JFAK. Some Kinds
VAN BENTHEM - of Modal Completeness

Abstract. In the modal literature various notions of “completeness” have been
studied for normal modal logiecs. Four of these are defined here, viz. (plain) comple-
teness, first-order completeness, canonicity and possession of the finite model property —
and their connections are studied. Up to one important exception, all possible inclu-
sion relations are either proved or disproved. Hopefully, this helps to establish some
order in the jungle of concepts concerning modal logies. In the course of the exposition,
the interesting properties of first-order definability and preservation under wlirafilier
extensions are introduced and studied as well.

1. Introduction

Completeness theorems exist for many well-known modal logics. Not
all modal logics admit of such results, however, as was shown by K. Fine
(cf. [7]) and S. K. Thomason (cf. [18]). Still, even within the realm of
“complete” logics, there exist differences: some are more complete than
others, so to speak.. In this paper we study a few special kinds of com-.
pleteness, viz. “completeness cum first-order definability”, “first-order-
completeness” and “canonicity”. Moreover, the “finite model property”-
will be treated in an appendix. The connections between these concepts
will be given, as far as they are known at present. Hopefully, some unity
will eventually emerge from research like this. Our main new result is
that all first-order complete modal logics are canonical. This extends,
a result in [8] to the effect that all complete modal-logics which are
first-order definable are canonical. Cf. also [3], & papel whose notions
and results will be used here repeatedly. ;

This paper is concerned with propos1t10nal modal logie, w11:h pri-
mitives ] (negation), —> (material implication) and [J (necessity). Other:
logical constants are defined in the usual manner, viz.. A (conjunction),
v (inelusive disjunction), < (material equivalence) and ¢ (possibility).
Semantic structures are frames § = (W, R> consisting of a set: W (of

“worlds”) and a.binary “alternative relation” R on W. A couple
M = <&, V>, where & is a frame and V a valuation on & assigning sub-
sets of W to proposition letters, is called a model.- M F p[w] (“p is true
in M at w”) is defined in the obvious way, using the well-known Kripke
clause for [J. Then, § k ¢[w] (“p is true in § at w”) may be defined by
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the stipulation that <§, V) F ¢[w] for all valuations V on §. The para-
meter w may be removed as follows: M F ¢ (“p is true-in M”) if M Eplw]
for all w e W; & F ¢ goes similarly. Finally, an intermediate notion turns
out to be useful, A general frame (&, # > consists of a frame § together
with a set #° of subsets of W which is closed under the set-theoretic
operations — (complement with respect to W), N (intersection) and m
(modal projection with respect to §F: m(X) =z{w e W |Jv e X Ruwv}).
The truth definition is adapted as follows. <, # kFolw] if <&, V)
F@[w] for all valuations V on § which assign values in ¥ only. (Note
that a frame § may be identified with the general frame (F, P(W)),
where P(W) is the power set of W.) (§, #) k ¢ is defined in the obvious
way. These semantic definitions give rise to the following three notions.
of modal semantic consequence. For a set 2 of modal formulas and a
modal formula ¢, Xk gp(X Fg ¢, 2 Fgz @) if, for all frames (models,
general frames) in' which every formula of X' is true, ¢ is true as well.
On the syntactic side, there is the minimal modal logic K consisting
of a complete propositional basis (with modus ponens as its sole rule
of inference) with the modal axiom schema [(p—y)—(Cle—Oy) and
the modal rule of inference “to infer [J¢ from ¢” (“necessitation”). The
best-known general modal completeness theorem is the following:

(1) 2Ege Hf XEype, for all X ¢.

- Another popular version of the minimal modal logic, called K, has single
axioms instead of schemata and a rule of substitution. In view of many
confirming instances, it seemed a plausible guess that K, would axio-
matize kg. But, counter-examples were published in [7] and [18]. Indeed,
truth in frames is essentially a second-order notion, and, in [19], the
consequence relation of a strong fragment of second-order logic was
effectively reduced to Fg, thus showing this notion to be un-axiomati-
zable. This led to the formulation of a different general completeness
theorem for K, viz.

(2) 2tmg ¢ i ZEgge, for all Z¢.

Moreover, Thomason’s negative result leads us to treasure whatever
stronger modal completeness results we have even more. These form the
subject of the next section, in which some important notions of modal
completeness are introduced. The main result is proven in a separate
section (3): all first-order complete modal logics are canonical. Section 4
consists in a short discussion of the converse implication, which may
quite well hold, but which has eluded proof up to now. In Section 5,
a kind of appendix to the preceding parts, the familiar concept of the
“finite model property” is compared with the notions introduced in
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previous sections. Finally, Section 6 is devoted to a general, almost
“philosophical” discussion of completeness results.

2. Some varieties of modal completeness

A traditional modal cornpleteness theorem is typically like the follo-
wing. Let K4 be the modal logic obtained from Kg by adding the axiom
Op—~DO0Op. Now, for all modal formulas ¢,

Frap iff ¢ is true in all frames whose alternative relation is transitive.

“Thus, there is a correspondence between K4 (or, rather, its characteristic
axiom [Op--[10p) and trangitivity. Several concepts may be isolated
from this observation.

2.1. DEFINITION. A set X of modal formulas is complete (X € C) if,
for all modal formulas ¢,

A modal formula ¢ is complete if {g} is.

K4, or even {[(0p—[1p}, is complete in this sense. For, one direction
iy immediate. A routine induction on the length of derivations in Kjg
shows that

i Xtk e, then XFyep, for all I ¢.

1f, on the other hand, not g4 ¢, then — by the above result — ¢ fails in
gsome transitive frame. Then, since [1p—[J[p is true in any frame whose
alternative relation is transitive, ¢ fails in some frame in which K4 is
‘true, i.e., not K4 kg o.

Not only is [p—[I[p implied by VaVy (Rzy—Vz(Ryz—Ruaz)) (tran-
sitivity), but, conversely, if Op—[Jp is frue in a frame, then that
frame is transitive. (Cf., e.g., [1].) Thus, Op—[JOp is “first-order defi-
nable” in an obvious sense.

2.2. DEFINITION. A set X of modal formulas is first-order definable -
(X e M1) if a set A of first-order sentences (in E and =) exists such that,
for all frames §, F F 2 iff FE 4. (Here, FF 2 if, for all pe X, F E ¢;
-ete.) A modal formula ¢ is first-order definable if {p} is.

It is not hard to show that, if a modal formula is defined by some set
-of first-order sentences, then it is defined by a single such sentence already.
(Cf. [1]) o

Finally, K4 is complete in the following pleasant sense.

2.3. DEFINITION. A set 2 of modal formulas is first-order complete
{2 e 01) if a set 4 of first-order sentences (in B and =) exists such that,
for all modal formulas ¢,

Zhg o HE Akgo.
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Between these concepts, there are several known connections; some
quite obvious, others less so. Let us first consider the first two.

2.4, LeMmAa. C& MI; MIEC0
There are modal formulas ouiside of M1uU0.

Proor: “L6b’s Formula” [O(Op—p)—[Clp is in € (cf. [17]), but
it is not in M1 (cf. [1]). '

The set of modal formulag '
{Op—p, O(Op—~Og)v O(Og—0p)y, T(p—DOp)(Op—>p), OOCp—~C Op}
is in M1, but not in C (cf. [4]).

The modal formula [(J(p—~Op)>CO00p)—>p is neither in M1
nor in C (cf. [4]). QED.

Next, the first and third conecepts will be compared.
2.5. Lemma. Ol < (; (¢ 0L

Proor: The first assertion is trivial (ef. the above argument show-
ing that K4 is complete). For, if, for all modal formulas ¢, Z'tg_¢ iff
A Eg @, then consider any modal formula ¢ such that X' kg . It follows
from the above equivalence that 4 kg y for each v € 2, and hence 4 kg g,
and so 2kg P-

To prove the second assertion, consider the set X consisting of Lob’s
Formula.
It was shown in [17] that, for all modal formulas ¢, X' tg_¢ iff ¢ is true

in all finite irreflexive trees. Therefore, the modal formulas of the
form [1" | (2 contradiction _| preceded by n occurrences of [J) are
not derivable from X: O™ | fails at 0 in a finite striet linear order of
length n --1. Now, suppose- for the sake of reductio ad absurdum- that
X e (1, i.e., for some set 4 of firgt-order sentences in R and =,

Xt o iff 4 Fge, for all modal formulas ¢.

Consider the following set of firgt-order formulas
AU{Rxy, A oo ARY, Yy |0 =10

EBach of its finite subsets is satisfiable in some frame & for some world w
(For, sinee [1"*! | is not derivable from X, it follows that not 4 Fg 3"+ |,
and hence a frame ¥ exists in which 4 is true, whereas [1""' | fails
at some world w.) Then, by the compactness theorem for first-
-order logic, the above set is simultaneously satisfiable. I.e., a frame
& exists with a world w such that (i) 4 is true in &, and (ii)
an infinite ascending sequence of worlds w = w,Rw,RBw,R... exists.
But, here is our contradiction. For, setting V(p) = W—{w;|ie N}
yields <&, V) F 71 LF[w], and hence 2 is not true in § (although
A ig). QED.
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As for the second and third conecepts, M1 & Cl1, because M1 & C.
The other connections are as follows.

2.6. LEmmA. Ol & M1; MInCc (1

ProoF: The second assertion follows trivially from the above defi-
nitions. The first assertion, which strengthens the above result that
C & M1, follows from a proof in [8]. The modal formula ¢ O(pvg)
= (Opv g) belongs to C1- the relevant first-order property is

Vo Vy(R:cy—élz(szx\Vu (Rzu—>(RyuAVo) (Bevo—>u = ”))))) -

but not to M1.
Thus, the situation may be pictured as follows:

M1 | C
X

A fourth related concept arises not so much from modal completeness
results ag from their proofs. Originally, the technique used was that of
semantic tableaux (ef. [12]), but, later on in [13], @ Henkin type method
came into vogue. This uses Henkin frames composed of maximally con-
sistent sets and an alternative relation E defined as the set of all couples
{2y, &, such that, for all modal formulas ¢, Cg € X, only if ¢ e X,.
A canonical valuation ¥V may be defined on Henkin frames by setting
V(p) = {& e W |p e 2} for each proposition letter p. This yields a Henkin
model. Finally, a Henkin general frame may be defined using the set ¥~
of all sets of the form {X | ¢ € 2}, where ¢ is & modal formula. Any modal
logic is true in its corresponding Henkin general frame, but it need not
be true in the underlying Henkin frame. Those logics which. are (like K4)
are called “canonical” in [8]. That paper also contains a semantic cha-
racterization of Henkin models, which may be applied to general frames
to yield the following concept (ef. [9], or [3]).

2.7. DEFINITION. A general frame {(§, #")> is descriptive if
(1) VeeWVyeW(z =yoVP e# (Py—Px)),
(2) VaoeWVyeW(RoyoVPe# (Py—dzeP Ruz)), and
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{3) if all finite subsets of a subset of #” have a non-empty intersection,
‘then that whole subset has a non-empty interseetion.

Note, at least, that Henkin general frames are descriptive. It may
be shown that logics like K4 are preserved in passing from a descriptive
general frame in which they are true to the underlying frame. (The proof
of this is like the familiar one in the completeness proof:

VwV(p Oe—[ e €2,

VaVo (O e =10p € 2),

VaVo (Op € 2=y (Rey =g € y)),

VaVg| Oy € # >Vy (Roy =Vz(Byz=p € z))),
VoVy (Rwy =V (Ryz =Vo(Op e z=p € z))),
VaVy (Ray =Vz(Ryz =Raz)) .

"Thus, R is transitive and hence [Jp—[1[Jp is true in the whole frame.
Note that only property (2) was used!) Generally, this preservation pro-
perty gives rise o the following concept (ef. [3]).

2.8. DErFINITION. A set X of modal formulas is canonical (X e CAN)
if, for all descriptive general frames (%, #") such that (§, ¥ kX, § £ 2.

Canonical sets have quite interesting properties.
2.9. LEmvMA., CAN < C; C & CAN; CAN &£ M1; MInC < CAN.

Proor: That OAN < O is clear from the above considerations. Lob’s
Formula belongs to ¢, but not to CAN, however. The above-mentioned
formula O O{pve)—C(CTpv [Ig) belongs to CAN as well (though not
to M1). Finally, that MInC < CAN follows from a semantic characte-
rization of eanonical sets found in [3]; which also contains proofs for
‘the other above assertions. (The fourth assertion is essentially due to [8].)

QED.

The concept of “canonicity” is surely the most abstract of the ones
introduced up to now. It will become more familiar from the arguments
in seetion 3. The quickest way to get acquainted with it is to think of
its role in Henkin (general) frames. E.g., a canonical set X' of modal for-
mulas will be true in the underlying Henkin frame of any modal logic
-containing 2. Thus, it is generally complete in the followmg sense: for
all sets 2’ 2 X and for all modal formulas ¢, X" Fg_g iff, for all general
frames (¥, #"> in which X’ is true and such that 2'istruein§, (&, ¥ F ¢.
Now, it was shown in [15] that all first-order complete sets are generally
complete in this sense. (Mortimer’s argument can be easily adapted to
yield this result, that is.)
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Here again, the connection between I and CAN turns up. Already
we noted that proofs of canonicity often proeceed by finding a first-order
condition which is true in the Henkin frame and which implies the rele-
vant set of modal formulas. Such proofs establish, at the same time,
that this set is first-order eomplete. The question then arises as to what
i the exact relation between CAN and 1. To keep the conceptual com-
plexity of modal completeness theory down to & minimum, it would be
mogt satisfactory to have

01 =CAN,
and this may quite conceivably be the case. But, in this paper, we have
only been able to prove one half of this equation:

01 < CAN.

The proof is in Section 3. Section 4 containg a discussion of the converse
inelusion.

3. All first-order complete modal logies are canomical
The following concept is to be found in [10].

3.1. DrwINITION. The wulirafilter extension wue(F) of a frame
{=<W, R>) is the frame {ue(W), ue(R)> with
(1) ue(W) is the set of all ultrafilbers on W, and
(2) ue(R) is the set of all couples (U,, U,> such that, for each set X < W,
if X € U,, then the modal projection m(X) of X is in Uy

. It may be shown that each modal formula which is true in we(H) is
also true in F. The converse does not hold, however. B.g., Lib’s Formula
is true in certain frames, without being true in their ultrafilter exten-
gions. (Cf. [3].) Still, one may define the following concept.

3.2. DEFINIEION. A set X of modal formulas is preserved under wul-
trafilter extensions (2 e P UE) if, for all frames §, if F F 2, then ue(F) F .

PUL is an interesting class. E.g., we have the following connections
with the notions of Section 2.

3.3. Lemma. C ¢ PUE, PUE&C Cl1 < PUE, PUE $ o1
MI1<PUE, PUE & M1 (AN < PUE, PUE ¢ CAN.

Proor: Lob’s Formula is in ¢, but not in PUE. That PUE £ C
follows from the fact that M1 < PUF and M1 & C (lerama 2.4).
That M1 < PUE is shown in [3]. That PUH & M1 follows from the
fact that CAN < PUE and CAN & M1 (Lemma 2.9).
- That 01 = PUE will be proven below (Lemma, 3.6). That PUE & (1
follows from PUK £ C, 01 < C.
That CAN < PUE is shown in the above-mentioned. paper. That
PUE & CAN follows from PUH & C, OAN = C. QED.

3 — Studia Logica 2-3/80
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We have no example of & modal formula in PUE, but outside of M1
and CAN. It is a plausible conjecture that such formulas exigt, however.
(BE.g., a modal formula which is not complete, but which is true in the
same frames as the above-mentioned formula O O{(pve)—O(Opv Og)
would be one.)

The following result is, again, in the above-mentioned paper:

3.4. LEMMA. CAN =0OnPUE.

For any set 2 of modal formulas, the modal completion C(ZX) of X,
defined as

{p | for all frames §, if § F 2, then § F ¢}, is a complete set of modak
formulas which is true in exactly the same frames as X. The following
result may, then, be deduced from Lemma 3.4.

3.5. COROLLARY. For any sef X of modal formulas, 2 e PUE if and
only if C(X)eCAN.

Now, we turn to C1. Since C1 < C, it suffices- by Lemma 3.4- to show
that CI < PUH, in order to prove that 01 < CAN. Here, then, is the
crucial result.

3.6. TeporEM. OI1 < PUE.

Proor: Let X be a set in C1. Say, 4 is a set of first-order sentences
such that X' tg ¢ iff 4 kge, for all modal formulas ¢. Now, let &

be any frame in which X is true. It is to be shown that X' is true in we(F).
To see this, consider any ultrafilter % in ue(W): it is to be shown that
we(F) £ 2[%]. By well-known modal results (ef. [17]), it suffices to look
at the subframe T'C(ue(F), %) of ue(F) which is generated by % (taking
R-successors, and R-successors of I-successors, ete.). Now, take unary
predicate constants X corresponding to the subsets X of W(§ = (W, RD).
Let the set A’ consist of A together with all formulas of the forms
(1) Xu (X €%), where w is some fixed individual variable,
(i) Vy(B"uy—-~(W—Xy-T1Xy)} (n>0),
where the notational convention is as follows:

“Rogy” stands for “o = y”,

“RP+igy” stands for “dz, (R @z, ARz,.,1Y)",
(i) Vy(R"uy—(XnZy—(XyAZy)), and
(iv) Yy (R uy—(m(X)y-Iz(Ryzr Xz)}.

CrAmM. FEach finite subset of A’ is satisfiable.

PrROOF: Suppose otherwise. Then finitely many formulas a;, ..., a; of
the above four forms exist such that 4  T[(a; A ... Aay). Say, the unary
predicate constants X, ..., X,, occur in ay, ..., @,. Consider the proposi<
tion letters p,, ..., p,. Replace a,, ..., a, by modal formulas as follows:
— if g; is of form (i), take the appropriate p;,
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— if a; is of form (ii), take the appropriate [1"(p;<> ~|p;), where “[1*”
denotes prefixing of n copies of “[7”, '
— if o; is of form (iii), take the appropriate [1"(p;—(p,Ap;)), and,
finalty,
— if a; is of form (iv), take the appropriate [J"(p;<>{p;). This yields
modal formulas ¢, ..., oy, for which it is easy to see that 4 kg 7] (a*A ...
. Aay) (by the fact that 4 F ~](a;A ... Aqy)). But, then, by the above
assumption, X'tg, “1(a*A ... Agp). Since F kX, it follows that §FF

“Ha*A ... Ady). In particular, for the valuation V on § defined by
V(p;) = X; (1 <i< n)and arbitrary elsewhere, it holds that (§F, V> £ 7}
Ta*A ... Ady). Here is our intended contradiction. For, the formulas
of form (i) among a, ..., a; involve finitely many sets in % (which have
a non-empty intersection, # being an ultrafilter), and hence a world w
exists satisfying all of them. Moreover, all formulas of the forms (ii),
(iii), (iv) are true under the intended interpretation (by virtue of their
form). It follows that-taking w for u- a,, ..., a; are satisfiable under the
intended interpretation, and hence that <§, V) k " [w] (1 << k). QED.

From the claim, it follows, by the compactness theorem for first-order
logic, that A" is satisfiable, say <&, X{Dxcw F 4’ [w;]. Moreover, by
standard model-theoretic arguments (cf. [5]), this model has an §,-satu-
rated elementary extension <(&,, X,>x.p, in which A’ is still satisfied
at w;. Now, consider the generated subframe TO0({(F., Xod>xcw, @1}
(= %2('&01)). The latter structure is vital: it will be mapped onto TC (ue(F),
%) by the following function f.

For any w in the domain of F,(w,), f(w) =4:{X = W | w e X,}.

CrAm. f is a function from F,(w,) into we(F) such that
1) flw,) =%,
(2) <f Rywv, then we(R)f(w)f(v), and
(3) if uwe(R)f(w)U', then a world v exists in the domain of F,(w,) suck
that R,wv and f(v) = %' .

Proor: To show that f assigns values in ue(W), it is to be checked
that, for any w, f(w) is an ultrafilter on W. Here are the relevant con-
ditions:

— if X e f(w), then w € X, and hence w ¢ W —X, (and so W—X ¢ f(w)).
For, since w is in the domain of T'C({{F,, X,) xcpy wy), 2 natural number
n exists such that Rjw,w (by the definition of generated subframes).
Now, the formula Vy(R"uy—(W —Xy« Xy))

belongs to A4’, whence it is satisfied in our structure:

which yields the required conclusion.

— if X ¢f(w), then w ¢ X, and, arguing like above, it follows that
xeW-—X, and so W—X ef(w).

— it X, Z € f(w), then w € X, and w € Z,, and, again arguing like above,
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it follows that w e XNZ, and so XNZ e f(w). (The reasons for the choice
of our formulas of the forms (ii), (iii) and (iv) will have become clear by
now.) Finally,

— if Xef(w) and X Z, then w e X, and XNZ = X; i.e., again like
above, w & X, and_ weZy, and so Z € f(w).

It follows that f(w) is an ultrafilter on W..

That f(w,) = # follows from the fact that all formulas of form
(i) are true at w;.

Now, suppose that R,wv; with, say, Byw,w (and hence R™ly v)
To show that ue(R)f(w)f(v), it suffices to prove that, for any set X e f

X ) € f(w) (by the definition of we(R); ef. 3.1). So, suppose that X e f(v
i.e., v € X,. Because the formula

Vy (R"uy—(m(X)y—I2(Ryz A Xz))
belongs to 4’ and, therefore, holds in &,(w,), it follows that w em(X,),
and hence m(X) € f(w).

Finally, suppose that ue(R)f(w 024 A world v is to be found in the
domain of %2(@01 ) such that R,wv and f() = %', To discover that world,
consider the following set of formulas, {Xz | X e %'}u{Ruw}.

Each of its finite subsets is satisfiable in <{§,, X;>x.p. For, consider
any Xy,..., X, e X =X,v... nX, e’ and hence m(X) & f(w) (by
the definition of we(R)). Then w em( ) (by the detinition of f). Like
above (using a formula of form (iv)), an R,-successor v of w may be found
such. that » € X,. Note that v belongs to the domain of F,(w,), because
w does. Next, using formulas of the form (iii), it follows that ve X,
(1 <7< k). Now, because the above set is finitely satistiable, and because
(F2y XoDxew I8 Ng-saturated, this set is simultaneously satisfiable in
that structure, say at a world ». Clearly, this world is the required one.

QED.

The time has come for the final argument completing the proof of
Theorem 3.6. Recall that, in any frame in which 4 is true, 2 is true. Now,
because 4 < A’ and A’ is satisfied in <{§,, X;Dxew (at wy), it follows
that &, F 4 and hence that §, F 2. Therefore, TC(F,, w;) F 2, for — by
well-known modal results — truth of modal formulas is preserved under
generated subframes (cf. [17]). Now, the function £ defined above ig easily
seen to be a p—mwphism (in the sense of that same work) from T0(F., w,)
onto I'C(ue(§), %); and hence — again by a well-known modal result—
TO(ue(F), %)k Z. QED.

The followmg consequence has been announced already.
3.7. COROLLARY. (I < CAN.

Yet another corollary is the result that MInC < CAN (cf. Lemma 2.9),
because MINC < O1 (cf. Lemma 2.6). But, our result is stronger, because
C1 & MInC {cf. Lemuma 2.6).
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It remains to be remarked that the above proof is a more complicated
version of one in [3] showing that for any frame &, we(¥) is a p-morphic
image of some frame elementarily equivalent to .

4. Are all canonical modal logics firsi-order complete?

It was remarked above that proofs of canonicity often involve the

congtruction of a first-order property with respect to which the relevant
set of modal formulas is complete. This is true for our example, but also
for Fine’s more complicated formula < O(pveg)—>O(Opv [g). In fact,
it is the method of proof of H. Sahlqvist’s general completeness theorem
in [16]. Now, such observations.suggest a method of proof for the inclu-
sion CAN < CI:
Suppose that X' € CAN and show that it is complete Wlth respect to the
first-order theory of its own Henkin frame! To this end, it suffices to show
that X is true in any frame which is elementarily equivalent. to its Henkin
frame. Unfortunately, this has turned out to be easier said than done.
And so the question in the title remainsg open.

5. The finite model property ,v

To show that one must be thankful for what little connections exist
between the above notions, here is another important concept, which
behaves even less socially.

If a modal formula fails in the Henkin model of K4, then the so-called
“filtration method” (cf. [17]) may be applied to that model, changmg
it into a finite transitive model in which the modal formula in ‘question
fails. Thus, for all modal formulas @, g, ¢ iff @ is.true in all finfite tran-
sitive frames. More generally, this inspires the following concept.

© 5.1. DEFINITION. A set X of modal formulas has the fiwite model
property (X'e FMP) if, for all modal formulas ¢ such that not Xtg ¢,

a finite model exists in which 2 is true, whereas ¢ is not.

It was shown in [11] that, if X e FMP, then, for all modal formulas
@ such that not X' Fg_ ¢, a finite frame exists in which X is true, whereas ¢
is not. So, if X« FMP, then it is complete in the sense of Section 2. Mo-
reover, if X is recursive and X e FMP, then {p|Z br, @} 18 recursive.

This concept has turned out to be a happy choice: leading to im-
portant results, like Bull’s Theorem: “All normal extensions of the modal
logic S4.3 have the finite model property” (cf. [6]). Compare such a result
with the unfortunate behaviour of our previous notions in this respect.
E.g., the modal logic S4.3 Dum axiomatized by S4.3 together with
“Dummett’s Axiom”

(O (p—0p) =) ~(O Op—>p), -
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has FMP, but it does not belong to CAN. (And hence it does not belong
to M1 or C1to by previous results.) Still, §4.3 possessed all these properties
as well.

That S4.3 Dum is outside of CAN may be shown by noting that
(N,<> ES4.3 Dum, where N is the set of natural numbers. Now, if
S84.3 Dum € CAN, then it would be preserved under ultrafilter extensions
(cf. Lemma 3.3). Thus, it suffices to show that S4.3 Dum is not true in
we({N, <>). A short look at this frame is required now. Hach natural
number % corresponds to the principal ultrafilter {X < N | % € X}, and
indeed these ultrafilters form an isomorphic copy of <N, <> which is
a subframe of ue({N, <}). (Cf. [1].) It remains to determine the position
of the free ultrafilters on N. Now, let # be any free ultrafilter on N, and
let " be just any ultrafilter on N. For any set X e %, X is infinite (%
being free, it does not contain finite sets) and hence m(X) equals N,
whence m(X) e?". Thus, by Definition 3.1, ue(<)? %. It follows that
we({(N,<>) consists of a copy of (N, <) succeeded by 2% (the number
of free ultrafilters on N) points on which the relation is universal. Finally,
no free ultrafilter stands in the relation ue(<) to any principal one. For,
if we(L)#%{X < N |n e X}, then- since {n} belongs to the latter ultra-
filter- m({n}) = {k | k< n} €%, and hence % contains a finite set. In
other words, ue((¥N, <) looks as follows:

(principal)
(free)

But, on such a frame, the axiom of S4.8 Dum displayed above may be
falsified as follows. Define & valuation V on it by sefting V(p) = the
get of all free ultrafilters together with the set of all principal ultrafilters
generated by odd natural numbers; and consider the first point in the
copy of (N,<>: O(O(p—~[lp)—p) is true at it and so is & [p, bub p
is not. This concludes the proof that S4.3 Dum is not canonical. Thus,
FMP has certain advantages which previous notions like CAN or 01
lack.

As it happens, FMP is quite unrelated to other notions of comple-
teness: '

5.2. LeMMA. FMP < 0, C & FMP FMP & C1,01& FMP
FMP & M1, MI1$ FMP FMP & CAN, CAN & FMP.
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Proor: It suffices to show that (i) MINnC ¢ FMP, and (ii) FMP
& 0AN: the other assertions follow from these by previous results.

To prove (i), consider the set X = {p—p, (TpArO Q)OO (TP A
OO Og)). X is true in the “recession frame” (cf. [4]) (N, R) with
R = {{m,n) |n>m—1}. Note that the modal formula [Ip—>Op is
not true in this frame; whence not X'tg  Op—[1Op. Bub, in any finite
frame in which X is true, [Jp—p is true as well. (Just note that the
modal formula

(OpA T 100p)—=0(O0OpA 100 0p)
is provable in X, and apply the argument in [14].) It follows that X ¢ F MP.
Moreover, X € MINC: this follows from the general completeness theorem
for modal formulas of this form in [16]. (By the way, the relevant first-
-order equivalents are

VxRzx for Jp->p, and

VaVy (Rmy —Vz (Ryz—> du (Rwu A Vs (Rus— Vi (Rst—>Raut)) A

.f\Elzl(RuzlAEzz(RzlngRzzz))))) for the second axiom.)
Next, to prove (ii), consider S4.8 Dum. QED.

6. Discussion

All modal logies which had been studied up to 1974 (the year when
Fine and Thomason presented the first examples of incompleteness)
have turned out to possess one or more of the completeness properties
treated in this paper. Indeed, all examples of incomplete modal logics
which have been found up to now are, to a certain extent, artificial.
{There is no analogon here to Godel’s famous Incompleteness Theorem
which showed a natural, existing theory — viz. Peano Arithmetic — to be
incomplete.) Given this situation, it is only natural to ask why this should
be so. This may not be a scientific question, but let us see if it leads
to one.

Now, modal completeness results may be approached from two per-
spectives. In the first, one lays down a logic (hopefully, a codification
of some philosophical insights) and asks if it is complete with respect
to Kripke semantics (in the sense of Definition 2.1). In the second per-
spective, one starts from a class i of frames and asks for (a recursive
axiomatization of) its modal theory Th,.,(#) =4 {p |for all F e,
% F @}. Again, up to the present, such questions have always received
a satisfactory answer.

As it happens, it is hard to say anything enlightening about the
success of the first perspective. The reason cannot be found in the relative
simplicity of modal logics in the literature, for there are simple incomplete
modal logics too (cf. [4]). Still, there might be a common characteristic
of complete logics which has been overlooked all the time. Here, then,
is an interesting question:
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“Is the set of complete modal formulas (viewed as a subset of the
set of all modal formulas) recursive?”.! Another causal factor may consist
in an intuitive feeling for strength. Any modal logic X is contained in
a complete logic O(X) (cf. section 3) which is true in exactly the same
frames as X itself. Why formulate, e.g., an axiom ¢, when the stronger
C({p}) lies at hand? Yet, here as well, even the first questions remain
to be answered, like

“Is O({p}) finitely axiomatizable for each modal formula ¢?”

Turning to the second perspective, let us note first that classes of
frames are always given by means of some condition, Hence the natural
questions will assume forms like: :

“When does a first-order (second-order) definable class of frames
possess a reeursive modal theory?” One reason for success in this area
is clear. If our class & is definable by means of a recursive (or even a re-
cursively enumerable) set 4 of first-order sentences, then its modal theory
is recursively axiomatizable. For, then,

@ € Thya(A) iff A F g iff AF ¢, where ¢ is the standard transeription
of a modal formula ¢ into a first-order formula (cf. [1]), iff 4 F ¢, by the
completeness theorem for first-order logic. And- the latter notion is re-
cursively enumerable, by the familiar Godel type encodings.

Still, in practice, the modal axiomatizations one encounters are not
only recursive, but even finite. Could the reason for this phenomenon
be the following:

“The modal theories of classes of frames defined by single first-order
sentences are finitely axiomatizable”? Unfortunately, the answer is
negative: which shows what a difficult area of research has been touched
upon in this final discussion.

We conclude with the presentation of a counter-example to the last
conjecture. Consider the first-order sentence o = Vady(Rxy A 3! zRyz)
(“each world has & successor with exactly one successor”). Consider, in
addition, the following set 2' of modal formulas:

{OOPLA .. AOCP)=>O (OprA ... A0P,) 7= 1}.
Call these formulas ¢,, > 1.) '

6.1. LeMmA. X is complete with respect to ay i.e., for each modal for-
mula ¢, 2ty ¢ iff a Fge.

Proor: The direction from left to right follows from the fact that
a kg X, which may be checked by a routine argument. For the converse
direction, suppose that not 2Ztg_¢. Then ¢ fails in the Henkin frame
of X, But, this Henkin frame satisfies a, as may be seen from the follow-
ing calculation.
(1) VaVo (1 Op e x = [y € %).

1 Added in print: This question was answered negatively by 8. K. Thomason

in a forth-coming paper called “Undecidability of the Completeness Problem of
Modal Logic” (April, 1978). :
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Consider I' = {a | Oa em}u{ O | OOe ea). This set is consistent, For,
otherwise, for certain a, ..., o3} @1, ..., ¢, We would have

Ztg (oA ... /\ak)—>—'|(|:](p1 e A quom), and hence

Zhg, O(oA oo Ag) >0 O@sA ... A Tgy)- Since (agA ... Agy) e,
it follows that O 1(OgiA ... Ag,) ex(x). On the other hand,
OO @1y evny OO @, €2, Whence (O @A ... AO@,) €v and, therefore,
O(OeiA oo Ap,) €4 a contradiction with (+) and the consistency
of #. Now, any maximally consistent extension of I" produces a world
y as described in the following line.

(2) Vo 3y (Rey AV (OO € =g € y). Then

(3) \Z Ely(Rmy AVz(Ryz=No(OOp c v =p e,z))).

An argument like above, now considering the set {a | [Ja e} u{ 0w
| Tlp €2}, yields a world » as deseribed in the next line.

(4) VmBy(Rwy AVz(Ryz =3u (Baw v Vo (Op e u=p e z)})) Then

(5) Vmay(Rwy AV Ryz =3u(Bouv Vo(Buv=(p c v=p z))))),

and, finally,

(6) VwHy(Rwy A Vz(Ryz =Ju (Rwu AV (Ruv =v = z)))) .

It is easily seen that (6) implies o. QED.

Lemma 6.1 also expresses the fact that 2 axiomatizes the modal
theory of {§ |& F a}. Now, if this theory were finitely axiomatizable,
then, obviously, X would be axiomatized by a finite subset of itself. In
particular, for a sufficiently large natural number %, the formulas o4, ..., 0,
would imply o,.,. But, this cannot happen:

6.2. LEMMA. For no natural number n, {o1y .vry 0} Frc, Opit-

Proor: For any natural number 7, consider the frame §, = <W,, R >,
with ‘ : o
w =Ly ey nt23Y0{d, 53 14 #£J; 1<4,j <n+2}0{0}, and
— R, = {0, {i, i i #j; 1<i,j<n+2}u
O{Cli, 3%, B 1 # 53 1<id,j<n+2; ke {i,j}}u
Ufck, By |1 <k < n42}.

We claim that
1) F ko fori=1,...,n
(2) 7m0t Fp F 01

PROOF OF (1): All formulas o; are true at all worlds different from 0=
this is easy to check, using the fact that the worlds 1,..., %2 each
have exactly one R-successor. Next, consider the world 0. If V is any
valuation on &, such that <§,, V> F OOp1A ... A0 p,[0], then each
two-element subset of {1,...,n+2} and each set V(p;) (1 <<j< ¢) have
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a non-empty intersection. It follows that p; can fail at at most one mem-
ber of {1,...,n+4+2} (1 <j<4). Since i< n, this leaves at least two
members %, 1 of {1,...,n-+2} at which p,, ..., p; are all true, and hence
OpiA ... AOp,; is true at {&, 1}, and, therefore, O (Cp,A ... AOp;) I8
true at 0. QED.

Proor orF (2): Set V(p;) ={1,...,0+2)— {4}, for ¢ =1,...,n+1.
It follows that all of p,, ..., p,., are true at n+2; but this happens at
no other world in {1, ..., n+2}! Clearly, by this choice of a valuation,
<. V> EOOP:[0] for ¢ =1,...,n+1. But, by the previous observa-
tion, [Op; A ... A [P, is true at no R-successor of 0. QED.

It follows from (1) and (2) that not {sy,...,0,} Fy 0,1, and hence
that not {oy, ..., 6,} Fx, Opi1- QED.

It was noted above already that lemma 6.2 has the following con-
sequence,

6.3. CoROLLARY. The modal theory of Vxdy(Rxya3d! zRyz) is no
finitely axiomatizable.
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