
J Some Kinds 
of Modal Completeness 

Abstract. In the modal literature various notions of "completeness" have been 
studied for normal modal logics. Four of these are defined here, viz. (plain) comple- 
teness, f~st-orde~ completeness, canonieity and possession of the finite model p~ope~ty -- 
and their connections are studied. Up to one important exception, all possible inclu- 
sion relations are either proved or disproved. Hopefully, this helps to establish some 
order in the jungle of concepts concerning modal logics. In the c0urse of the exposition, 
the interesting ProPerties of first-o~de~ definability and preservation under ~ltrafilter 
extensions are introduced and studied as well: 

l .  Introduction 

Completeness theorems exist  for many  well-known modal  logics. I~ot 
all modal  logics admit  of such results, however ,  as was shown b y  K. Fine 
(cf. [7]) and S. K. Thomason (cf. [18]). Still, even within the  realm of 
"comple te"  logics, there  exist differences: some a r e  more complete  t h a n  
others,  so to speak.~In this paper  we s tudy  :a few special kinds of c o m -  
pleteness, viz. ' !comple teness  cum first-order definabil i ty",  " f i r s t -order-  
completeness" and "canonici ty".  Moreover,  the  !'finite mode l  p roper ty" .  
will be t rea ted  in an appendix.  The connections be tween  these  concepts  
will be  given,  as far as  they  are known at  present,  Hopeful ly ,  some u n i t y  
will eventual ly  emerge from research like this. Our mMn new result  is 
t ha t  all f irst-order c o m p l e t e  modal  logics are canonicM. T h i s  extends.  
a result  in [8] to the  effect tha t  all complete  m o d M  logics which a re  
first-order definable are canonical. Cf. also [3], a paper  whose notions 
and results will be  used here repeatedly.  

This paper  is concerned wiflh proposit ional  modal  logic, wi th  pri- 
mitives -7 (negation), -~ (material  imp l i ca t i on )and  [] (necessity). Other: 
logical constants  are defined in the  usual  manner,  viz. ^ i (eonjnnct ion) ,  
v (inclusive disjunction), ~-~ (material  equivalence) and 0 (possibil i ty) .  
Semantic  s tructures are frames ~ = ( W ,  R )  consisting of a set W (of 
"worlds")  and a b inary  "al ternat ive relat ion" R o n  W. A c o u p l e  
9~ = ( g i  V),: where ~ is a i rame and V a valuation on ~ assigning sub- 
sets of W to proposi t ion letters, is called a model .  ?0~ ~ W[w] ("~ is true 
in 9~ at w")  is defined in the  obvious way~ us ing  the well-known Kr ipke  
clause for K]. Then, ~ S ~0[w] ("~ is t rue in ~ ~t w ' )  may  be defined b y  
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the stipulation that  <~, V> ~ ~[wJ for all valuations V on ~. The para- 
meter w may be removed as follows: 93t ~ ~ ("q is true in !gt') if ~J~ ~ ~[w]i 
for all w ~ W; ~ ~ ~ goes similarly. Finally, an intermediate notion turns. 
out to be useful. A general frame <~, OF> consists of a frame ~ together 
with a set r of subsets of W which is closed under the set-theoretic 
operations -- (complement with respect to W), n (intersection) and m 
(modal projection with respect to ~:  re(X) =d~f{w e W I3v ~ X Rwv})~ 
The t ru th  definition is adapted as follows. <~,r ~ q[w] if <~, V> 

~[w] for all valuations V on ~ which assign values in r only. (Note 
tha t  a frame ~ may be identified with the general frame <~,P(W)>~ 
where _p(w)is the power set of W.) <~, OF> ~ q is defined in the obvious 
way. These semantic definitions give rise to the following three not ions  
of modal semantic consequence. For a set X of modal formulas and a 
modal formula ~, Z ~ ~ ( Z  ~ ~, 27 ~6~ ~) if, for all frames (models~ 
general frames) i n  which every formula of Z is true,: ~ is true as we l l .  

On the syntactic side, there is the minima~ modal log@ K consisting 
of a complete propositional basis (with modus ponens as its sole rule 
of inference) with the modal axiom schema [:](~-->~v)-->(~-+~) and  
the modal rule of inference "to infer f ~  from ~" ("necessitation"). Th~ 
best-known general modal completeness theorem is the following: 

(1) Z ~K~ iff X ~ q, for all Z,~o. 

Another popular version of the minimal modal logic, called Ks, has single 
axioms instead of schemata and a rule of substitution. In  view of m a n y  
confirming instances, it seemed a plausible guess that  K s would axio- 
matize ~v. But, counter-examples were published in [7] and [18]. Indeed~ 
t ru th  in frames is essentially a Second-order notion, and, in [19], the  
consequence relation of a strong fragment of second-order logic was 
effectively reduced to ~v, thus showing this notion to be un-axiomati~ 
zable. This  led to the formulation of a different general completeness 
theorem for Ks, viz. 

(2) 2: ~-~ q iff 2: ~$~ q, for all 2:,~o. 

Moreover, Thomason's negative result leads us to treasure whatever  
stronger modal completeness results we have even more. These form the  
subject of the next section, in which some important notions of modaI 
completeness are introduced. The main result is proven in a separate 
section (3): all first-order complete modal logics are canonical. Section 4 
consists in a short discussion of the converse implication, which may  
quite well hold, but  which has eluded proof up to now. In Section 5~ 
a kind of appendix to the preceding parts, the familiar concept of tho 
"finite model property" is compared with the notions introduced i n  
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p rev ious  sections. F ina l l y ,  Section 6 is devoted to a general, a lmost  
~'philosophical" discussion of completeness results. 

2. Some varieties of modal completeness 

A tradi t ional  modal  completeness theorem is typical ly  like the  follo- 
wing.  Let  K4 be the  modal  logic obtained f rom K s by  adding the  axiom 
[]p-~[][]p. Now, for all moda l  formulas ~, 

~r K~ ~ ifi ~ is t rue in all frames whose al ternat ive relat ion is transit ive.  

'Thus, there is a correspondence between K4 (or, ra ther ,  its characterist ic 
~xiom V ] p ~ [ ]  ~ p )  and t ransi t ivi ty.  Several concepts m a y  be isolated 
i r o m  this observation. 

2.1. D]~FI~ITIO~. h set Z of modal  formulas is complete (Z e C) if, 
f o r  all modal  formulas 9, 

XFKs~ iff X ~ .  

A m o d a l  formula  ~ is complete if {9} is. 

Kd, or even {Dp-+V] [3p}, is complete in this sense. ~or ,  one direction 
iS immediate.  A rout ine  induct ion on the  length of derivations in K s 
~shows tha t  

if XFKs~o, then  Z ~ ,  for all X, 9. 

I f ,  on the  other  hand,  not  FK4 ~, then  - - b y  the  above result  -- ~0 fails in 
:some t ransi t ive  frame.  Then, since ~ p ~ p  is t rue  in any  f rame whose 
a l t e rna t ive  relat ion is transitive, ~ fails in some f rame in which K4 is 
t r u e ,  i.e., not  K4 ~ .  

Not  only is E J p ~ p  implied by  VxVy(Rxy->Vz(Ryz-+ttxz)) (tran- 
s i t ivi ty) ,  but ,  conversely, if [Tp-~[::] E]p is t rue  in a frame,  then  t h a t  
f r a m e  is transit ive.  (Cf., e.g., [1].) Thus, [3p->E] EJp is "first-order defi- 
nable"  in an obvious sense. 

2.2. D E f i n i t i o n .  A set Z of modal  formulas is first-order definable 
( X  e M1) if a set A of first-order sentences (in R and  = )  exists such tha t ,  
~or  all f rames ~, ~ ~ X iff ~ ~ A. (Here, ~ ~ X if, for all 9 e X, ~ ~ q~; 
,etc.) A modal  formula  9 is first-order definable ii {~} is. 

I t  is no t  h a r d  to show tha t ,  if a modal  formula is defined by  some set 
.of first-order sentences, then  it is defined by  a single such sentence already.  
,((]i. [ i ] .) 

Finally~ K4 is comple t e  in the  following pleasant  sense. 

2.3. ])EYI~ITI0~r A set X of modal  formulas is first-order complete 
~(Z e C1) if a set A of first-order sentences (in R and = )  exists such tha t ,  
: lor  all modal  formulas ~v, 

ZFKs~o iff A ~ .  
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Between these concepts, there  ~re severM known connections;  some 
quite obvious, others less  so. Let  us first  consider the  first  two. 

There are modal formulas outside of M l w C .  

P~oo~: "LSb 's  ~ormula"  [3(~p--->p)~[~p is in C (cf. [17]), b u t  
i t  is not  in M1 (cf. [1]) .  

The set of modM formulas 
{ ~ p - ~ ,  ~ (  ~ p - ~ q ) v  ~3(~q-~3p) ,  ~ (p -~p) -~ (<~p-~p) ,  ~(>p-~(> ~ p }  
is in M1, but  not  in C (cf. [~]). 

The modal  formula  K]( [:](p~[~p)~g~ [~K]p)-->p is nei ther  in M1 
nor in C (cf. [4]). QEDo 

Next ,  the first  and third  concepts will be compared.  

2.5. LEM2i[A. C1 ~_ C; C ~ C1. 

Pnoo~:  The first  assertion is trivial (cf. the  above a rgument  show- 
ing tha t  K4 is complete). For,  if, for all modal  formulas % Z ~Ks ~ iff 

A ~v ~, then  consider any  modal  formula  ~ such tha t  X ~ W. I t  follows 
f rom the  above equivalence tha t  L1 ~ ~ for each ~ e X, and  hence A k~ ~ 
and  so 27 ~Ks F.- 

To prove the  second ~ssertion, consider the  set 27 consisting of Ia6b's 
Formula .  
I t  was shown in [17] that ,  for all modal  formulas ~, Z ~tr s ~0 iff ~0 is t ruo  

in all finite irreflexive trees. Therefore, the  modal  formulas  of tho  
form K] ~ __I (a contradict ion _1 preceded by  n occurrences of E3) ar~ 
not  derivable f rom Z: K] n _L fails a t  0 in a finite strict linear order of 
length n-}-l. Now, suppose- for the sake of reductio ad absurdum- tha~ 
27 ~ C1, i.e., for some set A of f irst-order sentences in R and = ,  

E kK~ ~0 iff A }~ ~, for all modal  formulas ~v. 

Consider the  following set of f irst-order formulas 

2u{Rxy~A ...  A Ry~y~+~ I n > 1}. 

E a c h  of its f inite subsets is satisfiable in some f rame ~ for some world ur 
(For, since ~ + ~  __1 is not  derivable f rom X, it follows tha t  not  A ~V D ~+~ _l~ 
and  hence a f rame ~ exists in which A is true,  whereas [3 ~+~ __1 fails 
at  some world w.) Then, by  the  compactness theorem for first- 
-order logic, the  above set is s imultaneously satisfiable. I.e., a f r ame  

exists with a world w such tha t  (i) A is t rue  in ~, and (ii) 
an infinite ascending sequence of worlds w : w ~ R w 2 R w 3 R . . .  exists. 
]3ut, here is our contradiction.  For,  sett ing V(p) : W - - { w  i [ i  ~ N }  
yields (~ ,  V) k - - ILF[w],  and hence 2: is no t  t rue in ~ (al though 
~1 is). QED~ 
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As for the  second and third concepts,  M1 ~= C1, because M1 ~= C. 
The other  connections are as follows. 

2.6. ]SELMA. C1 ~: M1; M l n C  ~ C1. 

P~ooF:  The second assertion follows trivially f rom the above defi- 
nitions. The first assertion, which strengthens the  above result  t h a t  
C $ ]K1, follows from a proof in [8]. The modal  formula ~ [ : ] (pvq} 
-+<~(Up v ~q)  belongs to C1- the  re levant  first-order p roper ty  is 

b u t  not to M1. 
Thus, the  si tuation m a y  be pic tured as follows: 

X 

A four th  related concept  arises not  so much from modal  completeness  
results as f rom their proofs. Originally, the  technique used was tha t  of 
semantic tab leaux  (cf. [12]), but~ later on in [13], a ]~enkin t ype  method  
came into vogue. This uses Henkin frames composed of maximal ly  con- 
sistent sets and an al ternat ive relation R defined as the set  of all couples 
(S1, Z2} such that~ for all modal  formulas F, D~v e Z1 only if ~ e 27~. 
A canonical va lua t ion  V may  be defined on Henkin  frames b y  sett ing 
V(p) = {2: e W I P e 27} for each proposit ion let ter  p. This yields a Henkin 
model. Finally,  a Henkin general frame may  be defined using the set # "  
of all sets of the  form (X I ~ e S}, where r is a modal  formula.  Any  moda l  
logic is t rue in its corresponding t]:enkin general frame, bu t  it need n o t  
be t rue  in the  underlying ]=[enkin frame. Those logics which are (like K4). 
are called "canonical" in  [8]. That  paper  also contains a semantic cha- 
racterizat ion of t~enkin models, which may  be applied to general frames. 
to yield the  following concept  (ci. [9], or [3]). 

2.7. DEFIrClTIO~. A general f rame ( ~  r is descriptive if 

(1) vx wvv W(x = y vP 

(2) Vx e WVy e W(Rxy*--~VP e r e P Rxz)), and 
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~(3) if all finite subsets of a subset of r have a non-empty intersection, 
then that  whole subset has a non-empty intersection. 

Note, at least, tha t  J~enkin general frames are descriptive. I t  may 
be  shown that  logics like K 4  are preserved in passing from a descriptive 
:general frame in which they are true to the underlying frame, (The proof 
.of ~his is like the familiar one in the completeness proof: 

VxV~0 VlW-+ ~ Zips e x, 

VxV,  ( E3,  e =..Vy ( R, y ::.. e y)), 

v, vy (e, y (Ry  
( R y z  . 

~Thus, R is transitive gnd hence []p-->[] E]p is true in the whole frame. 
�9 Xote tha t  only property (2) was used!) Generally, this preservation pro- 
per ty  gives rise to the following concept (cf. [3]). 

2.8. I)EFIl~ITIO1% A set Z Of modal formulas is canonical ( Z  e C A N )  
if, for all descriptive general frames <~, r such that  <~, $t'} ~ X~ ~ ~ Z. 

Canonical sets have quite interesting properties. 

2.9. L J ~ A .  C A N  ~ C; C ~: CAN;  C A N  ~: M1; M l n C  c_ CAxY. 

P~ooF: That C A N  ~ C is clear from the above considerations. L6b's 
:Formula belongs to C, but not to CAN,  however. The above-mentioned 
formula (} [] (p v q)-~(} ( VJp v Z]q) belongs to C A N  as well (though not 
to M1): Finally, tha t  Mlr~C c_ C A N  follows fl-om a semantic characte- 
rization of canonical sets found in [3]; which also contains proofs for 
t he  other above assertions. (The fourth assertion is essentially due to [8].) 

Q D. 

The concept of "canonicity" is surely the most abstract of the ones 
introduced up to now. I t  will become more familiar from the arguments 
in section 3. The quickest way to get acquainted with it is to think of 
its role in tt'enkin (general) frames. E.g., a canonical set X of modal for- 
mulas will be true i n  the underlying Henkin frame of any modal logic 
containing 2:. Thus, it is generally complete in the following sense: for 
all sets X' ~ Z and for all modal formulas ~, Z'  ~K8 ~s iff~ for all general 

frames <~, OF} in which X' is true and such that  X is true in ~, <~, r ~ ~s. 
:Now, it was shown in [15] tha t  all first-order complete sets are generally 
complete in this sense. (Mortimer's argument can be easily adapted to 
:yield this result, ~hat is.) 
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J~ere agMn~ the connection between C1 and C A N  turns up. Already 
we noted tha t  proofs of canonicity often proceed by finding a finest-order 
condition which is true in the Henkin frame and which implies the rele- 
vant  set of modal formulas. Such proofs establish, at the same time, 
that  this set is first-order complete. The question then arises as to what 
is the exact relation between CA2V and C1. To keep the conceptual com- 
plexity of modal completeness theory  down to ~ minimum~ it would be 
most satisfactory to have 

C1 = CA2g~ 
and this may quite conceivably be the case. But, in this paper, we have 
only been able to prove one half of this equation: 

C1 c CAN.  
The proof is in Section 3. Section 4 contains a discussion of the converse 
"inclusion. 

3. All flrst-order complete modal logics are canonical 

The following concept is to be found in [10]. 

3.1. DEvI~I~Io~. The ultrafilter extension ue(~)  of a frame 
( =  ~ W , R } )  is the frame (ue(W)~ ue(R)} with 
(1) ue(W) is the set 01 all ultrafilters on W~ and 
(2) ue(R) is the set of all couples <U1, U2} such that, for each set X ~_ W, 
is X ~ U~ then the modal projection re(X) oi X is in U1. 

I t  m~y be shown that  each modal formula which is true in u~(~) is 
~lso true in ~. The converse does not hold, however. E .g ,  L6b'S Formula 
is true in certain @ames~ without being true in theh �9 ultra~ilter exten- 
sions. (Cf. [3].) Still,  one may define the following concept. 

3.2. DEFINITION. A set X of modM formulas is 2)reserved under ul- 
$rafilter extensions (Z  e P U E )  if, for M1 fra.mes ~, if ~ ~ X, then ue(~) ~ Z. 

P U E  is an interesting class. :E.g, we have the following connections 
with the notions of Section 2. 

3.3. LENA.  C ~ 1)UE, P U E  ~: C C1 c_ PUE~ P U E  ~: C1 
M1 ~ t ) UE~ 1)UE ~= M 1  CA2g ~_ 1)UE~ 1)UE g: C A N .  

P~ooF: Liib's Formula is in C~ but not in P U E .  That 1)UE r C 
follows from the fact that  M1 c P U E  and M1 ~: C (lemma 2.4). 

That M1 ~_ 1)UE is shown in [3]. That 1)UE ~= M1 follows from the 
fact  tha t  C A N  ~ 1)UE and C A N  ~r M1 (Lemma 2.9). 

That  C1 c 1)UE will be proven below (Lemmn 3.6). That  P U E  ~= C1 
follows from P UE ~= C, C1 ~_ C. 

That C A N  ~_ 1)UE is shown in the above-mentioned paper. That  
.P UE $ CA2g follows irom 1)UJE ~: C~ CA3T ~_ C. QED. 

3 -  S t u d i a  L o g i c a  2-3/80 
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We have  no example of a modal  formula in P UE, b u t  outside of M 1  
and CAN. I t  is a plausible conjecture tha t  such formulas exist, howe~er .  
(E .g ,  a modal  formula which is not  complete,  b u t  which is t rue in the~ 
same frames as the  above-ment ioned  formula, < ) [ ] ( p v q ) - ~ 0 ( D p v  [~q) 
would  be  one.) 

The following result  is, again, in the  above-ment ioned  paper :  

3.4. LE~IA.  CAN ~-- CnPUE.  

For  any set Z of modal  formulas,  the  modal completion C(Z) of Z~ 
defined as 

{~c l for all frames ~, if ~ ~ Z, then ~ ~ 9}, is a complete  set of moda} 
formulas which is t rue in exact ly  the  same frames as Z. The fol lowing 
resul t  may,  then,  be  deduced f rom L e m m a  3.4. 

3.5. COIr F0r  any set Z of modal formulas, X ~ P U E  if  anc~ 
only i f  C (Z )e  CAN. 

~ow~ we tu rn  to C1. Since C1 ~_ C, it  suffices- b y  Lemma 3.4- to show 
tha t  G1 ~_ P UE, in order to prove  tha t  C1 ~_ CAN. Here,  then,  is t h e  
crucial result .  

3.6. TttEOl~E~. U1 ~ t)UE. 

]?Rooy: Let  Z be a set in C1. Say, ~ is a set of f irst-order sentences  
such t ha t  Z F ~  ~ if[ A ~ ,  for all modal  formulas ~0. Now, let 

be  any  f rame in which  Z is true.  I t  is t0 be shown tha t  X is t rue  in ue(~) .  
To see this, consider any  ul trafi l ter  ~ in ~e(W):  it is to be  shown thali 
ue(~) ~ 2:[~] .  ~ y  well-known modal  results (cf. [17]), it  suffices to look 
a t  the  subf rame TC(ue(~)~ ag) of ue(~)  which is generated by ~ ( taking 
R-successors,  and R-successors of R,successors~ etc.). Now, take  u n a r y  
predicate  constants  X corresponding to  the  subsets  X of W ( ~  = ( W ,  R}}~ 
Let  the  set A' consist  o f  A together  wi th  all formulas of the  forms 

(i) Xu (X e ~),  where u is some fixed individual  variable,  
(it) Vy(R~uy-~(W--Xyr (n ~ 0), 

where the  nota t ional  convent ion is as follows: 
-- "R0xy '' s tands for "x ----y", 
-- "R~+~xy '' s tands for "3z~+~(R"xz,~+~^Rz,~+~y)", 
(iii) Vy(R~uy-~{XnZy. -~(Xy^Zy)) ,  and  
(iv) Vy(n'uy-    z(nyz ^ 

Cnxr~[. Each finite subset of A' is satisfiable. 

P~oo~:  Suppose otherwise. Then finitely m a n y f o r m u l a s  a~, .. . .  ~ a k o~ 
the  above  four  forms exist  such tha t  A ~ -7 (a~ ̂  ... ^ %). Say~ the una ry  
predicate  c o n s t a n t s  X~, . . . ,  X~ occur in a~, . . . ,  %. Consider the  proposi-  
t ion let ters  p~, . . . ,  p~. Replace a~, . . . ,  a~ b y  modal  formulas, as fol lows:  
-- if a~ is of form (i), t ake  the  ~ppropriate  Pi, 
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-- if a i is of form (if), t ake  the  appropriate  Vln(p joTpk) ,  where "[:]"" 
denotes prefixing of n copies of "VI", 
-- if a t is of form (iii), take  the  appropriate  Dn(pj~(pk^pl)),  and,  
finally, 
-- if a~ is of form (iv), t ake  the  appropria te  Vl"(~io()pk).  This yields 

modal  formulas a~, . . . ,  a'~, for which it is easy to see tha t  A ~ -1 (a~A .. .  
. . .  A a~) (by the  fact  t ha t  A ~ -~(a l^  . . .  ^ ak)). But ,  then,  by  the  above 
assumption,  Z F ~ s - l ( a ~ ' n  . . .  ^a~'). Since ~ ~ X, it follows t h a t ~  ~ -7 

-7 (a~n  .. .  Aa~). In  part icular ,  for the  valuat ion V on ~ defined by  
V(pi) = X t (1 ~ i ~ n) and arbi t rary  elsewhere, it holds t ha t  {~,  V} ~ -1 
- l ( a ~ ^  .. .  ^a~) .  ]~ere is our in tended contradiction. For,  the  formulas 
of form (i) among al, . . . ,  a k involve finitely m a n y  sets in o~ (which have  
a non-empty  intersection, ~ being an ultrafilter),  and hence a world w 
exists satisfying all of them. Moreover, all formulas of the  forms (ii)~ 
(iii), (iv) are t rue  under  the  intended in terpre ta t ion (by vir tue of thei r  
form). I t  follows tha t - tak ing  w for u- a~, . . . ,  a k are satisfiable under  t he  
in tended interpretat ion,  and hence tha t  (~ ,  V} ~ a':[w] (1 ~ i ~ k). QED. 

F r o m  the  claim, it follows, by  the  compactness theorem for f i rs t-order  
logic, t h a t  A' is satisfiable, say ( ~ ,  X l ) x ~  w ~ z~' [Wl]. Moreover, by  
s tandard  model . theoret ic  arguments  (cf. [51), this model has an ~r 
rated elementary  extension ( ~ ,  X~}x~w , in which A' is still satisfied 
a t  w~. Now, consider the  generated sub~rame TC((~2, X2}x~_w, Wl} 
( ----- ~ (wl)). The la t te r  s t ruc ture  is vitM: it will be mapped  onto TC(ue(F) 
~/) by  the  following funct ion f.  

For  any  w in the  domain of ~(w~),  f(w) =a~{X ~ W I w eX~}. 

CLA~. f is a function from ~(w~) into ue(~) such that 
(~) f (wl)  = ~ ,  
(2) i f  R~wv, then ue(R)f(w)f(v), and 
(3) i f  ue(R)f(w)~' ,  then a world v exists in the domain of ~(w~) suck 
that l~wv  and f(v) = ~'. 

P~oo~:  To show tha t  f ussigns values in ue(W), it is to be checked 
tha t ,  for any  w, f(w) is an ul trafi l ter  on W. ]=[ere are the  re levant  con- 
ditions: 
-- if X ef(w),  then  w e X~ and hence w r W--X~ (and so W - - X  Cf(w)). 

For ,  since w is in the  domain  of T C ( ( ~ ,  X~}x~_w , w~), a natura l  n u m b e r  
n exists such tha t  R~w~w (by the definition of generated subframes).  
Now, the  formula Vy(R~uy-->(W--Xyo-~Xy)) 
belongs to A', whence it  is satisfied in our s t ructure :  
which yields the  required conclusion. 

- -  if X e l (w) ,  then  w ~ X ,  and, arguing like above, it  follows tha~ 
x e W - - X ~  and so W - - X  ef(w). 

- -  if X, Z ~f(w)~ then  w e X,~ and w e Z~, and, again arguing like ubov% 
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it follows tha t  w ~ XnZ~ and  so Xc~Z Ef(w). (The reasons for the  choice 
of our formulas of the  forms (if), (iii) and  (iv) will have become clear by  
now.) Finally,  

if X ~f(w) and  X ~ Z, then  w e X2 and  Xc~Z = X;  i.e., again like 
above, w ~X~ and  w eZ2,  and  so Z e f (w) .  
I t  fo l lows t h a t  f (w)  is an ul traf i l ter  on W .  

Tha t  f ( w ~ ) -  ~ follows f rom the  fact  t h a t  all formulas  of form 
(i) are t rue  a t  wl.  

Now, suppose t h a t  R~wv; with, say, t t~wlw {and hence R~+lw~v). 
To show tha t  ue(R)f(w)f(v),  it suffices to prove that ,  for any  set X el(v) ,  
re(X) e l (w)  (by the  definition of ue(R)', cf. 3.1). So, suppose tha t  X el(v) ,  
i.e., v e X2. Because the  formula  

Vy (R~uy->(m (X) y+-~=Iz(Ryz A Xz)) 
belongs to A' and,  therefore,  holds in ~2(w~), it follows tha t  w e re(X2), 
and  hence m(X)  e f(w). 

FinMly, suppose tha t  ue(R)f(w)~l ' .  A world v is to be found in the  
domain  of ~2(w~) such tha t  -R2wv and  f(v) --- ~1'. To discover t ha t  world, 
consider the  following set of formulas,  {Xx X e ql'}w{Rux}. 
Each  of its finite subsets is satisfiable in (~2, X2}x_~. For,  consider 
any  X~, . . . ,  Xk e ~ ' .  X -- X~n  ...  n X  k e~l' and hence m(X)  e f (w)  (by 
the  definit ion oi ue(R)). Then w era(X)2 (by the  definit ion of f ) .  Like 
~bove (using a formula  of form (iv)), an  R2-successor v of w m a y  be found 
such t h a t  v e X2. Note  t ha t  v belongs to the  domain  of/~2(w~), because 
w does. Next ,  using formulas of the  form (iii), it follows t h a t  v e X~2 
(1 ~< i <~ k). Now, because the  above set is f ini tely satisfiable, and  because 
(~2, X2}x~7 is }Co-saturated, this set is s imultaneously satisfiable in 
t h a t  s t ructure,  say a t  a world v. Clearly, this world is the  required one. 

QED. 

The t ime has come for the  final a rgnment  completing the  proof of 
Theorem 3.6. Recall  tha t ,  in any  f rame in which A is true~ 2: is true.  Now, 
because A _ A' and  A' is satisfied in (~2, X~}x~7 (at w~), i t  follows 
t h a t  ~ ~ A and henqe t h a t  ~2 ~ Z.  Therefore,  TC(~2, Wl) ~ 2:, for -- by  
well-known modal  r e s u l t s -  t r u t h  of modal  formulas is preserved under  
genera ted  subfr~mes (el. [17]). ~7ow, the  funct ion I defined ~bove is easily 
seen to  b e u p-morphism (in the  sense oi t ha t  same work) f rom TC(~2, w~) 
~)nt0 TC(ue(~),  r and  hence - -~ga in  by  a well-known modal  r e su l t - -  
:s ~1) ~ Z. QED. 

The following consequence has been announced already. 

3.7. COrOLLArY. C1~_ CAN.  

Yet  another  corollary is the  result  t ha t  MlrnC ~_ C A ~  (cf. Lemma  2.9), 
because Mlc~C ~_ C1 (cf. Lemma 2.6). :But, our result  is stronger, because 
G1 ~= Mli~G (cf. L e m m a  2.6). 
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I t  remains to be remarked that  the above proof is a more complicated 
version of one in [3] showing that  for any frame ~, ue(~) is u p-morphic 
image of some frame elementarily equivalent to ~. 

4. Are all canonical modal logics first-order complete? 

I t  was remarked above that  proofs of canonicity often involve the 
construction of a ~rst-order property with respect to which the relevant 
set of modal formulas is complete. This is true for our example, but  also 
for Fine's more complicated formula ()[D(p v q)-~O ([~p v Vlq). In fact, 
it is the method of proof of H. Sahlqvist's general completeness theorem 
in [16]. Now, such observations suggest a method of proof for the inclu- 
sion CAIV ~_ C1 : 
Suppose that  Z ~ CAiV and show that  it is complete with respect to the 
first-order theory of its own Henkin frame! To this end, it suffices to show 
that  Z is true in any frame which is elementarily equivalent to its Henkin 
frame. Unfortunately, this has turned out to be easier said than done. 
And so the question in the title remains open. 

5. The finite model property 

To show that  one must be thankful for what little connections exist 
between the above notions, here is another important concept, which 
behaves eveli less sociMly. 

If a modal formula fdi!s in the t tenkin model of K4, then the ;so-called 
"filtration method" (el. [17]) may be applied to that  model, Changing 
it into a finite transitive model in which the modal formula: in questioa 
fails. Thus, for all modal formulas q, ~K4 q iff q is true in all fin~ite tran- 
sitive frames. More generally, this inspires the following concept. 

5.1. DEFINITION. A set S of modal formulas has t h e  finite model 
property (S  ~ FMP)  if, for all modal formulas ~ such that  not S ~Ks ~ 

a finite model exists in which S is true, whereas ~ is not. 

I t  was shown in [11] that,  if S e FMP,  then, for all modal formulas 
such that  not Z 7i~, ~, a finite frame exists in which Z is true, whereas q~ 

is not. So, if S e F M P ,  then it is complete in the  sense of Section 2. Mo: 
reover, if Z is recursive and Z e FMP,  then { ~ I S  ~Ks ~} is reeursive. 

This concept has turned out to be a happy choice: lending to im' 
portant  results, like Bull's Theorem: "All normM extensions of the modal 
logic $4.3  have the finite model property" (cf. [6]). Compare such a result. 
with the unfortunate behaviour of our previous notions in this respect, 
:E.g., the modal logic $4.3 Dum axiomatized by $4.3 together with 
"Dummett's Axiom" 

[] (p+  []p) Gp- p), 
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has ~ M t  ), but  it does no t  belong to CAN. (And hence it does not  belong 
~o M1 or C1 to bY previous results.) Still, $4.3 possessed all these propert ies  
as well. 

Tha t  $4.3 Dum is outside of CAf i  m a y  be shown by  noting t h a t  
( f i ,  <~} ~ $4.3 Dum, where f i  is the  set of na tura l  numbers.  Now, if 
$4.3 Dum ~ CAN, then  it would be preserved under  ultrafi l ter  extensions 
(cf. Lemma  3.3). Thus, it suffices to show tha t  $4.3 Dum is not  t rue  in 
ue( ( f i ,  ~<}). A short  look at  this f rame is required now. Each  na tura l  
number  n corresponds to the  principal  ul trafi l ter  {X ~ fir In  e X}, and  
indeed these ultrafil ters form an isomorphic copy of (-AT, ~<} which is 

subframe of ue(( f i ,  ~) ) .  (Cf. [1].) I t  remains to determine the  position 
of the  free ultrafil ters on f i .  Now, let q / b e  any  free ul t raf i l ter  on s and 
let  ~ be just  any  ul traf i l ter  on N. For  any  set X e vy, X is infinite (q/ 
being free, i t  does no t  contain finite sets) and hence re(X) equals N, 
whence  r e ( X ) ~ .  Thus, by  Definit ion 3.1, ue(~)C~ql. I t  follows tha t  
ue( (N ,  <~)) consists of a copy of (-AT, ~<) succeeded by  2~0 (the number  
of free ultrafi l ters on f i )  points on which the  relat ion is universal.  Finally,  
no free ul t raf i l ter  stands in the  relat ion ue(<~) to any  principal one. For,  
if ue(<~)eg{X ~_ N In e X } ,  then- since {n} belongs to the  la t ter  ul tra-  
filter- m((n}) = { k ] k  <~ n} ~ ql, and hence q/ contains a finite set. I n  
o the r  words, ue( (N,  ~<}) looks as follows: 

t I 

{principal) 
(free] 

]3ut, on such a ~rame, the  axiom of $4 .3  Dum displayed above m a y  be 
falsified as follows. Define a va luat ian  V on it by  sett ing V(p) = the  
set of all free ultrafi l ters together  with the  set of all principal ultrafil tcrs 
genera ted  by  odd natura l  numbers ;  and consider the  first  point  in the  
copy of (2V, ~<}: EJ(~(p-+[:Jp)-->p) is t rue  at  it and so is OVqp, b u t / 9  
is not .  This concludes the  proof t ha t  $4.3 3)urn is no t  canonical. Thus, 
~'MP has certain advantages  which previous notions like CA2( or U1 
lack. 

As it happens,  I~MP is quite unre la ted  to other  notions of comple- 
s 

5.2. ImM~A. F M P  ~_ C, C ~: t~MP _FMP ~= C1, C1 ~: ~ M P  
F M P  ~ M1, M1 ~= ~ M P  FM_P ~ CAN, CA_~ ~ (5 .~MP. 
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PI~OOF: I t  suffices to show tha t  (i) Mlr~C ~= F M P ,  and (ii) F M P  
~: C A N :  the  other  assertions follow f rom these by  previous results. 

To prove (i), consider the  set X = { Vlp-->p , ( E]p A <> <>q)-+ <>( [] Vlp A 
<> <>q)}. 2: is t rue  in the  "recession f rame" (el. [4]) (IY, R> with 
= {<m, n} l n>~ m - - I } .  Note ~hat the  modal  formula V3p--->[]Dp is 

n o t  t rue  in this f rame;  whence not  Z ~Ks [::]p-->E] Vlp. But ,  in any  f in i te  

f r ame  in which Z is true,  [ T p - ~ � 9  Dp is t rue  as well. (Just  note  t h a t  the  
moda l  formula 

( [3p ^ - l  [] E3p ) ~  O ( D Dp ,x --] [] [] E3p ) 
is provable in Z, and  apply the  a rgument  in [14].) I t  follows tha t  X ~ F M P .  
:~oreover, Z E M l n C :  this follows f rom the  general completeness theorem 
for  modal  formulas of this form in [16]. (By the  way, the  re levant  first- 
-order  equivalents are 

V x R x x  for Dp-+p, and 

axiom.) 

Next ,  to prove (ii), consider $4 .3  Dum.  QED. 

6.  Discussion 

All modal  logics which had  been studied up to 1974 (the year  when 
:Pine and  Thomason presented the  first  examples of incompleteness) 
have  tu rned  out to possess one or more of the  completeness properties 
~reated in this paper.  Indeed,  all examples of incomplete modal  logics 
which  have  been found up to now are, to a certain extent~ artificial. 
{There is no analogon here to GSdel's famous Incompleteness Theorem 
which  showed a natural ,  existing theory  -- viz. Peano Ari thmet ic  -- to b e  
incomplete.)  Given this situation, it is only na tura l  to ask why  this should 
be so. This m a y  not  be a scientific question~ but  let us see if i t  leads 
to one. 

Now, modal  completeness results m a y  be approached f rom two per- 
spectives. In  the  first, one lays down a logic (hopefully, a codification 
vf  some philosophical insights) and asks if it is complete with respect  
~o K_ripke semantics (in ~he sense of Definition 2.1). In  the  second per- 
spective, one starts f rom a class :r of frames and asks for (a recursive 
~xiomatizat ion of) its modal  theory  Th~o~(Yl)=aef {~~ l for all ~ e~r~ 
:~ ~ ~o}. Again, up to the  present,  such questions have  always received 
.a sat isfactory answer. 

As it happens,  it is hard  to say anyth ing  enlightening about  the  
~uccess of the  first  perspective. The reason cannot  be found in the  relat ive 
simplicity of modal  logics in the  l i terature,  for there  ~re simple incomplete 
modal  logics too (cf. [4]). Still, there might  be a common characterist ic  
,of complete logics which has been overlooked ~ll the  time. Here,  then,  
is an interesting question: 
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"Is  the set of complete  modal  formulas (viewed as a subset  of t he  
set of all modM formulas) recursive ?".1 Another  causal lac tor  m a y  consist  
in an intui t ive feeling for strength. Any modal  logic Z is contMned in 
a complete  logic C(Z) (cf. sec t ion  3) which is t rue in exact ly  the  same 
frames as Z itself. W h y  formulate ,  e.g., an axiom ~, when the  stronger 
C({~}) lies a t  hand?  Yet ,  here as well, even the first  questions remain 
to be  answered,  like 

"Is C({~}) f initely axiomat izable  for each modal  formula ~?" 
Turning to the  second perspective,  let us note  first  tha t  classes of 

frames are always given b y  means of some condition. Hence  the na tura l  
questions w i l l  assume forms like: 

"When  d o e s  a f irst-order (second,order) definable class of frames 
possess a recursive modal  t heo ry?"  One reason for success in this area  
is clear. If  our class 5ff is definable b y  means of a reeursive (or even a re- 
cursively enumerable)  set A of f irst-order sentences, then its modal  theory  
is recursively axiolnatizable.  For ,  then,  

9~ e Th~noa(Yf ) iff A ~ ~ iff A ~ ~, where ~ is the  s tandard  t ranscript ion 
of a modal  formula  ~ i n t o  a f irst-order formula (cf. [1]), iff A F ~, b y  the  
completeness  theorem for first-0rder logic. A n d  the la t ter  notion is re- 
curs ively  enumerable,  b y  the  familiar G6del type  encodings. 

Still, in practice,  the  modal  axiomatizat ions  one encounters  are no t  
only recursive, bu t  even f inite.  Could the reason for this p h e n o m e n o n  
be the  following: 

"The modal  theories of classes of frames defined b y  single f i rs t -order  
sentences are f ini tely ax iomat izable"?  Unfor tunate ly ,  the  answer is 
negat ive :  which shows wha t  a difficult  area of research has been touche4  
upon  in this final discussion. 

We  conclude with the  presentut ion of a counter-example  to the  last  
conjecture.  Consider the  first-order sentence a = V x 3 y  (Rxy A 3 ! zRyz)  
("each world has a successor with exact ly  one successor"). Consider, in  
addit ion,  the  following set Z of modM formulas:  
{(ElOp~A . . .  A [ E O P ~ ) ~ O ( [ E P ~ A  . . .  A IEP~)I ~>~ 1}. 
Call these  formulas  a~, n ~ 1.) 

6.1. LE_wl~A. X is complete with respect to a; i.e., f o r  each modal for- 
mula q~, z Fl~ qo i f f  a ~ qJ. 

P~ooF:  The direct ion from left to r ight follows from the fact  t h a t  
a b~ 27, which m a y  be  checked b y  a rout ine  argument .  :For the  converse 
direction,  suppose t h a t  no t  27 FK~ ~. Then ~ fails in the  Henkin  f rame  

of Z. :But, this Henk in  frame satisfies a, as m a y  be seen from the follow- 
ing calculation. 
(1) VxVr ( ~ ~?~ e x :=> ~ I--lq~ e x ) .  

1 Added in print: This question was answered negatively by S, K. Thomason 
i n  a forth-coming paper called "YJndecidability of the Completeness Problem of 
ModM Logic" (April, 1978). 
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Consider F -  {al Da  ~x}u{[: ]~ T [:](}~ ex}.  This set is consistent.  For~,. 
otherwise, for certain a l , . . . ,  ak; q~l,. . . ,  ~m~ w e  would  have  
2: FK~(alA . . .  Aak)-~--] ( []~IA . . .  A []~0m) , and hence 

2:FKs [=](al^ ...  A%)--~[]7([=]~1A .. .  A [ ] ~ ) .  Since [](alA .. .  Aak)~X~. 

it  follows tha t  [5-7([]~01^ .. .  A D ~ o ~ ) e x ( * ) .  On the  other  hand~ 
[](}~1, ...~ V](}~0m ex ,  whence [ ] ( (}~ .A .. .  A ( } ~ , , ) ~ x  and, therefore~ 
( } ( D ~ A  .. .  A []~%) ~x :  a contradict ion with ( ,)  and the consistency 
of x. Now, any maximal ly  consistent  extension of F produces a wor ld  
y as described in the  following line. 
(2) Vx3y(Rxy / \V~o(U](}~  ex=>V7~ ey ) .  Then 
(3) V  y(R y ̂ W(Ry   Vv( SV 

An argument  like above~ now considering the set {al ~ a  ~ X}w{-7 (~  
I --]~ e z}, yields a world u as described in the  nex t  line. 

and, finally~ 

I t  is easily seen tha t  (6) implies a. QED~ 

Lemma 6.1 also expresses the fact  tha t  Z axiomatizes the  modaI  
theory  of { ~ ! ~  ~ a}. ~ow,  if this theory  were finitely axiomatizable,. 
then,  obviously,  X would be  axiomutized by  a finite subset  of itself. In  
part icular ,  for a sufficiently large natura l  number  n, the  formulas a~, . . . ,  a~ 
would imply a , .1 .  But ,  this eanno~ happen:  

6.2. LE~,~A. For no natural number ~, {a~, . . . ,  an} ~Ks a~+~. 

P~O0~: For  any natura l  number  n~ consider the  frame ~ = <W~, R~>r 
with 
-- W~-= { 1 , . . . , n + 2 } w { { / , j } l i  # j ;  l ~ i , j ~ n §  and 
- -  R~ - -  {<O, { i , j } >  l i : / : j ;  1 ~ i , j  ~ n §  

w{<k, k> [ 1 ~ k ~ n-~2}.  
We  claim tha t  
(1) ~n ~ ai for i -- 1 , . . . ,  n. 
(2) not ~ ~ (~+1" 

P~oo~  o~ (1): All formulas a i are t rue a t  ~11 worlds different from 0 = 
this is easy to check, using the fact  t ha t  the  worlds 1, , . . ,  n §  each 
have exact ly  one R-successor. ~ e x t ,  consider the  world O. I f  V is a n y  
valuat ion on ~ such ~hat < ~ ,  V> ~ VT<>p~ ... ~ [] <>p~[0], then  each 
two-element  subset  of {1, . . . ,  n §  and each set V(pr (1 ~<j ~< i) h a v e  
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non-empty  intersection. I t  follows tha t  p~ c~n fail at  a t  most  one mem- 
ber  of {1, . . . ,  nq-2} ( l ~ j ~ i ) .  Since i ~ n ,  this leaves a t  least two 
~nembers k, 1 of {1, .... , n  k2} a t  which p~, . . . ,Pi  are all true,  and hence 
Vlp~^ . . .  ^ ~p~ is t rue  a t  {k, 1}, and, therefore,  ~ ( [ : ] p ~ ^  ...  ^ V]pi ) is 

t r ue  a t  0. QED.  

P~ooF  oF (2): Set  V(p~) = {1, . . . ,  n-k 2)-- (i}, for i ---- 1, . . . ,  n §  
:It follows tha t  all of p~, ...,p~+~ ure t rue  a t  n §  b u t  this happens a t  
no  other  world in { 1 , . . . ,  n §  Clearly, b y  this choice of a valuat ion,  
( ~ ,  V) ~ ~01o i [0 ]  for i = 1, . . . ,  n §  But ,  b y  the previous observa- 
tion, ~ P l ^  . . .  ^ [:]Pn+~ is t rue  a t  no R-successor of 0. QED. 

I t  follows from (1) and (2) tha t  not  {a~, . . . ,  %} ~v gn+~, and hence 
t h a t  not  {a~, . . . ,  ~ }  kK~ a~+~. QED.  

I t  was no ted  above  a l ready tha t  l emma 6.2 has the  following con- 
sequence.  

6.3. COROLLarY. The modal theory of Vx~y(RxyA ]!  zRyz) is no 
finitely axiomatizable. 
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