rRozert  Djodorean Modality
GOLDBLATY i Minkowski Spacetime

Abstract. The Diodorean interpretation of modality reads the operator [ as.
“it is now and always will be the case that”. In this paper time is modelled by the-
four-dimensional Minkowskian geometry that forms the basis of Einstein’s special
theory of relativity, with “event” y coming afier event » just in case a signal can be
sent from # to y at a speed af most that of the speed of light (so that y is in the causak
future of x).

It is shown that the modal sentences valid in this structure are precisely the-
theorems of the well-known logic S4.2, and that this system axiomatises the logics-
of two and three dimensional spacetimes as well.

Requiring signals to travel slower than light makes no difference to what is.
valid under the Diodorean interpretation. However if the “is now” part is deleted,.
go that the temporal ordering becomes irreflexive, then there are sentences that
distinguish two and fthree dimensions, and sentences that can be falsified by appro--
aching the future at the speed of light, but not otherwise.

The Stoic logician Diodorus Chronus described the necessary as being:
that which both ¢s and will always be the case. This temporal interpre-
tation of modality has been exhaustively investigated by the methods.
of contemporary formal logic within the context of linear temporal orde-
rings (ef. Chapter IT of [1] for a survey of this work). The present paper
is a contribution to the study of modalities in branching time, and is.
concerned with the most significant of all non-linear time structures,.
viz. the four-dimensional Minkowskian spacetime that forms the basis
of Binstein’s theory of special relativity. Since the temporal ordering
of spacetime points is directed (indeed any two have a least upper bound)
it follows, as observed by Arthur Prior in [1, p. 203], that the associated
Diodorean modal logic containg the system 84.2. We shall prove that
it is in fact precisely S4.2, and that this holds also for two and three-
-dimensional spacetime.

The language of propositional modal logic comprises sentences con-
structed from sentence letters p,q,7,..... by Boolean connectives and
the modal [J (‘it will always be’). The connective ¢ (‘it will (at some time)
be’) is defined as ~ [ ~.

A time-frame is a structure I = (T, <) comprising a non-empty set
T of times (moments, instants, events) on which < is a reflexive and.
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ransitive ordering. A frame is directed if any two elements of it have
an upper bound, i.e.

for all ¢, s € T there exists a ve T with t<v and s <.

A J-valuation is a function ¥V assigning to each sentence letter p
a set V(p) €T (the set of times at which p is true). The valuation is
then extended to all sentences via the obvious definitions for the Boolean
.connectives, together with

teV(OA) iff ¢<s implies se V(A4).

Hence t e V(OA) iff for some seV(4), t<s.
The reflexivity of < gives [ the Diodorean ‘s and always will be’ inter-
pretation. A sentence A is valid in 7, 7 F A, itf V(A4) =T holds for
every J -valuation V.

A tunction f: T—T' is a p-morphism from a frame 7 = (T, <) to
8 frame 7' = (1", <) if it satisfies

P1: t< s implies f(f) <’ f(s)
P2: f(f) < 'v implies that there exists some seT with t<s
.and f(s) = o.

We write 77" to mean that there is a p-morphism from J bo 7 that
is surjective (onto).

p-MorrHIsM LEMMA. If T—»F, then for any sentence A, T F A only
if T EA.

If T = T is future-closed under <, i.e. whenever t ¢ T’ and t<<s we
haves e T',then 7' = (1", <) is called a subframe of 7. By the transitivity
.of <, for each t the set {s: ¢ < s} is the base of a subframe, called the
subframe of I generated by t. In general an element 0 of T is called an
dinitial point of I if 0 < s holds for all s e 7. Thus ¢ is an initial point
.of the subframe generated by i. A frame with an initial point will be simply
called a generated frame.

SUBFRAME LuMMA. If 7' is a subframe of 7, then for any sentence
A, TEA only if 7' F A.

The logic 84.2 may be axiomatised as follows;
Axtoms: All instances of tautologies, and the schemata

I (4 > B)> (O4 = OB)
I1 04 - 4
11T 04 > OO4
IV o004 > OdA.

Rures: Modus Ponens, and
Necessitation: From 4 derive J4
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Axiom I is valid on all frames, as is the rule of Necessitation, regardless
of the properties of <. The wvalidity of II depends on reflexivity of <,
IIT requires transitivity, while IV is valid if < is directed. Thus Fgs. 4
implies that A is valid on all directed frames. The following strong version
of the converse to this statement may be found in [2].

- CoMPLETENESS THBOREM. If i~vg404, then there is a finite generated
and dirvected frame I with not I F A.

We have not required that a frame be partially ordered, i.e. that <
be antisymmetric (indeed there is no sentence whose validity requires
it). Thus the equivalence relation defined on T by

t~s iMf t<s and s<t

will in general be non-trivial. The =~ -equivalence classes are called the
clusters of 7. They are ordered by putting

t<s iff t<s,

{where 1 is the cluster containing ¢ ete.), and fhis is an antisymmetric
ordering. Thus we may conveniently visualise a frame as a partially-
-ordered collection of clusters, with the relation <{ being universal within
each cluster.

An element oo of T is called final in 7 if $ < co holds for all ¢ in T.
All such final peints are ~s-equivalent and so they form a single cluster.
Notice that if 7 is directed and finife then it must have at least one final
point. A unique final point can be adjoined to any frame 7 by forming
the frame 7 = (T'u{co}, <) where oo is some object not a member
of T, and the ordering is that of 7 extended by

I(s, 00): s € TU{co}}.

Notice that 7 is always directed, as the final point serves as upper
bound for any two elements.

The key to our characterisation of the logic of spacetime is the structure
of the infinite binary-branching frame # = (B, <). The members of #
are the finite sequences of the form » = »,a, ... x,, where each x; € {0, 1}.
Such a sequence is of length n, denoted I(x) = n. We include the case
fn =0, so that B contains the empty sequence » = @. The ordering is
defined by specifying that for sequences = vy @, ... 2, and ¥ = ¥1Yy ... Y,
we have

r<y iff @ is an initial segment of y
iff n<<m and Y =@ % ... T Ypyy oo Y-

Thus # is partially-ordered, with @ as initial poind. The successors {y:
o < y} of x in # are just the sequences that extend », and so » has exactly
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two immediate suceessors, viz. x0 and x1 (ef. Figure 1). We shall also
refer to I(x) as the level of » in 4.

In what follows we shall use the abbreviations
1 for 11....1

N et

r times
and 0" for 00....0, ‘where r>=0.

e,

7 times

“~

\\ x0 x1 /

g

Figure 1

The following result is due originally to Dov Gabbay, and was inde-
pendently discovered by Johan van Benthem. The construction we use
in the proof is that devised by the latter.

TaEOREM 1. If 7 is any finile generated frame, then BT .

Proor: We develop inductively an assignment of members of 7~

to the ‘nodes’ of the binary tree # to obtain the desired p-morphism.
Step One: Let 0 be an initial point of the generated frame . Asgign ¢
to the initial point & of #.
Inductive Step: Suppose that » € B has been assigned an element ¢
of T, but that no #-successor of # has received an assignment. Such a point
# that is used to initiate an inductive step will be called a primary node
of # for the p-morphism being defined.

Now let ¢;, ..., %, be all of the <{-future points (i.e. t<t) of t in J.
Take the least j such that & --1< 27. This j is the bound of »: f(») = j.
Notice that k> 1, since at least ¢<¢, and so j=>1.
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Suppose I(x) = n. Then we assign ¢ to all Z-successors of # up to and
including level n+j (cf. Figure 2).

f,\/f fz\/f_" “t!(\/-f__ _t__\/t level n+j+1
t t ¢ t

level n+j

~

g
-~

\/ t level n+1

X level n

Figure 2

Now let 4y, ..., ¥, be any k of the 27 successors of & at level n +j. Assign
1, to one of the immediate successors of y,, and { to the other. Asgign 1,
to one of the immediate successors of y,, and ¢ to the other. Continue
this process up to ¥, thereby giving assignments to 2% of the 27+! suceessors
of # at level n+4j-+1. Let all the other nodes at this level be assigned
{there are such nodes, as 2k < 27%1),

The nodes at levels #-+1 through n-j are designated as iniermediate
nodes for the construction, while the nodes at level #-j-41 are new
primary nodes. The inductive step is then repeated for each of the latter,
and so on. Since j > 0, the immediate successors of # at level #+1 must
receive an agsignment (in fact the same one as ). Hence by induction,
every member of B gets an assignment, and a function f: B—T may
be defined by letting f(«) be the member of 7' assigned to ». Since {i:
0 <Lt} =T, every member of T' will be assigned at least once already
after the first inductive step, and so f is onto. To prove clause P1 of the
p-morphism definition, observe that if # <y, and f(x) =t say, then y
will be assigned a future point of ¢ in 7, hence f(x) <f(y) (a rigorous
argument would proceed by induction on the level of y above #, and
use the transitivity of <).

For P2, suppose that f(2') < s, where f(2') = #. If 4" is primary at level #,
such as the # in Figure 2, then there is & point y at level n ---j 1 that is assi-
gned s, hence #' < y and f(y) = s. If however %' is intermediate, then since
all points at level # +j have at least one successor at # - j--1 that is assi-
gned ¢, there will be some such primary node z with 4’ < 2z and f(2) = 1. Then
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by the argument of the previous sentence, there will be a y with 2z <y,
and hence 4’ < ¥, such that f(y) = s. This completes the proof. m

We note in passing that the modal logic S4 has as bagis the axioms
for S4.2 without the schema IV. It is well known that any non-theorem
for S4 is falsifiable on a finite generated (reflexive and transitive) frame,
and hence by Theorem 1 and the p-Morphism Lemma is falsifiable on
%. Thus for any sentence A we have

bead it BEA,
80 that # is a characteristic frame for S4.

It is apparent that the proof of Theorem 1 ag given requires only that
k < 2. The reason for the stronger constraint is that we have to refine
the construction to ensure that f satisfies some combinatorial conditions
that will allow us to define & p-morphism on spacetime. In the proof
of Theorem 1 the chosen nodes ¥y,..., ¥, at level n+j will be called
special intermediate points. The other intermediate points are ordinary.
Then since there are 2/ > k-1 points above & at level n-+j;

(a) f can be defined so that for primary x the intermediate node 0’ is
ordinary (where j = g(x)).

We then give the definition of f in the inductive step related to Figure 2
quite explicitly as follows:

if 2 is an intermediate point,
(b) let f(2) =1 = f(»),

and if 2 is at level n—+j, then
(¢) if z is ordinary, let f(20) = f(zl) =1 = f(«),

while
(d) if z =y, is special, let f(20) =, and f(z1) = ¢

Thus the only case in which an intermediate node has a different
assignment to one of its immediate successors is when the node is a special
point 2z, and the successor is the primary point 20. Moreover in the case
of a primary point #, the successors #0 and x1 at level #» 41 are interme-
diate, as f(») =1, and so (Figure 2) have the same f-value as . Alto-
gether then we have that for any point z in B,
(e) fla) =f(<1):

and
(f) if 2 is not a special intermediate point, then f(z) = f(20).

From (e) we deduce that
(g) for all ze B and all 7, f(z) = f(21)..

Next we consider nodes of the form «0%, for primary . If r < j = f(w),
@0" is intermediate and so hag the same f-value as @ by (b}. But by (a),
207 is not special, so by (), f(20'+") = f(20’) = f(z). Since x0*! is primary,
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the argument may be repeated up to the next level of primary points,
and so by induetion,

(h) if # is primary, then f(z) = f(«0"), for all 7.
LeMMA 2. For any v e B,
(i) if @ s special, then f(x) = f(#107), all r
and
(i) otherwise f(2) = f(201"), all 7.

Proor: For (i), if # is special then f(a) = f(#1) by (d), and since
#1 is primary, f(#1) = f(#107) by (h). /

It however x is not special, then f(x) = f(x0) by (f), and then f(x0)
f(@01") by (g). =

Our next step is to produce a characteristic frame for 84.2 by placing
an infinite final cluster at the top of 4. Let

Q = {00y, 5, ...y 0O, ...}
be an infinite set of objects disjoint from B. Define a frame
#° = (Buf, <)
by taking the ordering < to be that of # extended by
{(s, 0,): se BuQ and neN}

where N = {0,1,2,....}. Then #° has Q as its set of final points, with

co, A~ oo, for all » and m.

TurEOREM 3. If 7 is finile directed and generated, then B%>T .

Proor: By Theorem 1 there is a p-morphism f: #»g. We lift
this map to Buf. Since g is directed it has final points, and these form
a (non-empty) cluster, ' say. We extend f by mapping 2 onio ¢ in any
surjective manner. Since the relevant frame orderings are universal within
C and O, and each of these clusters consists of final points, it is readily
seen that such an extension of f yields the desired surjective p-morp-
hism. =

Applsring the Completeness Theorem given above for S4.2 to Theorem 3,
we deduce

CoROLLARY 4. For any semtence A,
Foasd iff B°FA.

We turn now to the structure of spacetime itseif. If # = (#y, ..., 2,)
is an wn-tuple of real numbers, let

w(x) = 23 a5+ ..+ w_ —mo.
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Then by wn-dimensional spacetime, for n > 2, we mean the frame
"= (Rn’ <)
where R" is the set of all real n-tuples, and for # and y in R™ we have

<y Hf pwly—2)<0 and o,<vy,

n—1

it Y (9i~2) < (Wp—m,) and @, <y,

Then T" is a partially-ordered frame, which is directed. As an upper

bound of # and y we have, for example, ¢ = (#y,..., %, ;,2,), Where
n—1
&= 3 (B~ y)* + [, + Yl
i=1

THEOREM 5. T '»T™

Proor: Let f: (24, .., %, 1)~(®:, .., ®,,;) be the (surjective)
projection map. Then if # <<y in T"Y, we have

Z(yz"‘ %)2 yn-}-l n—}—l)2 and o™*! <y”+1.

But then as (y;—#,)2>= 0,

n 13
D (y—w) 2 =) < Yng1— Tup)’
=2 =1
and so f(x) < f(y) in T", establishing P1 for f.

ForP2,if f(x) < yinT", where @ = (01, ..., @,y 1) 80 Y = (Yo, ooy Ypi1)s
let 2 = (@4, Yay -+ vy Ypy1) € Ry i Then 2,—2, =0, 50

Thus # < 2, and by definition f(z) = y. Therefore f is the desired p-mor-
phism. wm

Minkowski spacetime is T*. The intended interpretation of » <y is
that a signal can be sent from ‘event’ x to ‘event’ y at a speed at most
that of the speed of light, and so y is in the ‘causal’ future of 2 (assuming
a choice of coordinates that gives the speed of light as one unit of distance
per unit of time).
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The frame T° is depicted in Figure 3. For each point ¢ = (», y) in
the plane the future consists of all points on or above the upwardly
directed rays of slopes +1 and —1 emanating from 4.

C e Future cof )

0 X

Figure 3

By performing the isometry of rotating the plane clockwise through
453° about the origin 0, the picture becomes that of Figure 4,

:..l:'utu.re of' g
s} REMEH '-‘-:f
t.' s Tt e e b
0 X
Figure 4

in which the future points of ¢ are precisely those above and to the right
of ¢. The rotation is a bijective p-morphism (isomorphism of frames)
and so from now on we will identify 72 with the structure of Figure 4.
This is done largely to make the costructions to follow more tractable,
but notice that it reveals T2 as the direct product of the real linear frame
(R, <) with itself, as we now have

(*) (@1, 1) < (T2, 92) I 2, <@, and 9, <y,.

Now let T: = {t: 0 <} be the ‘first quadrant’ of the plane, consisting
of all points with non-negative coordinates. A future-open box in T: is
a subget of the form [a, d) x{c, d) (cf. Figure 5)

9 — Studia Logica 2-3/80
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Notice that any two members #, 8 of a future-open box have an upper
bound v within the box, and that v may be chosen fo lie on the diagonal
line joining (a,c¢) to (b, d).

THEOREM 6. Any future-open box is temporally isomorphic to Tz,

Proor: It is a fact of classical analysis that there is a bijection
f: [a, b)—>[0, ) = {e: 0. < e} that preserves order, i.e. has v <y iff
f(#) < f(y). Figure 6 displays one method of geometrically constructing f.

]
1
!
1
1
]
1
. ® - > 1 —
0 flx) a x x b fix)
Figure 6

Likewise, there is an order-isomorphism g: [e, d)—>[0, o). Then the map
(@, ¥)—~(f(x), g(¥)) gives a bijection between [a, d) x [¢, d) and T; that
preserves the temporal ordering defined on each by (%). =

COROLLARY 7. Any two future-open boxes are temporally isomorphic.

From now on we focus on the structure of the unit bow I = [0,1) %
x [0, 1).

THEOREM 8. 10

Proor: Here  is considered as a frame in its own right, consisting
of an infinite set of points all related to each other by <. The idea of the
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proof is that each oo, is made to correspond to a subset A, of I that is
cofinal with I, i.e.

for each ¢ eI there is some s € A, with ?<s.

We can do this by making rational cofinal assignments up the diagonal

of I to ooy, 00y,. ..., and mapping everything else to oo, (Figure 7).
(0,1) =~ 777 -m Ty "
i
i
&3 1
°°2 1
0 00“1 :
3 [
L) i
2 I
1
©0
1 1
]
I
!
1
]
I
N aad
0 {1,0)
Figure 7
Thus we map (4, ), (}, 3),... to o055 (5,3) (5,9)s.. B0 003
($:8) (3, 2),... to coz; and so on. Formally, let m, 7, ..., 7, ... be

a listing without repetition of the prime numbers in order of increasing
magnitude, starting with =, = 2. Then if (z,y)¢el,

1
i o=y =1——W for some k>1, put f(z,y) = oo,
w

and
(ii) otherwise put f(z,y) = oo,.

That Pl holds for f is immediate, as 2 is a cluster. But the cofinality
of the oo,-assignments along the diagonal, together with the fact that
each point ¢ in I has <-successors on the diagonal, gaurantees that
A, = f"(oco,) is cofinal with I. This cofinality ensures that f satisfies
P2. =m

THEOREM 9. If T is finite, generated, and directed, then I-»>T .

ProOF: By Theorem 3 there exists a p-morphism f: #°»7. We
define a map g: I-BuQ which will compose with f to give the desired
result. This is done by assigning each point in Bu{ oo} a future-open box
contained in I, through 4 series of temporgry and then permanent labellings.
Step One: Temporarily assign the initial point @ of # to I.
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Inductive Step: Suppose z € B has been temporarily assigned a box
within I. Divide this box into four equal future-open boxes (Figure 8).
Permanently assign the lower left-hand box to 2 and the upper right-
-hand one to co. Temporarily assign the upper left-hand box to 20, and
the lower right-hand one to 1.

1
i
]
|
]
|
{

8

L—-—.——.—_-—-.—-—

x
x
b

Figure 8

When all members of B have inductively received permanent assign-
ments, the picture is as in Figure 9.

00 37}1""
001 . OO

o0

Figure 9
It is apparent that

(%) if 2y in 4, then the box permanently assigned y lies inside
the one temporarily assigned z.
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LemmA 10. If t €I belongs to the box assigned x e B, then there is
some z € B with f(x) = f(2), ond such that the box assigned z lies entirely
inside the I-future of t.

Proor: As indicated in Figure 10,

x0

x01 ;21
EEZ

x10

x1

Figure 10

by taking r large enough we can ensure that the boxes assigned 2z, = %01"
and 2, = 210" both lie inside the future of i. Then by Lemma 2, if # is
a special point for the construction of f as in Theorem 1, we may take
2 = 2, to fulfill Lemma 10, while if # is not special, # = 2, meets our
requirements.

To continue with the proof of Theorem 9, we define a map g: I-Bu R
as follows:

(i) the members of the future-open box permanently assigned z € B in
Figure 9 are all mapped to z by g.

(ii) each box assigned oo in Figure 9 is mapped p-morphically onto 2
by g. This is done by the method of Theorem 8, noting Corollary 7.

Next a surjective map h: I->J is defined by putting h(t) = f(g(3)),
for all ¢ € I. To show that % satisfies P1, suppose ¢ < s in I. Then if h(s)
is final in 77, immediately h(f) < h(s). If h(s) = f (g(s)) is not final, then
(cf. proof of Theorem 3) g(s) ¢ £ and so g(s) € B. But since ¢ < s, the
permanent B-assignment to s will be a sequence extending the one assigned
to t (Figure 8), i.e. g(¢) < g(s). But then f(g(2)) < f(g(s)), as f satisties P1.
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For P2, suppose h(f) :f(g(t)} <o in 7. If g(t) is a member of B,
then by Lemma 10 there exists some z € B that is assigned a box entirely
inside the future of ¢ and that has f(z) = f (g(t)) L v. Since f satisfies
P2, there is some y € B with 2 <y and f(y) = v. But then (cf. (%)) the
box assigned y also lies inside the future of ¢, and so if we choose an ele-
ment s from this box, so that g(s) = y, we have t < s and kh(s) = fly) = v.
On the other hand, if g(¢) € 2, then A(#) is final in 7, and therefore so
is », hence v = f( 00,) for some n. Let s’ be some point in the region assigned
o0, i.e. g(s8') € 2, that has < s'. Then using part (ii) of the definition
of g we obtain some s with ¢’ < s and g(s) = oo,. Then t< s and h(s)
= f(o0,) = v as required.

This completes the proof of Theorem 9. m

THEOREM 11. For any sentence A,
bsgod iff T"FA iff TFA

PrOOF: If Fgg0d4, then A is valid on all directed frames and thus
in particular on T™. But if T" E A, application (n—2 times) of the p-Mor-
phism Lemma to Theorem 5 gives T° k A. The Subframe Lemma then
gives T: F A, which in turn by Theorem 6 yields I k A. To complete
the cycle of implications, observe by Theorem 9 that if I £ A then 4
is valid on all finite generated and directed frames, and so by the Com-
pleteness Theorem given earlier, 4 is a theorem of S4.2. m

Slower-than-light Signals
In T7, detine
x =<y iff uly —x) < 0 and x, < y,.

Then @ <y holds just in case a signal can be sent from x to y at less
than the speed of light. The reflexive relation

Ry iff v =y or 2<y

yields the same logic as before — we leave it to the reader to analyse
the above proof to verify that the valid sentences on (T, R) are precisely
the S4.2 theorems.

The End of Time

Amongst the possible future fates of our universe is that expansion
will eventually give way to contraction and collapse to a singularity.
In this event, any future-oriented path in spacetime will come to an
end (the singularity). Formally, this corresponds to the frame condition

(1) Vedyle<y&Vwy<woy = w)).
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In a directed partially-ordered frame there can be only one y as in (1),
namely a unique final point, for if ¥ has no successors then an upper
bound for ¥ and any other point ean only be y itself.

The logic K2 extends the system S4.2 by the additional axiom schema
OCA > o004,

which is valid on frames satisfying (7). Conversely the work of Seger-
berg [3] may be used to show:

If 4 is not a K2-theorem, then 4 can be falsified on a finite generated
directed frame whose final cluster has only one member.

Thus K2 iz characterised by the finite generated directed frames
with a unique final point. Any such frame J is a p-morphic image of I,
as may be deduced from I-»J. Indeed any p-morphism J »7 can be
lifted to 77 by mapping oo to the unique final point of 7. We leave
it to the reader to use that observation to verify, for any sentence A4
that

Feed iff T"F A iff I®FA iff #°FA.

Irreflexive Time

Tense logic, as a branch of modal logie, is generally taken to be con-
cerned with érreflexive orderings, so that a point is not considered to be
in its own future. In spacetime there are two natural striet orderings,
viz. the relation

o<y iff ply—2)<0 and z,<y,
defined earlier, and
vay iff x £y and o<y,

(a is the relation ‘after’ axiomatised by Robb in [4]).

The logic of these two orderings ean be distinguished in terms of the
validity of modal sentences. There may be two propositions 4 and B
that are true in the future at two points that can only be reached by
travelling (in opposite directions) at the speed of light (cf. Figure 11).

A

Now
Figure 11
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In this situation, ¢G4 v OB will be true now, but never again, and hence
the sentence

QOAANOB o O(OAAOB)

is not valid when a is the temporal ordering. It is however valid under <,
since a slower-than-light journey can always be made to go faster, so
we could wait some time and then travel at a greater speed to 4 and B
Figure 12).

Figure 12

These observations apply to T™ for all » > 2. However by pushing the
idea a little further we can produce a sentence whose truth is dimension-
-dependent. For, in three-dimensional spacetime we can find at least
three points that can only be reached by travelling in different directions
at the speed of light. In T°, the future of ¢ is represented by the upper
half of a right circular cone centered on ¢ (Figure 13).

t
Figure 13
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Thus in (T a), and indeed in (T, a) for n > 3, we can falsify the follo-
wing sentence (here ¢ and j range over {1, 2, 3});
(A\OP) A (AP = ~Opi)) = V {O(0Per OBy
+ 1#] L2
However this sentence is valid under < for all » > 2, and is valid under
a in T2

ProBLEMS: 1. Axiomatise the logies corresponding to a and to
< in the various dimensions.
2. Analyse the logic of discrete spacetime (i.e. when
R is replaced by Z).

Acknowledgement. I am very much indebted to Johan van Ben-
them for & stimulating and fruitful dialogue, without which I doubt
that I would ever have completed this jigsaw puzzle.
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(EpiTor’s FoorNoTE.) It has come to the editor’s attention that there is sub-
stantial overlap between Rob Goldblatt’s paper and work done by Valentin Shehtman,.
Moscow. The results claimed by Shehtman can be deseribed as follows.

Let R be the set of reals. Define a relation B on R? by the condition

{z,y> R,y it w<a and y<y.

Any subset X = R? determines a modal logic L(X), viz., the normal logic determined
by the frame <X, B} X). Shehtman’s work is summarized by the following five
theorems.

TraeoremM 1. If X is an open polygon, then L(X) is S4 or S4.2.
TaeorREM 2. If X is a closed polygon, then L(X) is S4.1 or S4.1.2.
TuzoreMm 3. L(R?) = S4.2.

TaroreEM 4. If X is any open bounded domain with a smooth boundary, then.
L(X) = S4.
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TavoreM 5. If X is any compact domain with a smooth boundary, then IL(X)
= S4.1.

(Here S4.1 and S4.2 are the normal extensions of §4 by [JOp—>O[Jp and
Olp—~[1Op, respectively, while S4.1.2 is the smallest normal logic extending both
S4.1 and S4.2).

Shehtman’s results are stated without proof in the collection of abstracts of the
‘Boviet Conference on Mathematical Logic in Kishinjev, 1976. Evidently, Goldblatt’s
main result coincides with Theorem 3; in a private communication to the editor,
Shehtman remarks that Goldblatt’s proof is “almost the same” as his.

Shehtman’s work was carried out during 1973-76. The suggestion to study
problems of the present kind he atiributes to A. G. Dragalin. He also remarks that
‘Goldblatt’s Theorem 1, which is due to J.F. A. K. van Benthem, was first proved
by Dragalin as early as 1973 (see his book MaTematudeckuii WETYRIHORK3M:: BBemenne
B TEOpHI pJorasaTexbcTB, Moscow 1979, p. 131).

It goes without saying that the question of priority does not detract from the
beanty of Goldblatt’s masterly presentation. Still, it is a bit saddening that work of
the highest quality should be carried out in East and West by logicians who are some-
times not aware of each other’s existence, let alone each other’s work. The overlap
between Goldblatt’s and Shehtman’s work should give reason to pause: in the editor’s
-opinion it affords convincing argument that we need to improve the international
network of scholarly contact and exchange.

K.8.
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