps the first attempt to present it to a philosophical
audience. The plan of the paper is as follows. Section 2 is devoted to giving
an illustrative example. This example, which falls slightly outside the
intended range of interpretations of dynamie logic, is meant to be helpful
for the continued intuifive discussion in Section 3 and 4. Section 5 con-
tains a general definition of propositional languages of dynamic logie.
In Section 6 the fundamentals of formal semantics are developed. Some
possible implications for philosophy are sketched in Section 7.

Much of the material presented here iz already known. The author’s
debt to Professor Pratt is great, both to his papers and to conversations
with him. Among other things Pratt should be credited with the idea
that programs are intimately connected with actions. Thus the author’s
contribution is to have recast Pratt’sideas in a form that is more recogni-
zably modal logic as this discipline is known traditionally; the modelling
in Section 6 should be compared with that of [4]. The two theorems in
Section 6 are announced in print for the first time; they were presented
to the Fifth Scandinavian Logic Symposium in Aalborg, Denmark, on
January 17, 1979. The author is also responsible for the material of Sec-
tion 7: that one might try to analyse human action with tools devised
to analyse machine action has not been suggested by Pratt, and the idea
may indeed prove unrealistic.

It should be mentioned that Pratt’s dynamic logic is not the only
theory of its kind. There are predecessors, like the theories of Floyd
and Hoare, and there are present day alternatives, like Salwicki’s theory.
For Pratt’s own work, see [2, 3, 4]. A survey of the field is given in Pratt
[6]. A previous attempt by the author to steer dynamic logic into the
mainstream of traditional modal logic was made in [7].

2. A simple-minded example

My family’s washing machine is a black box-like object in the base-
ment, It is operated as follows. You load the dirty laundry into the barrel.

Applying modal logic 297

You put detergent in the helder intended for this purpose. You select
a program by inserting a program key, made of pink plastic, into a certain
slot. You check that the water and the electric power are on. You press
the start button. Then a lamp lights up, and the machine takes over.
If there is no malfunction or interference, the machine will have carried
out the chosen program in less than half an hour. At the end of a successful
wash the lamp goes out, indicating that the machine has stopped. If
half an hour or so after the start button was pressed everything is quiet
but the lamp is still on, you suspect that something is wrong — for some
reason there i a failure. As minutes pass with no further action and
without the lamp going out, your suspicion rapidly grows into conviction :
very soon you “know” that something is wrong.

The programs on the program keys have short mnemonic names or labels,
like WHITE ; WHITE, VERY DIRTY ; COLORED ; COLORED, VERY DIRTY ; COTTON;
NYLON; DELICATE; DRIP-DRY; SYNTHETIC DRAPES; ete. The effect of each
program is outlined briefly in the instruction book. For example, this is
the information given about WHITE, VERY DIRTY:

Fills cold water to high level.

Heats to 50°-C during tumbling.

Fills cold water to low level.

Heats to 95°-C during tumbling.

Fills cold water.

4 rinse cycles with short intermittent spin cycles.
| Spin cycle 3 minutes 45 seconds.

Exactly how the machine functions is not explained to the customer,
There exists of course an extensive theory for the hardware of the machine,
a theory which may be said to form a subtheory of physics (mainly me-
chanics and the theory of electricity). The local distributor prospers due
to the fact that this theory is known to his service man but not to custo-
mers like myself. For all I know, this theory may be interesting in its
own right, but as a customer I take no interest in it. What directly inte-
rests me is that my laundry gets done properly. Meaning: that the laundry
gets washed without getting damaged. The reasoning I employ when I set
out to use the machine on my laundry will not be in terms of electricity
ete. but rather in terms resembling the idiom of the instruction book.

Suppose, for example, that I have a load of very dirty terylene shirts.
A quick check shows that none of the programs on the program keys
is designed expressly for this category. So I will have to think about
which program, if any, would be suitable for this load. It is easy to think
of necessary conditions on such a program a. Above all there is this:

After a, the load is clean.

278 K. Segerberg

To effect this, it may be that the following condition would be sufficient:
During some of a, the temperature is at least 40°C.

On the other hand we are also concerned that the shirts be handled with
care:

After a, the load is not spoiled.
TFor this reason we require, say,
During all of a, the temperature is less than 50°C.

There may be various other conditions to consider (on torque, for example).
If I can find at least one program satisfying all these conditions, fine:
then I can use that one. If not, then I shall have to wash the shirts by
hand.

This is no doubt a simplified picture of what goes on in a launderer’s
mind. But hopefully it is not too far from the truth either. Now, this
kind of reasoning can be described in a slightly more abstract way as
follows. First I enumerate a number of conditions A,, ..., A,,_;, all of
which are to hold at all time during the wash, and a number of conditions
By, ..., B,_,, each of which is to hold at some time during the wash.
Then I go through the finite list of available programs to see if there is
one, a say, such that every member of the set

I' = {"during all of a, A" : i < m}
is true; every member of the set
O = {"during some of «,B,": i < n}

is true; and, furthermore,

I', Ot Tafter q, the load is clean’,
I', @+ Tafter o, the load is not spoiled”,

where the turnstyle refers to the theory I have developed on the basis
of whatever knowledge I have of fabries, detergents and many other
things as well as my previous experience with the washing machine.
Any such program o can be used to wash my shirts. On the other hand,
if there is no such «a, then the shirts will either be ruined or not properly
washed if I foolishly insist on using the machine anyway.

Thus, even though I don’t know (and really don’t care to know)
anything about what goes on inside the machine, I can — and do —
reason about aspects or consequences of these goings-on.

Now some final remarks on the deterministic /nondeterministic distine-
tion. The washing machine has been presented as deterministic: given
the initial conditions (the loading etc.) and the program, the action of
the machine is determined. At least, this is what the instruction book

Applying modal logic 279

gives you to understand. Actually, things sometimes go awry. That is
to say, my presentation of the machine does not give the whole picture.
A presentation closer to the truth may be obtained by representing the
machine ag nondeterministic in the following way.

During the five years we have had the machine, every breakdown
I have encountered has fallen under one of the following headings: a fuse
blows; the barrel jams, the pump breaks; and (most expensively) some--
thing happens to the computer unit. For some reason, each of these
breakdowns occurs only in connection with certain programs. Thus a fuse
is known to blow only if WHITE, VERY DIRTY or COLORED, VERY DIRTY isrun.
Fortunately, it doesn’t happen every time one of those programs is
run. In fact, it happens rather infrequently (not that I have been able
to figure out a frequency). But so far, every time a fuse has blown, it
has been while one of these programs was being run. Furthermore, none
of the other breakdowns has ever occurred in connection with either one.

It appears, then, that it would be more informative if the program
labels WHITE, VERY DIRTY and COLORED, VERY DIRTY would be replaced
by new program labels like WHITE, VERY DIRTY, OR FUSE, BLOW A and
COLORED, VERY DIRTY, OR FUSE, BLOW A, respectively. To be sure, this
is not a change that the manufacturer is likely to initiate. Yet to a custo-
mer such a change wonld make sense. When he uses the program labeled
WHITE, VERY DIRTY he may think of himself as issuing a command to
his servant, the machine, “Run the very-dirty-white routine!”. But at
least in the light of the experience reported here it would be more realistic
if he thought of himself as telling the machine, “Run the very-dirty-
-white routine, or blow a fuse!”. For this is what the machine will do "
if programmed with the WHITE, VERY DIRTY program, no matter what
the label of the program.

Notice that nothing has been said about probabilities here. However,
under some additional assumptions the washing machine could be given
a probabilistic representation as well. Suppose that, contrary to what
was said above, I have been able to figure out the frequency with which
a fuse blows during a run of the WHITE, VERY DIRTY program. Suppose
that the frequency in question is p, where thus p is a real number between
0 and 1. Then it would make sense to replace the manufacturer’s label
with another one: (1 — p) (WHITE, VERY DIRTY) OR p (FUSE, BLOW A).
This label brings to mind the intuitive command, “With probability -
(1—p) run the very-dirty-white routine without breaking a fuse, or,
if you don’t run the very-dirty-white routine, blow a fuse!”. Under the
present assumptions, this is what the machine will do if programmed
with the WHITE, VERY DIRTY program, no matter how the program is
labelled.

However, probabilistic machines are a different topie, and from now
on we shall say no more about them. .

280 K. Segerberg
3. Automata and programs

There are automata of many different kinds, from sophisticated
computing machinery to washing machines to simple gadgets ordinarily
not thought of as automata at all (like ball point pens and electric switches).

As logicians we are interested only in'the most general properties of
automata. Let us therefore think of them as black boxes (BB’s) in the
usual way. The main assumptions we make about them are the following.
(1) At every instant of time, the BB is in some welldefined state (= total
state). (2) There is a definite set of programs for the BB. (3) The
BB can be programmed, the particular program, a given initial state
(and perhaps a randomizing device) determining the action of BB. (4)
If a program is chosen and the BB is started, the BB acts by proceeding
from state to state in a discrete fashion, the transitions taking no time
at all. (5) When the BB is through with a program, it stops. (6)
One can always tell whether the BB has already stopped; but if the BB
has not ;yet stopped, there may be no way of telling whether it ever will
stop. (7) It is possible for a BB to fail; this occurs when the BB remains
in a certain state with no further action fortheoming, and yet has not
stopped. (8) The BB is perfect in the sense that it does not break
down — there is no malfunction, nor any interference from the outside.
{The last assumption is sometimes negotiable.)

Think of a particular BB as given. It may not be necessary to postu-
late that the set of programs associated with it be “wellfounded” in the
sense of confaining a small subset of “primitive” or “basic” programs in
terms of which all others are definable. But here we do: we shall assume
that there are some primitive programs g, @y, ..., @,y (5 ...) finitely or
infinitely many. We alse assume that the set of programs is closed under
what is called the three regular operations, the binary -+ and - (actually
the dot is often omitted in formulas!) and the unary *. They may be
given a heuristic account as follows.

- It is helpful to have some intuitive picture or pictures of programs.
Two ways of understanding them are as actions and as imperatives. On
the former understanding one thinks of a program a as an action (action
type rather than particular action): “the action «” or “the action con-
sisting of doing o”. On the latter understanding one thinks of a as an
imperative such as “Do a!” or “Carry out the a-routine!”

- These readings allow us to explain a8, af, and o, given that «
and £ are programs. If a and f§ are thought of as “the action «” and “the
action 7, respectively, these three are thought of as

“the action consisting of doing a or g7,
“the action consisting of doing first a and then g7,
“the action congisting of doing o some number of times”.

Applying modal logic 281

If o and g are thought of as “Carry out the a-routine!” and “Carry
out the f-routine!”, respectively, the three instead become,

“Carry out the a-routine or the f-routine!”,
“Carry out first the o-routine and then the f-routine!”,
“Carry out the a-routine some number of time!”.

Yet another way of visualizing a program is as a list of instructions
of thig format:

BrcIN
Do

‘P}c— 1
Stor

where @g, ..., ¢z_; are themselves programs. (It is a conception of this -
kind that often makes authors of textbooks refer to the advice given to

the White Rabbit in Alice in Wonderland: ‘“Begin at the beginning?”,

the King said, very gravely, “and go on till you come to the end: then -
gbop.””) Viewing programs this way may be bewildering when it comes
to composite programs of type a--f§ or a*, but sometimes it can be helpful.
For example, the list interpretation elucidates the distinetion between
the impossible program, which cannot be executed, and the identity pro-
gram, which executes nothing. For the impossible program may be thought
of as the list

Brein
Verify that 0 = 1!
Srop

whereas the identity program may be thought of as the list

BEGIN
Stop

Thus the difference is that if you embark on the impossible program
you never get to Stop, while if you embark on the identity program you
get there ingtantly. The impossible program is denoted by 0 and the
identity program by 1. They may or may not be available as primitive
programs; if they are, they may or may not be among the =x,’s.

All this is of course rather loosely speaking. But even here it is clear
that the question of determinism enters. Note that the readings of a-f
and o* become unintelligible in connection with deterministic BB’s. For
in the case of - it is left open which alternative, a or g, is to be chosen.

282 K. Segerberg

Similarly in the case of * the precise number of iterations of a, 0 or 1
or ..., is left open. The idea here is that it is the BB itself that decides
on these questions (with the help of the randomizing deviee postulated
under (3) above).

4. Languages and models for automata

Continue to think of a particular BB as given. We shall now try to
discuss two notions, the notion of modal logical language suitable for the
BB in question, and the notion of model based on the BB. Our discussion
is still informal, and we do not rigorously define the notions just mentio-
ned. Formal definitions of related formal concepts are given later — see
Section 5 for languages and Section 6 for models.

First the languages. There will always be some primitive or basic
propositions; perhaps T or 1 is one. Exactly what they are will depend
on the BB and on what we are interested in — we will not go into that
question, but the discussion in Section 2 should be suggestive. Then.
there are the more complex propositions that ean be obtained by the
use of propositional operators. The Boolean ones are wellknown: if A
and B are propositions, then so are “JA, ArB, AvB, A->B, A-B, and
perhaps still others. But we also need propositional operators of a novel
kind, as indicated by the washing machine example. The following ones
seem to be among the simplest and most natural ones (notation to the
left, import to the right):

[a] after every computation according to «,

{a) after some computation according to a,

fal always during every computation according to «q,
o) sometimes during some computation aeccording to a,
{a] always during some computation according to «a,
[e) sometimes during every computation according to a.

(Actually, the readings as given are ambiguous. The ambiguity will be
removed below.) '

As presented here, programs and modal logical languages can be
described independently of one another. But this is not necessarily so;
if so-called test programs are allowed, it is no longer the case. If A is a pro-
position, it makes sense to ask whether A obtains. So A?, codifying this
question, can be introduced as a new program. On the action interpre-
tation, think of A? as “the action consisting of verifying that A™ (rather
than the misleading formulation “the action consisting in testing whether
A7), On the imperative interpretation, think of A? as “Verify that A!”.
Of course, if A is not the case, then the program A? cannot be earried out.

Let us now see what we can do for semantics. By our assumptions,
there is & welldefined set of all the states of our BB. Such a state should

Applying modal logic 28%

be thought of as a total state: a momentary state-of-affairs inside the
BB or, if you prefer, a cross-section of the BB as an object in space-time:
the contents of its input, output, memories, ... (The program is not con-
sidered part of the state.)

Now suppose that the BB is in some state . Let the BB be programmed:
with a program a. When started the BB will go into action, proceeding:
from state to state in a discrete fashion. In principle at least it is possible:
to plot its journey through state space. Let us call any sequence of states.
a path. Thus there is an obvious sense in which the BB, when started,
will produce a path, viz., the sequence of states in the order the BB passes.
them through. Under certain conditions, such a path will be what we
shall call a computation according to a or a-computation. There are four
cases to eonsider.

Case 1. The BB ceases to act after finitely many steps, and the
path produced is an a-computation. This computation,then, is of type
{Roy +--3 %)y With 2, = @ and n > 0. The length of the computation is n.

Case 2. The BB ceases to act after finitely many steps, but the
path does not qualify as an e-computation. (This path is called a failure
of a at x or an a-failure.)

Case 3. The action of the BB goes on for ever, and the path pro-
duced is an a-computation. This computation, then, is of type <z, ...
viy By ooepy With 2, = & but without a last elemnent. The length of the
computation is w.

Case 4. The action of the BB goes on for ever, but the path pro-
duced does not qualify as an a-computation.

Case 4 may not be of any practical interest, but it has been included
as a logical posgibility. Of the other three, case 2 is particularly interesting.
Two instances of it are worth mentioning here. One is obtained by letting
a be the impossible program. In fact, the difference between the impos-
gible program and the identity program now comes out clearly. The
only computations according to the identity program are those of length 0,
for nothing “happens” during such a computation. On the other hand,
there can be no eomputation at all according to the impossible program —
no computation in the world could verify that 0 = 1.

The other example of Case 2 is provided by the ?-operator. Suppose
that A does not obtain, and let a be the complex\ program A? - g (“Carry
out first a verification that A and then the p-routine!”). Under the cir-
cumstances this program is seen to function more like a conditional im~
perative than a categorical one: “If A is the case, then carry out the
p-routine!”; what is to be done if A is not the case is not specified. The
BB, unable to verify that A, is left suspended in mid-air, as it were.

284 K. Segerberg

With the notion of computation according to a program at hand,
we may now articulate our- intuitive semantics more precisely. From
2 semantic point of view, our object langunage is indexical: propositions
are not true or false by themselves but true or false only with respect
to a state. We write k, A to indicate that a proposition A is true at a state
@ (still referring to the given BB). We take the truth or falsity at states
of primitive propositions for granted. The Boolean conditions work out
as usual. It is the new propositional operators that attraet interest.

. For the two “after”-operators we would presumably have fhese
conditions:

F, [a] A iff, for every finite a-computation <(z,,...,%,> such that
2y =m, F, A
F, {a> A iff, for some finite a-computation <z, ..., 2,> such that

z() = «CE, i‘—‘zn .A.-

Similarly, for the “during”-operators we would have these conditions:

F, [o] A iff, for every (finite or infinite) a-computation {(z,...>
" such that 2, = &, for all ¢ such that 2; is defined, F, A.
k. ay A iff, for some (finite or infinite) a-computation <z,,...>
saeh that 2, = x, there is some ¢ such that #; is defined
and F,, A.
k. &a] A iff, for some (finite or infinite) a-computation {z,, ...> such
that z, = &, for all ¢ such that z; is defined, F, A.
F, oy A iff, for every (finite or infinite) a-computation (z,,...>
such that 2, = 2, there is some ¢ such that z; is defined
and F, A.

We have now developed a semantics of a sort. To make it quite explicit
we might backtrack and introduce a notion of model as follows. Let U
be the set of all total states of the BB. For each program e, let C(a) be
the set of all (finite or infinite) computations according to o. Define

¢ = {0(a): a is a program}.

TFor each propositional letter P, let V(P) be the set of states in which P
holds. Then all the information used in the preceding truth conditions
can be retrieved from the triple (U, 0, V>, which therefore may be
.called a model based on the given BB.

The final step in making the semantics explicit is to define a propo-
sition as true for the BB if it true at every state. The set of all formulas
true for the BB may be called the fheory of the BB. The logician can
now formulate the usual questions about theories: whether it is axio-
matizable, decidable, ete.

There are several other concepts that can be handled quite naturally
-within the present framework (cf. [1, 2, 4]). Equivalence between pro-

Applying modal logic 285

grams is one. Suppose that = is part of the object language and that
a = f is a formula whenever « and § are programs, asserting that « and 8
are “really the same program” or “come to the same thing”. The vagueness
of this suggestion is removed by the following truth condition:

E.a =f if every a-‘computa;tion is & ﬁ‘-computation, and vice versa
(that is, iff O(a) = C(B)).

Another example is offerred by the concepts of convergence and
divergence. Suppose that we have in our object language, for each pro-
gram a, propositional constants eonv, and div,. Their truth conditions
are the following: '

E, conv, iff every a-computation {2y, ...y such that 2z, = & is finite.
E, div, iff there is an infinite a-computation <{z,,...)> such that
2o = &.

This distinetion eould be built into a competing notion of “after”:

B, [a]T A iff every a-computation <z,,...> such that z, = o is
finite, and, for every finite a-computation <{u, ..., #,>
such that u, = o, k, A.

F, (a)TA iff either some a-computation {2y, ...> such that z, = =
is infinite, or there iy some finite a-computation {u,, ...
.++y U, such that w, = @ and , A.

A more complicated example involves the notion of preservation.
Let us say that a program a preserves a proposition A if, during every
a-computation, if A is ever true, then A stays true. Assume that our
object language contains, for each program a, a propositional operator
a-pres. The corresponding truth condition would seem to be this one:

~ Fya-pres A iff for every (finite or infinite) a-computation (z,,...>
' such that 2, = @, for all 4, if k,, A and #;, is defined,
then k, = A.

%41
Preservation is a complex coneept, and it may be possible to analyse
it in terms of simpler ones. For example, one might try to define a new
propositional operator next so that a-pres A is rendered by [a] (A—>next A).
Such an operator would be indexical not only with respect to state but
also with respect to program; so the semantical apparatus would have
to be revised.)

One concept that does not seem amenable to treatment within to
suggested semantics is that of failure. Suppose that the object language
contains, for each program a, a propositional constant faeil,. No truth
condition in terms of U, € and V would seem to do justice to the intuitive
import of these new constants. One way to proceed would be the follo-

286 K. Segerberg

wing. For each a, let F(a) be the set of all states at which there is at
least one a-failure. Define

F = {F(a): « is a program}.

Expand the notion of model based on the given BB from the friple
U, 0, V> to the quadruple (U, C, I, V). Then the previous truth con-
ditions are unchanged, and the following one is added:

k, fail, it ©cF(a).

A much greater revision would be the following. First, for each program
a, define P(a) as the set of (finite or infinite) paths {z,,...> that can be
produced by the BB under q if started while in state z,; thus C(a) = P(a).
Then define model as the quadruple (U, (, P, V>. The same notion
of failure would now be captured by this truth-condition:

k. fail, iff there is a finite element (z,,...,2,> in P(a) such that
%z, = « which is not also an a-computation.

Other concepts of failure can be defined in a similar manner.

Thus we sce that, just as the conecept of modal logical language suitable
for the given BB allows many instances, so the eoncept of model based
on the given BB is not uniquely determined. Roughly speaking, there:
is always more information about the BB than can be built into any one
tuple. Your choice of both language and model depends on what you
are interested in.

It is time to end the intuitive discussion. So as to make sure that
intuition and formal development are not confused, we start all over
again when we now go to the next section, moving from applied logic
to pure.)

5. Abstract languages and logics

In this section we shall first give a definition of language for (pro-
positional) dynamic logic, which will be seen to be an abstraction of the
intuitive notion of modal logical language suitable for a BB, discussed
in the preceding section. In laying down such a definition, it is convenient
to use a wellknown idea due to Ajdukiewicz and recently revived by
Montague.

A language of this kind is defined in three steps. First one defines
the structure of syntactic categories. They are, by our definition, always
the same: there are two basic syntactic categories, | (propositional expres-
sions, or formulas) and p (program ewvpressions, or just programs). Fur-
thermore, whenever a,b,,...,b,_; are syntactic categories, basic or

derived, then

abor b

is a new derived category.

Applying modal logic 287

The second step of the definition of language consists in defining,
for each syntactic category s, the set B(s) of basic expressions of category s,
any two of which are disjoint. (Usually all but finitely many of the cate-
gories will be empty.) We shall make the following assumptions: B(f),
the set of basic formulas, will always contain a set of elements called
propositional letters; the others are called propositional constants. Similarly,
B(p), the set of basic programs, will always contain a set of elements
called program letters; the others are called program constants.

The third and final step in the definition of a language consists in
recursively defining, for each syntactic category s, the full sets C(s) of
expressions of category s. This step is the simplest since it can be taken
care of once and for all: the sets C(s) are to be the smallest sets such that
{i) for each category s, B(s) < C(s), and (ii) whenever

Xe C(a), Y, e G(bo), ees Yn—l IS G(bn—l)y
‘then
X(Yo; .oy Yya) € O(a,bo""’bn—l)_

Montague assures us that a definition of this kind is eorrect.

With the first and third steps in the definition of language fixed,
it is the second one that matters. Hence a language might be identified
‘with the function B assigning to each syntactic category s the set B(s).

In the light of this, let us now review some of the material of Section 4.
Firgt this example: suppose that we have a language such that whenever
« 18 a program (expression of category p), then [a] is a propositional ope-
rator (expression of category ff). The generality of the present approach
would then make it natural to introduce an operator [] of category
(f)* and agree to write [a] instead of [](@). Alternatively, it would
be possible to introduce [] as an expression of one of the categories
., %, and ()f instead. In the former two cases, if A is a formula, we
would agree to write [a¢]A for [1(A, a) or [](a, A), respectively. In
the last-case we would agree to write [JA for [J(A) — which would
be an expression of category *: a formula-making program operator —
and [alA for [JA(a).

The following is a list of possible expressions suggested by the diseussion
in Section 4. The idea is that if the expression indicated on the left is in
the language, then it is of the category listed on the right. The typogra-
phical shapes should encode enough information to make the list self-
~explanatory :

T, L i
u ff
Ny Vy = & ff’f
*07 1 p
ES Dp

+’ . DP,P

288 K. Segerberg

? p :
[I Oy 13, K0 K15 1)) pres ()" or () or {* or {1

fP»P
conv, div, fail [

We take this opportunity to list some conventions regarding notation.
‘We use A, B as generic names of formulas; e, § as generic names of pro-
grams; P as a generic name of propositional letters; = as a generic name
of program letters; 4,7, &k, I, m, » as generic names of the members of
the set w of natural numbers 0, 1, 2, ...; § as a generic name of syntactic
categories. Our use of parentheses is informal. Instead of 7](A), —(A, B),
etc., we write T|A, A—B, etc. Instead of -+ (o, B), - (a, 8), *(a) we write
a+p, of, a"

In the present context, classical modal logic may be characterized
as the study of operators of category fl. A good deal is known about
such operators, and when one develops dynamic logic — which used to
be called the modal logic of programs — it seems natural to try to draw
on this knowledge. Let us quickly repeat some wellknown concepts in
this aresa.

A logic (in a given language) is a set of formulas containing all truth-
-functional tautologies, closed under modus ponens and substitution
(of formulas for propositional letters). If L is a logic we write F ;A or
even F A, when confusion does not arise, for A e L.

An operator % is congrueniial in a logic L if + A—B implies that
F %A <%B. Furthermore, % is regular in L if % is congruential in L and
distributes over conjunction; that is, F % (AAB)« (kA A %B). Finally, %
is normal in I if 4 is regular and + A implies that F %A. Notice that the
so-called Kripke schema is derivable for operators that are at leagt regular:
if % is regular then F % (A—->B)—(kA—>%B).

Extending this terminology, let us say that an operator 4 of category
(f1)* is congruential (regular, normal) if, for each a, 4(e) is & congruential
(regular, normal) operator of category f'.

The recent history of modal logic shows that many normal propo-
sitional operators can be given an extensive analysis within relational
Kripke semantics, while regular operators can be handled in a slightly
modified Kripke semantics. The study of congruential operators has
attracted much less attention, but some work has been done with the
neighborhood semantics usually ascribed to Montague and Scott. (The
much older algebraic semantics due to Tarski and his followers is not
congidered here.)

6. - Formalizing “after” and “during”

Of the intuitive operators listed in Section 4, at least [a] and [of seem
t0 be normal. For this reason we single them out for study in this section

Applying modal logic 289

and will try to give them the usual Kripke type treatment. (Of the others,
[a]" seems to be regular, ¢a] and [« congruential. Concerning the former,
see [2, 5, 8]. One would conjecture that the latter two could be given
gsome kind of neighborhood analysis.)

To be quite specifie, let us list a particular object language to be
used in this section. All bagic categories are to be empty except the follo-
wing:

B(f) = {prop,, prop,, ..., prop,, ...};
B(p) = {progr,, progr,, ..., progr,, ...};

B(f) = {71}
B(ff’f) ={A, v, =, ©};
B({p®) = {*};

B@p*?) = {+, '};
B((ff))*’ ={ 13 [

Thus (> and ¢, duals of [] and [], respectively, are not primitive
here. But they can be introdueced by definition in the usual way:

{a) A =4 T1[a] 1A,
€a) A =4 7] [a] TTA.

The next task is to develop a semantics for this language. Instead
of directly building a concept of model along the lines of Section 4, we
shall proceed more obliquely. The reason for this strategy will become
apparent.)

By a model let us mean a quadruple I = (U, R, 8, V) such that
the following conditions obtain:

(i) U is a set (the domain);

(if) {B(a): aeO(p)} and {8(a): a €C(p)} are families of binary
relations on U (the R-alternative velations and the S-aliernative
relations, respectively);

(iliy ¥V is a function from B(f) to the power set of U (the valuation).

With our definition of language it can easily be shown that the for-
roulas — the elements of C(f) — are exactly the basic ones — the elements
of B(f) —, Boolean compounds of other formulas, and expressions of
type [a] A or [o] A. The semantic definition of truth in M of a formula
A at a point # € U can therefore be given in the expected way. We write:
M k, A for this notion.

Me, P iff 2eV(P), if PeB(f);
MME, AAB iff ME, A and ME, B;
and similarly for the other Boolean operators;
ME, [a] A iff Vy(zR(a)y=M k, A);
ME, [a] A iff Vy@S(a)y=M F, A).

290 XK. Segerberg

A formula is said to be true in IR if it is true at every point of the model.

So far it is not all clear what the preceding modelling has to do with
the intuitive “after” and “during?”. In fact, as it stands the modelling just
introduced is too general to be of other than technical interest. In order
‘to define the kind of model we really want, we need some concepts from
automata theory, and we shall now turn te them.

A word is any sequence, finite or infinite, of program letters (and is
thus of order type << w). A special cage is the empty sequence, A, which
is called the empty word (there is only one!). We shall use o, v as generie
names of words. (The reader will note that even a finite word =,... s,
is not a program expression, even though our informal mode of notation
may suggest that it is. For example, a word =z, is a sequence and would
be written {(m,, 7,> or even {0, n,>, {1, ;>} in a careful exposition.
The program expression sy7,, on the other hand, is actually a shape
(7o, 7,), and thus something quite different. This is not to say that the
‘two notions are not intimately related — they are, as will be seen pre-
sently.)

If ¢ and = are words and o is finite, then the concatenation ot of o and
7 — the sequence obtained by concatenating o and 7, in that order — is
also a word, finite if and only if 7 is finite. When below we write o7 or,
in general, ;... o, with # > 0, we implicitly assume that o respectively
Oy, «+ vy O, are finite.

The language of a program expression a, denoted by |a], is defined
as follows:

ol ={n}, if meB(p);
la+ Bl = la|UIBl;
laf] = {o: (0 €|a] and ¢ is infinite) or
v, e la| dz, € |Bl(0 = 71,75);
lo*| = {o: AnVry, ..., 7,1 €lal(0 =79 ...7,_;) O

Vnidr, elal(oc = 7Ty e Ty o)
Notice that 1€ |a*|, for all a.

If o € |a|, then we say that o instentiates a. (The preceding definitions
are related to, though slightly different from, those of Salomaa [6] (where
words are finite sequences). The use of the word “langnage” in this tech-
nical sense may be somewhat awkward in the present context, but it
has seemed desirable to follow standard usage.)

Let M =<U,R,8, V> be any model; actually, for the following
-definitions we only need U and R as defined on B(p). We say that a
nonempty, finite sequence z = {z,, ..., 2,> of not necessarily distinct ele-
ments of U is a finite a-computation (in) it there is a word =, ... 7, _; € |a}
such that, for all ¢ < n, ,R(m;)%;,,; the length of z is n. Similarly we
say that an infinite sequence z = (&, %1, ..., %,, ...> of elements of U,
again not necessarily distinet, is an infinite a-computation (in M) if there
is an infinite word 7,7, ... 7, ... € |a| such that, for all ¢ < w, 2, E(m;)%; . 1;

Applying modal logie 291

the length of z is of course w. In both cases we say that the computation
is from z, or that it staris at z,; furthermore, that it is through each z; in
the computation. In the finite case we also say that the computation
is to z, or that it terminates at z,. Finally, =, ... =,_; respectively =ym, ..

. is said to be a word of z (notice the indefinite article — a com-
putation may have more than one word).

Notice that, for every # ¢ U, {2> is an ae-computation of length 0,
whenever A € |a|. Furthermore, for any program letter =, if {24, ..., %,
is a m-computation, then » = 1 and z, B(x)z.

We remarked above that our notion of model is too general for our
purposes. However, in possession of the formal concept of computation,
we can now define a more relevant notion of model. Let us say that a model
M =<(U,R, 8, V) i8 a standard model if and only if the following two
conditions are satisfied, for each a:

2R (a)y iff 3z(z is an a-computation from z to ¥);
z8(a)y iff z(z is an e-computation from x through).

It is an interesting problem whether standard models can be characte-
rized by simple set theoretic conditions on R and §. For a large class
of standard models an affirmative answer is given by Theorem 1. Let
us say that a binary relation T is serial if Vo Iy (#Ty); that a model
(U, R,8, V) is serial it R(a) is serial, for every a.

THEOREM 1. A necessary and sufficient condition for a serial model
M =<U, R, 8, V> to be standard is that the following conditions are satis-
Jied:

(B+) E(a+p) = E(a)UE(f).

(B-) R(af) = E(a) | E(p).

(R*) R(a") = E*(a).

(BS) S(az) R(m)yu{{m, x>: © e U}.
(84) S(a+p) = 8(a)usS(B).

(8 8(af) = 8(a)UR(a) | 8(B).
(8%) 8(a*) = R(a*) | 8(a).

The proof is straightforward but too long to be included here.
The theorem is interesting in its own right. But it is also a useful
lemma for the proof of the following result:

THEOREM 2. The set of formulas true in all serial standard models
is the smallest logic inm which both [] and [] are normal and all instances
of the following schemata appear as elements:

(a+) [a+p8]1A—[a] AA[B]A.
(@) [af] A[a][B] A.

(a™T) [a*] A—A.

(a7) [*] A—>[a] A.

13 — Studia L.ogica 2-3/80

292 K. Segerberg

(a3) [a"] A?[a*] [a"]A.

(6™ ind) A—>([a*](A—>[a] A)—=[a"] A} .
(aD) (7] A—<{n> A.

(ar) ([a] A—A). 4

(ady) [a] A—[a]A.

(ad,) A—([n] A—[a] A).

(d+) la+ A1 Aela] AAJB] A.

(d-) [af] A—fa]l AA[a]lfl A.
(@) [0*] Aes[a*][e] A.

Unfortunately, the proof is much too long to be reproduced here.
Suffice it to say that it is of the canonical models/filtrations type,
similar to that given in [7], and so it also yields as a by-product the £.m.p.
with bounds that can be estimated. The author hopes to publish the proof
elsewhere.

This marks the end of the formal work. It is submitted that the for-
mal notion of standard model guccessfully formalizes an important part
of the intuitions described in Sections 2-4. Theorem 2 also gives a feeling
for what the logic of these notions is like. It is of some interest to note
that it is not closed under substitution of program expressions for pro-
gram letters. To be certain, every substitution of a program expression
for the program letter in an instance of (aD) yields a derivable formula,
as is readily checked. But in the case of (ad,) this is not so: it is easy to
find, for any given propositional letter P and program letters =, and
my, & serial standard model rejecting the formula

P ([(o7,)* TP~ [{wo 71)*] P).

7. Philosophical relevance of dynamic logic

With formalities out of the way it is time to take stock of the situa-
tion. What has this paper got to do with the philosophical problems
pertaining to applying modal logic? Even a hostile critic of applied modat
logic will admit that dynamic logic offers an interpretation of modal
logic that is beyond formal reproach —fruitful or not, it is precise and
perfectly intelligible. But, such a critic might continue, apart from some
possible methodological interest, what does it matter to philosophy whe-
ther dynamic logic is going fo benefit computer science?

Not much, perhaps. Yet this paper has been written in the belief
that Pratt’s dynamic logic has something to offer philosophy. Its main
virtue, according to this belief, is that it points to a new way of approa-
ching the logic of action. The formalism of dynamic logic separates talk
about actions from talk about states-of-affairs. That it does, and the
way it does it, is what seems so inferesting.

It is not possible to go deeply into this issue here. But to lend some

Applying modal logic 293

substance to the preceding paragraph we will briefly consider two exam-
ples, emphasizing that they are no more than sketches, and quick ones
at that.

As the first example, take “Anyone who is killed dies”. It is not a very
interesting proposition, but it is true nevertheless, and in a peculiar way:
not for empirical reasons but because of what the words mean. Whether
you choose to call it an analytic truth or a logical truth, you will want
to see to it that it becomes a truth in your formalization; linguists in
effect do when they analyse “kill” as “cause to die”, as they sometimes
do. Disregarding various subtleties, we would formalize this proposition
in dynamic logic by something like

[kill 2] (2 is dead),

the brackets being the by now familiar ones. Or, to sidetrack for now the
difficulties attaching to free variables and to individuals, consider the
simpler instance

[k4ll Caesar] (Caesar is dead).

Here kill Caesar is what might be called an action program, standing
for a certain type of action. On the other hand, Caesar is dead is a pro-
position, reporting a certain state-of-affairs. The propesiticnal operator
[kill Caesar] can be read “after Caesar is killed” or, more carefully, “after
Caesar is killed, no matter how”.

On the semantic side, propositions are identified with sets of possible
worlds, as before, while actions are identified with sets of sequences of
possible worlds. There would be a notion of model in general, as in Section 6,
but the interest would focus on the standard models. The latter would
have to be defined in such a way that, among other things, Caesar is
left dead at the end of every possible run of the kill Caesar-action program.
Other models are logically possible, but they would not be standard.

The second example is from decntic logic. Suppose Kim receives his
father’s permission to go to the beach or to the movies. If this is forma-
lized in the usual way — writing perm in place of the more wellknown
P — as

perm (Kim is at the beach v Kim is at the movies),

then we also encounter the usual difficulties; for example, even though
we can infer the disjunction of the two propositions

perm (Kim is at the beach),
perm (Kim is at the wmovies),

we cannot infer either ome by itself. Many authors have pointed out
that this does not seem intuitively satisfactory (the problem of free choice
permission). Now, the operator perm is of category §'. If instead we

294 K. Segerberg

introduced a new operator PERM of category ¥ it becomes natural to
render Kim’s permission as

PERM (go to the beach -+ go to the movies),

and it is possible to argue that this proposition implies both of the follo-
wing two:

PERM (go to the beach),
PERM (go to the movies).

That is to say, we have at least two concepts of permission, of different
grammadtical categories and with different logical properties:

($3) perm (AvB)operm Avperm B,
($3) PERM (a-pB)>PERMor PERMB.

To support this analysis one might fry to use an idea originally due
to Alan Ross Anderson and Stig Kanger: that something is permitted
if it ean be realized without incurring any sanction or without making
the world worse, in a certain sense — the world remains “deontically
satisfactory”, as it were. Let us use OK as a propositional constant ex-
pressing the proposition that the world is deontically satisfactory, in
this sense. Then one way of rendering the Anderson/Kanger suggestion
in dynamiec logic — there may be other candidates — would be this:

PERMao[a] OK.

(Actually this definition must be improved in view of wellknown diffi-

culties discussed at length in the literature — as it stands it can only

be used in situations in which no obligation has already been violated.)
Using this simple-minded analysis we readily derive

PERMo A PERMpB«—[a] OKA[8] OK,
PERM (o) «-[a+f] OK,

whence ($8) follows from schema (a—+) in Theorem 2.

What is interesting in this example is not that we have hit upon a new
permission operator of a certain intuitive plausibility — by now, several
have been suggested — but that both our permission operators arise
within the system in such a natural way.

8. Conclusion

Pioneers in applied modal logic were preoccupied with propositional
operators (taking propositions into propositions). From them we may
have inherited an exaggerated tendency to expect that intensional no-
tions must be represented by such operators. If so, it is a tendency that
needs tempering. Already Montague’s work gives some perspective on

Applying modal logic 295

this issue. So does that of Pratt, but a different perspective. Philosophers
outside modal logic have already argued that actions — and events —
ought to be considered a basic category. Dynamic logic suggests one way
to do so, and it deserves to be explored.

References

{11 M. J. Fiscuer and R. E. LADNER, Propositional modal logic of programs, extended
abstract, presented at the Ninth A. C. M. Symposium on the Theory of Computing,
Boulder, Colorado, May 2-4, 1977.

[2] D. Harer and V. R. Prarr, Nondelerminism in logics of programs, manuseript,
dated November 10, 1977.

[3] V.R. Prart, Semantical considerations on Floyd-Hoare logic, 17th I.E.E.E.
Symposium on Foundations of Computer Science (1977), pp. 109-121.

[4] —, Logic of processes: manuseript, dated November 29, 1977.

[6]1 —, Applications of modal logic to programming, this issue of Studia Logica,

[61 A. Savomaa, Theory of Automata, Pergamon Press, London, 1969.

[7]1 K. SEGERBERG, A completeness theorem in the modal logic of programs, to appear
in the Stefan Banach International Mathematical Centre publications series.

[8] —, A conjecture in dynamic logic, in: Mini-essays in honor of Juhani
Pietarinen, Abo, 1978, pp. 23-26.

ABo AcapEMY
ABo, FINLAND

Eeceived September 10, 1979.

Studia Logica XXXIX, 2/3

