S. K. THOMASON Independent Propositional Modal Logics*

Abstract. We show that the join of two classical [respectively, regular, normal] modal logics employing distinct modal operators is a conservative extension of each of them.

A propositional modal language \mathscr{L} has a countably infinite set of propositional variables and a set $C(\mathscr{L})$ of connectives comprising the Boolean connectives and a set $N(\mathscr{L})$, at most countable, of unary "necessity" connectives \Box ; $F(\mathscr{L})$ is the set of formulas of \mathscr{L} . A classical modal logic [1] is a set S of formulas of a propositional modal language \mathscr{L}_S , containing all the Boolean tautologies and closed under Substitution, Detachment, and RE (if $\Box \in N(\mathscr{L}_S)$ and $\alpha \equiv \beta \in S$ then $\Box \alpha \equiv \Box \beta \in S$). Two such logics S and T are independent if $N(\mathscr{L}_S) \cap N(\mathscr{L}_T) = \emptyset$, and their join $S \oplus T$ is the smallest such logic containing their set-theoretic union $S \cup T$. To say that $S \oplus T$ is a conservative extension of S is to say that $(S \oplus T) \cap$ $\cap F(\mathscr{L}_S) = S$.

A regular modal logic is a classical modal logic containing $(\Box p \land \Box q)$ $\rightarrow \Box (p \land q)$ for each $\Box \in N(\mathscr{L}_S)$ and closed under RR (if $\Box \in N(\mathscr{L}_S)$ and $a \rightarrow \beta \in S$ then $\Box a \rightarrow \Box \beta \in S$); a normal modal logic is a regular modal logic which is closed under RN (if $\Box \in N(\mathscr{L}_S)$ and $a \in S$ then $\Box a \in S$) [1]. It is easy to see, however, that a classical modal logic is regular if and only if it contains $\Box (p \land q) \equiv (\Box p \land \Box q)$, and normal if and only if it contains $\Box (p \land q) \equiv (\Box p \land \Box q)$, and normal if and only if it contains $\Box (p \land q) \equiv (\Box p \land \Box q)$ and $\Box (p \lor -p)$. Thus the "regular join" [respectively, "normal join"] of two regular [respectively, normal] modal logic containing $S \cup T$, is the same as their "classical join" $S \oplus T$. So it is not necessary to treat regular and normal logics separately from classical ones.

THEOREM. If **S** and **T** are independent classical modal logics and **T** is consistent, then $S \oplus T$ is a conservative extension of **S**.

PROOF: Let $\mathfrak{A}_{S} = \langle A_{S}, F_{S} \rangle$ be the Lindenbaum-Tarski algebra of S, that is, $A_{S} = \{ |a| \mid a \in F(\mathscr{L}_{S}) \}$ where $|a| = |\beta| \leftrightarrow (a \equiv \beta) \in S$, and $F_{S} = \langle *_{S} \mid * \in C(\mathscr{L}_{S}) \rangle$ where $*_{S}(|a_{1}|, \ldots, |a_{n}|) = |*a_{1} \ldots a_{n}|$ if * is n-ary.

^{*} This work was supported by the National Research Council of Canada and by the Polish Academy of Sciences.

Each $a \in F(\mathscr{L}_S)$ determines the polynomial f_a over \mathfrak{A}_S , and $a \in S$ if and only if f_a is identically 1 in \mathfrak{A}_S . The reduct $\mathfrak{A}_S^\circ = \langle A_S, -_S, \vee_S \rangle$ is a countably infinite (unless S is inconsistent, in which case the theorem holds trivially) atomless (if $|a| \neq 0$ and p does not occur in a then $0 < |p \wedge a| < |a|$) Boolean algebra.

Similarly, the reduct \mathfrak{A}_T° of the Lindenbaum-Tarski algebra $\mathfrak{A}_T = \langle A_T, F_T \rangle$ of T is a countably infinite (since T is consistent) atomless Boolean algebra. All countably infinite atomless Boolean algebras are isomorphic [2, p. 28]; let φ be an isomorphism from \mathfrak{A}_T° onto \mathfrak{A}_S° . Let $\mathfrak{A} = \langle A_S, F_{S,T} \rangle$ be the expansion of \mathfrak{A}_S such that φ is an isomorphism \mathfrak{A}_T° onto the reduct of \mathfrak{A} to the language of \mathfrak{A}_T , that is $F_{S,T} = \langle *_{S,T} |$ $| * \in C(L_{S \oplus T}) \rangle$, $*_{S,T} = *_S$ if $* \in C(\mathscr{L}_S)$, and $*_{S,T}(a_1, \ldots, a_n) = \varphi(*_T(\varphi^{-1}a_1, \ldots, \varphi^{-1}a_n))$ if $* \in C(\mathscr{L}_T)$.

Let $\Delta = \{a \in F(\mathscr{L}_{S \oplus T}) | f_a \text{ is identically 1 in } \mathfrak{A}\}$. Then Δ is a classical modal logic, $S \cup T \subseteq \Delta$, and $\Delta \cap F(\mathscr{L}_S) \subseteq S$, from which it follows that $S \oplus T$ is a conservative extension of S.

References

- [1] K. SEGERBERG, An essay in classical modal logic, Philosophical Society and Department of Philosophy, University of Uppsala, Uppsala, 1971.
- [2] R. SIKORSKI, Boolean Algebras, 3rd edition, Springer-Verlag, New York, 1969.

DEPARTMENT OF MATHEMATICS SIMON FRASER UNIVERSITY BURNABY, B. C., CANADA V5A 186

Received June 1, 1978

Studia Logica XXXIX, 2/3