
Diodorean Modality 
in Minkowski Spacetime 

Abstract. The Diodorean interpretation of modality reads the operator [] as- 
"it is now and always will be the case that". In this paper time is modelled by the 
four-dimensional 1Rinkowskian geometry that forms the basis of Einstein's specia~ 
theory of relativity, with "event" y coming after event x just in case a signal can be 
sent from x to y at a speed at most that of the speed of light (so that y is in the causal~ 
future of x). 

It is shown that the modal sentences valid in tMs structure are precisely the. 
theorems of the weft-known logic $42,  and that this system axiomatises the logics- 
of two and three dimensional spacetimes as well. 

Requiring signals to travel slower than light makes no difference to what is, 
valid under the Diodorean interpretation. However if the "is now" part is deleted,, 
so that the temporal ordering becomes irreflexive, then there are sentences that 
disting~aish two and three dimensions, and sentences that can be falsified by appro- 
aching the future at the speed of light, but not otherwise. 

The Stoic logician Diodorus Chronus described the  necessary as be ing  
t h a t  which bo th  is and will always be the  case. This t empora l  in t e rp re -  
t a t ion  of moda l i ty  has been exhaus t ive ly  invest igated by  the  m e t h o d s  
of con t empora ry  formal  logic within the  con tex t  of linear t empora l  o rde-  
rings (cf. Chapter  I I  of [1] for  a survey of this work). The present  paper,  
is a cont r ibut ion  to the  s tudy  of modalit ies in branching t ime, and is, 
concerned wi th  the  most  significant of all non-l inear  t ime s t rne turesr  
viz. the  four-dimensional  Minkowskian spacet ime t h a t  forms the  basis 
of Einste in 's  t heo ry  of special re la t iv i ty .  Since the  t empora l  ordering 
of spacet ime points  is directed (indeed any  two have  a least upper  bound), 
i t  follows, as observed by  Ar t hu r  Pr ior  in [17 p. 203], t h a t  the  associated 
Diodorean  modal  logic contains the  system $4.2. We shall p rove  t h a t  
i t  is in fac t  precisely $4.2, and t ha t  this holds also for two and three= 

-dimensional  spaeetime. 

The language of proposi t ional  modal  logic comprises sentences con-, 
s t ruc ted  f rom sentence let ters  p~ q, % . . . . .  by  ]~oolean connectives and 
the  modal  [] (~it will always be').  The  connect ive 0 ( 'it  will (at  some t ime)  
be ')  is defined as N [] N. 

A time-frame is a s t ruc ture  3- = (T,  4 )  comprising a non -empty  set 
T of t imes (moments ,  instants~ events) on which ~ is a reflexive a n 4  
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transitive ordering. A f rame is directed if any two elements of it have  
an upper  bound,  i.e. 

for M1 t ~ s e T  there exists a v e t  with t ~ v  and s ~ v .  
A 3--vMuation is a funct ion V assigning to each sentence let ter  p 

a set V(p) ~ T (the set of t imes at  which p is true).  The va lua t ion  is 
t hen  ex tended  to all sentences via the  obvious definitions for the  Boolean 
.connectives~ together  with 

t e V ( [ : ] A )  iff t ~ s  implies s e V ( A ) .  

]~enee t ~ V ( ( ~ A )  iff for some s e V ( A ) ,  t ~ s .  
The ref lexivi ty  of ~ gives [] the  Diodorean ~is and always will be '  inter- 
pretat ion.  A sentence A is valid in 3-, ~ ~ A, iff V(A)  = T holds for 
every  3--vMuation V. 

A funct ion  f :  T--~T' is a p-morphism f rom a frame 3- = (T, 4 )  to 
a f rame 3-'  = (T', ~ ' )  if it  satisfies 

P I :  t ~  s implies f(t) K ' f ( s )  
P2:  f(t) ~ 'v implies tha t  there  exists some s e T  with t K  s 

:and f (s )  = v. 

We  wri te  3--~Y'  to mean tha t  there  is a p-morphism from 3- ~0 3-'  t ha t  
is surjective (onto). 

p-~IolcPmS~ LE~lWA. I f  3->>3-', then for any sentence A~ 37" ~ A only 
i f3- '  

If  T '  _~ T is future-closed under  ~ i.e. whenever  t e T '  and t ~ s we 
h a v e  s e T', then 3- '  -- (T', ~)  is called a subframe of 3-. B y  the  t rans i t iv i ty  
.of ~ ,  for each t the  set {s: t ~ s} is the  base of a subframe,  called the 
subf rame of 3- generated by t. In  general an element 0 of T is called an 
~initial point of 3- if 0 ~ s holds for all s e T. Thus t is an initial point  
,of the  subframe genera ted  b y  t. A frame with an initial poin t  will be simply 
,~called a generated frame. 

SUBF~A~E J~F,m-~.a. I f  3-' is a subframe of 3-~ then for any sentence 
A ,  3- k A only i f  3-' ~ A.  

The logic Sd.2 m a y  be axiomat ised as follows; 

AXI0]~S : 

I 
II 
III 

IV 

:[~ULES: 

All instances of tautologies~ and the schemata  

[ ] (X  ~ B )  = ( [ ] A  ~ VTB) 
[]A ~ A 
[]A ~ [] [2A 
0 []A ~ � 9  

~ o d u s  Ponens,  and 
~ecess i ta t ion:  F r o m  A derive [ ]A 
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Axiom I is valid on all frames, as is the rule of Necessitation~ regardless 
of the properties of ~<. The val idi ty  of I I  depends on reflexivi ty of ~ ,  
I I I  requires transitivity~ while IV is valid if ~< is directed. Thus ~s4.eA 
implies t ha t  A is valid on all directed frames. The following strong version 
of the converse to this s ta tement  m a y  be found in [2]. 

COmPLeTenESS T~_EO~E~. I f  I~sd.zA,  then there is a f in i te  generated 
and directed f l ame  3- with not 3- ~ A .  

We have not  required tha t  a frame be partially ordered, i.e. t ha t  
be ant i symmetr ie  (indeed there is no sentence whose val idi ty  requires 
it). Thus the  equivalence relation defined on T by  

t ~ s  if f  t ~ s  and s ~ t  

will in general be non-triviM. The ~ -equivalence classes are called the 
dusters  of 3-. They are ordered by  put t ing  

t <~ s iff t <~ s, 

{where t is the cluster containing t etc.), ~nd this is an ant i symmetr ic  
ordering. Thus we m a y  conveniently visualise a f rame us a partially- 
-ordered collection of clusters~ with the relation ~ being universal within 
each cluster. 

An element c~ of T is called f ina l  in 3- if t ~ ~ holds for all t in T. 
All such finM points are ~-equivMent  and so they  form a single cluster. 
Notice t h a t  if 2r is directed and f in i te  then  it mus t  have a t  least one final 
point .  A unique final point  can be adjoined to any  frame 3- by  forming 
the  f rame 3 - ~ =  (Tw{c~}~ ~)  where c~ is some object not  a member  
of T, and the  ordering is t h a t  of 3- extended by  

:Notice t h a t  3-~ is always directed~ as the  final point  serves as upper 
bound  for any  two elements. 

The key to our characterisat ion of the logic of spacetime is the  s tructure 
of the  infinite binary-branching frame 2 = (B, ~) .  The members of 
are the finite sequences of the  form x = xlx~ . . .  x,~, where each x~ e {0, 1}. 
Such a sequence is of length n~ denoted l(x) = n. We include the  case 
n ----O, so t ha t  B contains the empty  sequence x = ~.  The ordering is 
defined by specifying tha t  for sequences x = x~w~ . . .  x n ~nd y = YlY~ . . .  Yn 
we have 

x~<y  iff x is an initial segment of y 
ill n < ~ m  and y = x ~ x ~ . . . x ~ y ~ + ~ . . . y ~ .  

Thus ~ is part ial ly-ordered,  with ~ as initial poind. The successors {y: 
x ~ y} of x in ~ are jus~ the sequences t h a t  ex tend x, and so x has exact ly  
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two immediate successors, viz. x 0  and x l  (cf. :Figure 1). We shall als~ 
refer  to l(x) as the  level of x in 2 .  

In  wha t  follows we shall use the  abbrevia t ions  

I r for ii .... 1 

r t imes 

and 0 ~ for '00 . . . .  0, where r ~ 0. 

r t imes 

J \ / 

\ / 

�9 I I 

O0 01 ' 10 11 

o 

F~gure 1 

The following result  is due originMly to D o v  Gabbay ,  and was inde- 
penden t ly  discovered b y  J o h a n  van  Benthem.  The construct ion we use  
in the  proof  is t ha t  devised b y  the  latter.  

T~Eo~]~ 1. I f  ~- is any finite generated frame, then ~ ' .  

P ~ o o ~ :  We  develop induct ive ly  an assignment  of members  of 2~ 
r the  ~nodes' of the  b inary  tree ~ to obta in  the  desired p-morphism.  
Step One: Let  0 be  an initial point  of the  generated f rame ~-. Assign @ 
to the  initial poin t  ~ of ~ .  
Inductive Step: Suppose t ha t  x e B has been assigned an element t 
of T~ b u t  tha t  no 2-successor  of x has received an assignment.  Such a po in t  
x t ha t  is used to init iate an induct ive  step will be called a primary node 
of ~ for the  p-morphism being dd ined .  

I~ow let t l , . . . ,  tk be  all of the  ~ - i u t u r e  points  (i.e. t ~ t~) of t in ~-. 
Take  the  least  j such tha t  k §  2 i. This j is the  bound ol x: fi(x) = j .  
:Notice tha t  k ~ l ,  since ~t least  t ~ t ,  and so j ~ l .  
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Suppose l(x) = n. Then we assign t to all 2-successors  of x up to and 
including level n - ? j  (cf. Figure 2). 

% 

Yt . level n*) 
gJ 

g�9 

7 

t ~  ~ t  leveln*l 

V x level rl 

~igure 2 

~Now let Yl, . . . ,  Yk be any k of the  21 successors of x at  level n + j .  Assign 
*1 to one of the  immedia te  successors of y ~  and t to the  other.  Assign t2 
to  one of the  immediate  successors of Y2, and t to the  other.  Continue 
this process up to Yk, the reby  giving assignments to 2k of the  2 ~+~ successors 
of  x a t  level n + j  +1 .  IJet all the  other  nodes a t  this level be  assigned t 
( there are such nodes~ as 2k < 2i+1). 

The nodes a t  levels n - ? l  through n - ? j  are designated as intermediate 
nodes for the  construction~ while the  nodes a t  level n - ? j - ? l  are new 
2r imary  nodes. The induct ive step is then repea ted  for each of the  lat ter ,  
an d  so on. Since j ~> 0, the  immedia te  successors of $ at  level n - ? l  mus t  
receive an assignment (in fact  the  same one as x). Hence  b y  induction~ 
eve ry  member  of B gets an assignment,  and a funct ion f :  B-+T may  
b e  defined b y  let t ing f ( x )  be the  member  of T assigned to x. Since { t :  

4) <~ t} = T, every member  of T will be  assigned a t  least once a l ready 
af ter  the  first  indfictive step, and so f is onto. To prove  clause P1 of the  
p-morphism definition~ observe tha t  if x ~< y~ and f ( x )  ---= t say~ then  y 
will be  assigned a fu ture  point  of t in 3- 7 hence f ( x )  <<. f l y )  (a rigorous 
a rgumen t  would  proceed b y  induct ion on the  level of y above  x~ and  
use the  t rans i t iv i ty  of ~<). 

For  P2,  suppose tha t  f (x ' )  ~< s~ where f (x ' )  = t. I f  x' is p r imary  a t  level ~, 
such as the  x in Figure 2, then there is a point  y a t  level n -?j -?1 tha t  is assi- 
gned s, hence x' <~ y and f /y )  = s. I f  however  x' is intermediate ,  then since 
al l  points  a t  level ~ -?j have at  least one successor at  n + j  -?1 tha t  is assi- 
gned  t~ there  will be  some such pr imary  node z with x' ~< z and f(z) = t. Then 
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by  the a rgmnent  of the previous sentence, there will be a y with z ~< y~ 
and hence x'~< y, such tha t  f ( y )  = s. This cpmpletes the  proof. [] 

We note in passing tha t  the modal  logic $ 4  has as basis the axioms 
for $4 .2  without  the schema IV. I t  is well known t h a t  any  non- theorem 
for $ 4  is fMsifiable on a finite generated (reflexive and transit ive) frame~ 
and hence by  Theorem 1 and the  p-Morphism L e m m a  is fMs/fiable on 
~ .  Thus lor a n y  sentence A we have 

I-s~ A iff ~ ~ A ,  

so that ~ is a characteristic f rame for $4.  

I t  is apparent  t h a t  the proof of Theorem 1 as given requires only t h a t  
k ~ 25. The reason for the  stronger constrMnt is t h a t  we have to refine 
the  construct ion to ensure t h a t  f satisfies some combinatorial  condit ions 
t h a t  will allow us to define a p-morphism on spaeetime. In  the  proof  
of Theorem i the  chosen nodes Yl, . . . ,Yk a t  level ~ - j  will be called: 
special in termedia te  points. The other in termediate  points are ordinary. 
Then since there ~re 2J>~ k §  points above x ut level n §  

(a) f can be defined so t h a t  for p r imary  x the intermediate  node x0 s is 
ordinary (where j ---- fl(x)). 

We then give the  definition of f in the  inductive step related to Figure 2 

quite explicitly ~s follows: 
i~ z ~s an in termediate  point,  

(b) let f ( z )  = t = f ( x ) ,  
~nd if z is ~t level ~ +j~ then  

(c) if z is ordinary,  let f(zO) = f ( z l )  --: t = f ( x ) ,  
while 

(d) if z = Yi is speciM, le~ f(zO) -= t i and f (z l )  = t. 

Thus the only case in which an intermediate  node has a differen~ 
~ssignment to one of its immediate  successors is when the node is a speciM 
point  z, and the successor is the p r imary  point  z0. Moreover in the case 
of a p r imary  point  x, the successors x0 and x l  at  level n §  ~re interme- 
diate, as fl(x)>~ :1~ and so (Figure 2) have the same f-value as x. Alto- 
gether then  we have t h a t  for any point  z in B, 

(e) f(z) = f ( z : t ) :  

and 
(f) if z is not  a special in termediate  point,  then  f ( z )  = f(zO). 

From (e) we deduce t h a t  
(g) for all z e B  and all r, f ( z )  = f ( z l ~ ) .  

~Text we consider nodes of the form x0% for pr imary  x. Tf r ~< j = fl(x)~. 
x0 r is in termedia te  and so has the  s~me f-vMue as x by  (b). Bu t  by  (a)~ 
x0 J" is no t  special, so by  (f), f (xO ~+1) = f(xO ~) = f ( x ) .  Since x0 j+~ is p r imary ,  
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the  a rgument  may  be repeated  up to the  next  level of p r imary  points~ 
and so b y  induction,  

(h) if x is pr imary ,  then f(x)  = f(x0"), for all r. 

LE~ 2. For any x e B,  
(i) i f  x is special, then f ( x )  = f(xl0~), alt r 

and 
(if) otherwise f ( x )  = f(x01r), all r. 

P~OOF: For  (i), if x is special then f ( x )  = f ( x l )  b y  (d), and since 
x l  is pr imary ,  f ( x l )  = f ( x l 0  ~) b y  (h). 

I f  however  x is not  special, then f ( x )  = f(xO) b y  (f), and then f(xO) 

f(xol b y  (g). [] 

Ore" next  step is to produce  a characterist ic tirame for S4.2  b y  placing 
an infinite final cluster a t  the  top of 2 .  Le t  

9 = . . . ,  .- .} 

be  an infinite set of objects  disjoint f_rom B. Define a f rame 

~ = (Bu~9,  ~<) 

b y  taking the ordering ~< to be  tha t  of ~ extended b y  

{(s, o%): s e B w [ 2  and h e N }  

where N = {0, 1, 2, .. . .  }. Then Ne has D as its set of final points~ wi th  
r n ~. cc m for all n and m. 

T ~ I E o ~  3. I f  3- is f ini te directed and generated, then ~+>3- .  

P]coor:  B y  Theorem 1 there is a p-morphism f :  &-~3-. We  lift 
this map  to B w D .  Since 3- is directed it has final points,  and these form 
a (non-empty)  cluster, C say. We extend f b y  mapping D onto C in any 
surjeet ive manner.  Since the re levant  f rame orderings are universal  within 
C and D, and each of these clusters consists of final points, it  is readily 
seen tha t  such an extension of f yields the  desired surjeet ive p-morp-  
hism. �9 

Applying the Completeness Theorem given above for $4 .2  to Theorem 3,. 
we deduce 

C O t ~ O L L A I ~ Y  4 .  . F O r  any sentence A ,  

b s4.2A i f f  2 n ~ A .  

We turn  now to the  s t ructure  of spacetime itself. If  x = (x~, . . . ,  x,~), 
is an n-tuple of real numbers ,  let 

�9 r 2  2 
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~Then b y  q~-dimensional spacetime, for n ~ 2, we mean the ~rame 

T" = (R ~, ~ )  

where / t  ~ is the  set of all real n-tuples,  and for x and y in R ~ we have 

x ~ y  iff # ( y - - x ) ~ 0  and x , ~ y ~  
~ - - I  

-3 2 iff ~ (y~--x~) ~ (y~--x~) ~ and x~<?]~.  
i = l  

T h e n  T" is a par t ia l ly-ordered frame, which is directed. As an upper  
b o u n d  o2 x and y we have,  for example,  z = (xl, . . . ,  x~_l, zn), where 

z ~ = ~ ( x i - y~ )~+ Ix~l+ [Y~I. 
i = l  

TIIEOI~EI~ 5. Tn+1--~Tn. 

PI~OOP: I~et f :  (xl, . . ,  x~+1)~-+(x~, ..~ x,+l) be  ~he (surjective) 
:projection map.  Then if x ~ y in T ~+l, we have  

X (y~--x~) ~ <~ (y~+~--x~+~) ~ and x ~+~ ~<y~+~. 
i = 1  

B u t  then ~s ( y l - - x l ) 2 ~  O, 

(y~-~)~ < ~ (y,-x~) ~ -<< (y~+l - x~+l) ~ 
i = 2  i = l  

and  so f (x )  ~ f (y )  in T ~, establishing 1)1 for f .  
Fo r  P2, i f f (x)  ~ y in T n, where x ---- (x~, . . . ,  xn+l) and y ~- (y~, . . . ,  Yn+~), 

le t  z = (xl, Y2, - . . ,  Y~+I) eR~+~. Then z l - - x l  = O, so 

2 " ( z ~ -  x~) ~ = ~V ( z ~ -  x~) ~ 
g=l /=2 

~b 

= ~ (y~ -x~)~ ~< (y~+~-x~+,)  = ( z ~ + , -  x,~+,). 
i = 2  

T h u s  x ~ z, ~nd b y  definition f(z)  -= y. Therefore f is the  desired p-mor-  
phism,  m 

~ i n k o w s k i  spacet ime is T ~. The in tended in terpre ta t ion  of x ~ y is 
~hat  a signal c~n be sent f rom 'event '  x to ' event '  y a t  a speed a t  most  
~h~t of the  speed of light, ~nd so y is in the  'causal '  futm'c of x (~ssuming 
a choice of coordinates tha t  gives the  speed of light as one uni t  of dis tance 
~per uni t  of time). 
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The frame T "~ is depicted in Fig~tre 3. For  each point  t = (~, y) in 
the  plane the  future  consists of all points on or above the  upwardly 
directed rays of slopes +1  and --1 emanating from t. 

....: . . . . .  . : . . . . . . . .  : : . . . . .  

"">>':'.: ::: t ":: ::.': 

0 x 

�9 'igure 3 

By performing the isometry of rotat ing the  plane clockwise through 
450 about  the  origin 0, the picture becomes tha t  of Figure 4, 

y~ 

, . . . ' . . . . . . . . . . : : : .  

' "  �9 Future  o f : ' . : "  
�9 , -  . , ;  . . . .  ; . � 9  o ' , "  
' :  : , ,  , �9 , . : . . . - .  t . . . . . . .  

0 x 

~ig~re 4 

in which the  future  points of t are precisely those above and to the  r ight  
of t. The rota t ion is a bijective p-morphism (isomorphism of frames) 
and  so from now on we will identify T * with the  s trueture of Figure 4. 
This is done largely to make the  costructions to follow more tractable,  
bu t  notice tha t  it reveals T 2 as the direct product  of the  real linear frame 
(R,  ~<) with itself, as we now have 

(*) (xi, Yi)~<(x~,Y~) iff xl~<x~ and Yi~<Y~. 

Now let To ~ = {t: 0 ~< t} be the  'first quadrant '  of the plane, consisting 
of all points  with non-negative coordinates. A fu ture-open  box in T~0 is 
a subset of the form [a, b ) x  [e, d) (cf. Figure 5) 

~ S t u d i a  L o g l c a  2 -3 /80  
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l~igure 5 

~o t i ee  t h a t  any  two members  t, s of a future-open box have  an upper  
bound  v within the  box, and  tha t  v m a y  be chosen to lie on the  diagonal 
line joining (a, e) to (b, d). 

THEO~E~ 6. Any future-open box is temporally isomorphic to ~o. 

P]~oo~: I t  is a t a c t  of classical analysis t ha t  there  is a bijeetio~ 
f :  [a,b)~->[0, o o ) =  {~! 0 ~ e }  t h a t ; p r e s e r v e s  order, i.e. h~s x ~ y  iff 
f(x) ~ f(y). Figure  6 displays one  method  of geometrical ly construct ing f i  

0 f(x) a x x t~ f(x) 

~iguve 6 

Likewise, there  is an order- isomorphism g: [e, d)--~[0, oQ). Then the  m a p  
(x, y)~-->(f(x), g(y)) gives a bijection between [a, b ) x  [e, d) and  T~ t h ~  
preserves the  temporal  ordering defined on each by  (.). �9 

COt~OLLAI~Y 7. Any two future-open boxes are temporally isomorphie. 

F r o m  now on we focus on the  s t ructure  of the  unit box I = [0, 1) • 
x [0, 1). 

THEO~E~ 8. I - ~  

P~OOF:  t~ere ~ is considered as a f rame in its own right,  consisting 
of ~n infinite set of points all re lated to each other  by  4 .  The idea of t h e  
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proof is t ha t  each ~ is made  to correspond to a subset A n of I t ha t  is 
cofinal with I ,  i.e. 

for each t e I  there is some s e A ,  with t ~< s. 

We can do this by  making r~tional cofinal assignments up the  diagonal, 
of I to eel, cr . . . .  , and mapping everything else to c~ 0 (Figure 7). 

(0~1) 

L5 

0"1 �9 ~ 1 7 6 1 7 6  

1,0} 
.Figure 7 

Thus we map (�89 �89 (3, ~ ) , . . .  to 001; (2,2), (8 8 ) , . . .  tO (X)2; 
2 ,  

T), ( ~ ,  ~ ) ,  . . .  to cr and so on. f o r m a l l y ,  let u~  ~ ,  . . . ,  zn, . . .  be 
a listing wi thout  repet i t ion of the  prime numbers  in order of increasing 
magni tude ,  s tar t ing with ~r~ = 2. Then if (x, y ) e  I ,  

1 
(i) if x = y  = 1  (z.) k for some k > ~ l ,  p u t f ( x , y )  = ~ 

and  

(ii) otherwise p u t f ( x , y )  = ~o.  

That  P1 holds for f is immediate,  ns Q is a cluster. But  the  cofinali ty 
of the  cr along the  diagonal, together  wi th  the  fact  thaV 
each point  t in I has ~<-successors on the  diagonal, gaurantees  t ha t  
An = f - ~ ( ~ n )  is cofinal with I .  This cofinality ensures tha t  f satisfies 
1'2. [] 

Tm~o~E~ 9. I f  3- is finite, generated, and directed, then I - ~ ' .  

P~ooF:  By  Theorem 3 there  exists a p-morphism f :  2 ~ - ~ ' .  W e  
define a map  g: I - + B u •  which will compose wit h f to give the  desire4 
result.  This is done by  assigning each point  in B w {  ~}  a future-open box  
contained in I ,  through S series of temporqry and then  permanen~ labellings. 
~tep One: Temporar i ly  assign the  initial point  0 of ~ to I .  
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Ind~etive ~tep: Suppose x e B has been temporarily assigned a box 
within I .  Divide this box into four equal future-open boxes (Figure 8). 
Permanently assign the lower left-hand box to x and the upper right- 
-hand one to co. Temporarily assign the upper left-hand box to x0, and 
the lower right-hand one to xl.  

xO oo  

x x l  

~v~re 8 

When all members of B have inductively received permanent assign- 
ments~ the picture is as in Figure 9. 

c O  

c O  

t ~ 0 ( 3  

~ O  

m 

0 92 ,3/4 7/B 
/~ig~re 9 

I t  is apparent that  

(**) if z ~ y in ~,  then the box permanently assigned y lies inside 
the  one temporarily assigned z. 
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L ~ I A  10. I f  t e I belongs to the box assigned x ~ B,  then there is 
some z e B with f (x )  = f(z) ,  and sueh that the box assigned z lies ent irdy 
inside the I-future of t. 

P]~oo~': As indicated in :Figure 10, 

,,"0 

x01 

2'i#uze I0 

i 
xlO 

x l  

b y  taking r large enough we can ensure tha t  the  boxes  assigned zl = x01 r 
and z2 : x l0  r bo th  lie inside the  fu ture  of t. Then b y  Lemma 2, if x is 
a special poin t  for the  construct ion of f as in Theorem 1, we may  t ake  
z = z2 t o  fulfill Lemma  10, while if x is not  special, z ~ zl meets  our  
requirements .  

To continue with the  proof of Theorem 9, we define a map  g: I ->B w 
as follows : 

(i) the  members  of the future-open box  permanen t ly  assigned x e B in 
Figure 9 are all mapped  to x b y  g. 

(if) each box  assigned c~ in Figure 9 is mapped  p-morphical ly  onto ~2 
b y  g. This is done b y  the  method  of Theorem 8, noting Corollary 7. 

Nex t  a surject ive map h: 1->3" is defined b y  putting" h(t) = f (g ( t ) ) ,  
for all t e I .  To show tha t  h satisfies P1,  suppose t ~< s in I .  Then if h(s) 
is final in ~', immedia te ly  h(t) ~< h(s). I f  h(s) =f (g(s ) )  is not  final, then 
(cf. proof of Theorem 3) g(s )~  t2 and so g ( s ) e B .  B u t  since t ~< s, the  
pe rmanen t  B-assignment  to s will be  a sequence extending the one assigned 
to  t (Figure 8), i.e. g(t) ~< g(s). But  then f(g(t)) <~f(g(s)), as f sutisfies t '1.  
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For  P2, suppose h(t)  = f ( g ( t ) ) < ~  v in 3-. I f  g(t) is a member  of B, 
then  by  L e m m a  10 there exists some z e B t h a t  is assigned a box entirely 
inside the  fu ture  of t and t h a t  has f ( z )  = f (g(t))<~ v. Since f satisfies 
1)2, there is some y e B with  z ~< y and f ( y )  --- v. But  then  (el. (**)) the  
box assigned y also lies inside the  fu ture  of t, and so if we choose an ele- 
men t  s from this box, so t h a t  g(s) = y, we have t ~< s and h(s)  = f ( y )  = v. 
On the other hand ,  if g(t) ~ t2, t hen  h(t) is final in 3-, and therefore so 
is v, hence v = f ( c ~ )  for some n. Let  s' be some point  in the region assigned 
0% i.e. g ( s ' ) e  T2, t h a t  has t <~ s'. Then using par t  (ii) of the definition 
of g we obtain some s with s'~< s and g(s) = c ~ .  Then t~< s and h(s)  
= f ( ~ n )  = v as required. 

This completes the  proof of Theorem 9. �9 

TKEO~E~ ii. l~or any  sentence A ,  

bs4.2A iff T ~ A  iff I ~ A  

P~ooP:  If  ~-s~.zA, then  A is valid on all directed frames and thns  
in par t icular  on TK But  if T ~ ~ A ,  application (n - -2  times) of the p-Mor- 
phism Lemma to Theorem 5 gives T 2 ~ A. The Subframe L e m m a  then  
gives T~ ~ A, which in tu rn  by  Theorem 6 yields I ~ A. To complete 
the  cycle of implications, observe by  Theorem 9 t h a t  if I ~ A then  A 
is valid on all finite generated and directed frames, and so by  the Com- 
pleteness Theorem given earlier, A is a theorem of $4 .2 .  �9 

Slower.than-light Signals 
In  T ~, define 

x -~ y iff #(y --x) < 0 ~nd x~ < y~. 

Then x - < y  holds just  in case a signal can be sent from x to y a t  less 
t h a n  the  speed of light. The reflexive relat ion 

x R y  iff x = y  or x - ( y  

yields the  same logic as before -- we leave it to the  reader to analyse 
the  above proof to verify t h a t  the vMid sentences on (T ~, R) are precisely 
the  $ 4 . 2  theorems. 

T h e  E n d  o [  T i m e  

Amongst  the  possible fu ture  fa.tes of our universe is t ha t  expansion 
will eventual ly  give way to contract ion and collapse to ~ singularity.  
I n  this event,  any  future-or iented pa th  in spaeetime will come to an 
end  (the singularity). Formal ly ,  this corresponds to the f rame condition 

('~ ) V x 3 y  (x • y & V w ( y  < w ~ y = w)) . 
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In  a directed part iMly-ordered frame there can be  only one y as in (t),  
name ly  a un ique  final point,  for if y has no successors then an upper  
b o u n d  for y and any  other  point  can only be  y itself. 

The logic K2 extends the  sys tem $4.2 b y  the  addit ional  axiom schema 

[2~A = (~ DA, 

which is val id  on frames satisfying (r Conversely the  work  of Seger- 
,berg [3] m a y  be used to show: 

If  A is not  a K2.theorem, then A can be  falsified on ~ finite generated 
<lirected f rame whose final cluster has only one member.  

Thus K2 is characterised b y  the linite generated directed frames 
w i th  a unique final point.  Any  such frame 3- is a p-morphic  image of 1 ~, 
~s m a y  be deduced  from I ~ 3 - .  Indeed  any p-morphism 3-~--~3- can be 
l i f ted to 3-~ '~3-  b y  mapping c~ to the  unique final point  of 3-. We  leave 
i t  to the  reader to use tha t  observat ion to verify,  for any  sentence A 

~hat  

FK2A iff T n ~ A  iff I ~  ~ ~ A .  

Irre[lexive Time 

Tense logic, as a branch of modM logic, is generally taken  to be con- 
,cerned wi th  irreflexive orderings~ so tha t  a point  is not  considered to be  
in its own future.  In  spacet ime there are two n~turM strict orderings, 
viz. the  relation 

x - (  y iff /x (y- -x)  < O and x,~ < y n 

4efined e~rlier, and 

xay iff x C y and x ~ y .  

(a is the  relat ion 'after '  ~xiomatised b y  l~obb in [4]). 
The logic of these two orderings can be distiriguished in terms of the  

va l id i ty  of modal  sentences. There may  be two proposit ions A and B 
tha t  are t rue in the  fu ture  at  two points  tha t  can only be  reached b y  
travelling (in opposite  directions) a t  the  speed of light (cf. Figure 11). 

Now 
~ig~re 11 
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In  this situation, (~A v (~B will be t rue  now, but  never  again, and hence  
the  sentence 

0 A  ^ 0 B  = 0 (0A ^ 0B)  

is no t  valid when a is the  temporal  ordering. I t  is however  valid under  -<~ 
since a slower-than-l ight  journey  can always be made  to go faster,  so 
we could wai t  some t ime and then t ravel  a t  a greater  speed to A and  B 
Figure  12). 

B e  

4' / 
,4, ," I / 

j, I 2 "  
" l\ s / 

', ;'lQ e  / 
i t  t / \', , ' /  

Now 

2'iguve 12 

These observations apply to T n for all n ~ 2. However  by  pushing t h e  
idea a li t t le fu r the r  we can produce a sentence whose t ru th  is dimension- 
-dependent .  For~ in three .d imensional  spacetime we can f ind at  least  
three  points t ha t  can only be reached by  travell ing in different  direct ions 
a t  the  speed of light. I n  T ~, the  fu ture  of $ is represented by  the  uppe r  
half of a r ight  circular cone centered on ~ (Figure 13). 

t 

~igc~re 13 
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T h u s  in ( T  3, a), a n d  i ndeed  in ( T  ~, a) fo r  n ~> 3, we  c a n  fa l s i fy  t h e  fo l lo-  
w i n g  s e n t e n c e  (here  i a n d  j r a n g e  o v e r  (1,  2,  3}); 

(A0p,)  ^ (A [] (p, ~ 0p )) = V (0 (Op,^ 
i i # i  i # i  

H o w e v e r  th i s  s e n t e n c e  is v a l i d  u n d e r  -~ fo r  al l  n ~> 2, a n d  is v a l i d  u n d e r  
a in T 2. 

PROBLE~S: 1. A x i o m a t i s e  t h e  logics c o r r e s p o n d i n g  to  a a n d  to, 
-< in  t h e  v a r i o u s  d imens ions .  

2. A n a l y s e  t h e  logic  of  discrete s p a c e t i m e  (i.e. w h e n  
R is r e p l a c e d  b y  Z).  

A c k n o w l e d g e m e n t .  I a m  v e r y  m u c h  i n d e b t e d  to  J o h a n  v a n  Ben-  
t h e m  for  a s t i m u l a t i n g  a n d  f ru i t f u l  d ia logue ,  w i t h o u t  wh ich  I d o u b t  
t h a t  I w o u l d  e v e r  h a v e  c o m p l e t e d  th i s  j i g saw  puzz le .  
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(EDITOR'S FOOT,TOTE.) I~ has come ~o the editor's attend.ion that  there is sub- 
stantial overlap between Rob Goldblatt's paper and work done by Valentin Shehtman~ 
Moscow. The results claimed by Shehtman can be described as follows. 

Let R be the set of reals. Define a relation R on R 2 by the condition 

<x, y> B <x', y'> iff ~ < x'  and y < y'. 

Any subset X _ R 9 determines a modal logic ~(X),  vi~., the normal logic determined 
by  the frame <X,/~ ~ X>. Sheheman's work is s~mmarized by the following five- 
theorems. 

THEOR~ 1. I f  X is am open polygon, then T~(X) is $4 or $4.2. 

T H ~ O ~  2. I f  X is a closed polygon, then Z (X) is $4.1 or $4.1.2. 
TH~0RV.~ 3. ~ ( R  2) = $ 4 2 .  

TrfEO~]~ 4. I f  X is any open bounded domain with a smooth boundary, then 
.~(X) = $4. 
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THv .O]~  5. I f  X is any compact domain with a smooth bonndary, then iS(X) 
= $4.1.  

(Here $4.1 and $4.2  are the normal  extensions of $ 4  by  D(>p->(~E]p and 
~ D p ~ [ ~ O p ,  respectively,  while $4.1.2 is the  smallest  normal  logic extending  bo th  
,$4.1 and $4.2). 

Shehtman 's  results  are s ta ted  wi thout  proof in the collection of abs t rac ts  of the  
"Soviet Conference on ~Ia themat iea l  Logic in Kishinjev,  1976. Evident ly ,  Go ldb la t t ' s  
main  resul t  coincides wi th  Theorem 3; in a p r iva te  communicat ion  to the  edi tor ,  
,Shehtman remarks  t ha t  Goldbla%'s proof is "a lmost  the  same"  as  his. 

Shehtman ' s  work was carried out  during 1973-76. The suggestion to s t u d y  
1)roblems of the  present  k ind  he a t t r ibu tes  to X. G. Dragalin.  I~e also r emarks  t ha t  
.Goldblat t ' s  Theorem 1, which is due r J .  F. A. K. van  Ben%hem, was first  p roved  
by  Dragal in  as ear ly as 1973 (see his book )/[aTeMaTHqeci~Id~ HHTyHI~HOHH3M:: BBe~eH~e 

TeopHm aonasaTe~c rn ,  lV[oscow 1979, p. 131). 
I t  goes wi thout  saying t ha t  the  question of p r ior i ty  does not  det rac t  from the  

b e a u t y  of Goldbla t t ' s  master ly  presentat ion.  Still, i t  is a b i t  saddening t h a t  work of 
the  highest  qual i ty  should be carr ied out  in Eas t  and Wes t  by  logicians who ~re some-  
t imes not  aware of each other ' s  existence, let  alone each other ' s  work. The overlap 
between Goldbla t t ' s  and Shehtman 's  work should give reason to pause:  in the  edi tor ' s  
~)pinion i t  affords convincing argument  t ha t  we need to improve  the in te rna t iona l  
me%work of scholarly contac t  and exchange. 

K.S. 
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