
w. J. BLox Pretabular Varieties 
of  Modal  Algebras 

Abstract. We study modal logics in the setting of varieties of modal algebras. 
Any variety of modal algebras generated by a finite algebra -- such a variety is 
called tabular -- has only finitely many subvarieties, i.e. is of finite height. The con- 
verse does not hold in general. It is 'shown that the converse does hold in the lattice 
of varieties of Kd-algebras. Hence the lower part of this lattice consists of tabular 
varieties only. We proceed to show that there is a continuum of pretabul~ varieties 
of K4-algebras - those are the non-tabular varieties all of whose proper subvarieties 
are tabular - in contrast with Maksimova's result that there are only five preta- 
bular varieties of S4-algebras. 

corresponding with 
are join-irreducible. 
to characterize the  
number  m ([2]). 

Much of the  l i terature on modal  logics has been engaged in introducing 
new logics and comparing them with  existing ones regarding their  strength. 
Such investigations are really par t  of the  more ambitious a t t empt  to 
provide a description of the  latt ice of all modal  logics. Though such 
a description, even of the  lat t ice of normal  extensions of K, to which 
we will restr ict  our a t tent ion,  seems to be well out of reach yet ,  a con- 
siderable amount  of information on the lattice has been obtained by  now. 
The observation t h a t  the  lat t ice of normal  extensions of K is dual ly iso- 
morphic  to the lat t ice A(M) of subvarieties of the var ie ty  M of modal  
algebras enables us to invoke general results of the algebraic theory  
of lattices of varieties, in part icular  the results ob ta ined  by  B. J6nsson 
for varieties of algebras whose lattices of congruences are distr ibutive.  
To ment ion  jus t  a few of the  immediate  consequences of these general 
results:  the latt ice A(M) is atomic (Makinson [10] showed t h a t  there 
are two atoms), A(M) is complete, distr ibutive and  dual ly Brouwerian,  
every  K cA(M),  K ~ M, has a cover in A(M) and all of the  varieties 

the  familiar modal  logics like K, T~ K4, $4,  $4.3,  $5  
Using somewhat more elaborate methods it is possibl~ 
varieties in A(M) having m covers for any  cardinal 

I t  follows f rom one of J6nsson ' s  results t h a t  any  congruence distri- 
but ive  var ie ty  generated by  a finite algebra -- such a var ie ty  is called 
a tabular var ie ty  -- has only f ini tely m a n y  subvurieties. Hence t abu la r  
varieties are close to the  bo t tom of the  lattice. Day  [6] proved t h a t  for  
varieties of Hey t ing  algebras a converse holds:  any  var ie ty  of ]~eyting 
algebras having only f initely m a n y  subvarieties is generated by  a finite 
algebra. This result  makes, in principle, a description of the bo t tom par t  
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of the lattice of varieties of t teyt ing algebras possible. In  [5] (see Mso [4]) 
we obtained a similar result for the latt ice A(MRT) of subvarieties of 
the variety MRT of interior Mgebr~s (dually isomorphic to the lattice 
of normal extensions of $4). The next step was to investigate the non- 
-tabular varieties of Heyting algebras and interior algebras, and, to begin 
with, the minimal ones among them (which can easily be shown to exist), 
called laretabuIar varieties. This was done by ~uksimova [11] and [12], 
~nc! she came to the unexpected conclusion that  there are only three 
~ r e ~ a ~ r  :varieties o! :  Heyting Mgebras a n d  five:'pretabuiar: varieties 
of :interior Mgebr~s ( t h ~  last re~uit  was obtained independently in  [7]). 
The :question arises i f  results of this nature can be extended to larger 
Sub!~ticds bl A(M). NOt to the full lattice A(M), ~s was:shown in [2]. 
~lhdeed, the  atoms of  A(M) have 2 ~0 COvers in A(M)i which ' gives rise 
.¢o a mult i tude of Pretabnlar varieties and: destroys every hope to give 

description of even the lowest part  of A (M). In  t h e  present paper we 
investigate the lattice A(MT) of subvarieties of the variety MT which 
corresponds with the modal logic Kd, axiomatized by the formula 
: D p ~  [] D ~ .  

A f t e r  a preliminary section 0 w e  prove,:ia, seetion~:I that  the co~e~ 
of a t~bular  var ie ty  in A(MT) is tabular. This. extends t h e  results men- 
*ioned be!0re and i t  seems tha t  it cannot be improvefi~essential!y~ In  
fact, w e  give ~n example of ~a: nom~abnlar cover Ol ~u~¢~tom: :of A(MT) 
which: satisfies []~p ~ ~ a p  und hence  is only "juSt,  outside: of M T . . ~ ;  

F r o m  this i t  follows t h a t  eve ry  pretabular v a r i e ~  in:A(MT) is geae, 
rate4 by  i ts  finite membcrs~ as in A(MRT): However~:~here the parallel  
ends.: Whereas A(1VLRT) contains only five pretabnla~ *a~etieS, :i¢ . t~as  
out in section 2 tha~ A(MT) contains a continuum of pret~bular varieties, 

I n  t h e  finM seeti0n we investiga*e t h e  pret~bnla~ :varieties in some 
sublattices o f  A (MT). I t  i s  shown t h a t  the lat*ice o f  subVarieties of the 
variety corresponding t o  the:mod~l  logic ~xiomatized by Zdb's formnl~ 
contains a :couaatable' number of: pretabnlar varieties.: The developed 
methods easily y ie ld  the known results for MRT and' Heyting:Mgebras, 
~inMly we show t h a t  the  subvar ie ty  of MT defined by t h e  equation 
0 0 ~ . 0  (corre~pondi~ig wi~h:: the modM logic D~) contains only finitely 
m a n y  pretabnlar varieties, i 

O. Preliminaries 

Modal formulas i~re formed in the usual w a y  from a dennmerable 
Set of propdsi t ion ,letters ~, :q, r~ . . . ,  t h e  classicM connectives v ,  ^ ,  :7~ 
~ ;  _l_,; -V2 and: tl~e:~nary ~'mbdM" operator : [] ("necessarily"). A (normal) 

1 Th e ~su:l~s of Section l do hold, however, for the lattic~ of subvarieties of ~he 
var ie ty  corres'ponding ¢o the modal logic axiomatized by *;he slightly weaker law 
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modal logic is a set of modal  formulas containing the  classical tautologies 
and  the  axiom [] (p-+q)-~( F4p-> []q) and closed under  the  rules of modus  
ponens, subst i tut ion and  necessitation. A set /~ of modal  formulas is said 
to axiomatize a logic/~ if ~ is the  smallest normal  modal  logic containing 
T'. The formula  [ ]p-> [] []lo axiomatizes the  logic K4; by  adding []/~-->p 
as un axiom we obtain an axiomatizat ion of $4.  

A (Kripke) frame ~ is a pair  (W, R) where W is a set -- the  set o f  
worlds -- and  i2 is a b inary  relat ion on W -- the  accessibility re la t ion .  
We will of ten write Rwv ins tead of (w, v) e R. Given a modal  formula  ~ 
a f rame ~ and  ~ valuat ion V ( tha t  is~ a map assigning subsets of W t e  
the  proposition letters), satisfaction of ~ in (~, V) a t  w, in symbols 
(~,  V) ~ ~s [w], is defined by  means of the  usual  induct ive t r u th  definition. 
In  part icular ,  (~,  V) ~ D~[w]  iff for every  v e W such that  Ewv (~, V)  
?[v].  Fur thermore ,  ~ ~ [ w ]  iff (~,  V ) ~ [ w ]  for every  valuat ion V~ 
and ~ ~ ~ iff ~ ~ ~[w] for every  w ~ W. 

If  ~ = ( W , R )  is a frame,  W1 __qW, then  ~ = (Wi,  lCn(W~• 
is called a generated subframe if Vw e W~Vv e W [ ~ w v ~ v  e W~]. The  
smallest generated subframe of ~ containing a given element w e W is 
denoted by  ~ = (Ww, Rw) and is said to be the  f rame generated by w. 
I f  ~ = ~ for some w e W then  ~ is called a generated f lame.  I f  ~ = 
: (W~, R~), i : 1 ,2,  are frames and f :  W~-+W~ is a map then  f :  ~ - ~  
is said to be an ~-mor1~hism if 

(i) for  all w, v e W~, if R~wv then  t 4 f ( w ) f ( v  ) 
(if) for all w e W~, v ~ W~, if R~f(w)v then  there  is a v' e~W,i 

such tha t  R~wv' and f(v') = v. 

A modal algebra is an algebra 9~ = (A,  + , . ,  ' , 0 , 1 ,  ~ such that; 
(A,  + , . ,  '~ O, 1) is a Boolean algebra, + and �9 denoting latt ice sum: 
and  product  respectively,  ' denoting complementat ion and 0 and 1 t h e  
smallest and largest e lement  respectively. The una ry  operat ion ~ satisfie~ 
the  laws 

and  

(x.y) ~ -~ x~ ~ 

1 ~ = 1. 

The var ie ty  of modal  algebras will be denoted by  M and the  latt ice of 
subvarieties of a var ie ty  K by  A(K). The domain of algebras 9~, ~ ,  9~1, . . .  
will a lways be denoted by  A, B~ A1, . . .  I f  we wan t  to emphasize t h a t  
an operat ion § or a polynomial  p is to b e  evaluated in the  algebra 
we m a y  wri te  d -~ or d-~ and p~ or p~. To any  modal  formula ? we m a y  
assign an M-polynomial ~ by  replacing the  propositiofi letters by  variables, 
the  classical connectives by  the  corresponding Boolean operations and [] 
by  0. The map Z-->{9~ eMIPX satisfies ~ = 1, ~ eL}  establishes an anti- 
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- isomorphism be tween the lat t ice of modal  logics and the lat t ice of varieties 
of modal  algebras. The following varieties will be of par t icular  impor tance :  

MT defined b y  x ~ ~ x ~176 ( ~ K4) 
MRT defined b y  x ~ ~ x ,  x ~ ~ x ~176 ( N $ 4 )  

o~--I o ~ l~I n defined b y  x ~ x , 

where  x ~176 = x ,  x ~ =(x~ ~ n - - - - 1 , 2 , 3 ,  . . . .  Observe tha t  MT = M  2. 
The  algebras in MRT are also known as interior algebras. 

Associated wi th  every  f rame 3 = (W~ R) is a modal  algebra, denoted 
b y 3  +, and called t heKr ipkea lgebrao f3 :  3 + = ( ~ ( W ) ,  w,  n ,  ', O, W,  Ig), 
where  for A ~_ W lv(A ) = {w e WJVv e W [ R w v ~ v  cA]} .  For  any  modal  
algebra 2 there  is a f rame 3u  ---- (Wu, Ru), such tha t  ~ is a subalgebra 
of 3 +. The set Wu consists of all pr ime filters of ?I, and for w, v e Wu Ruwv  
iff Va e A [ a  ~ e w ~ a  e v]. The map  a ~  ---- {w e W~]a e w }  is an embed-  
ding of modal  algebras. The pair  (3u, {Y. Ia cA})  is called the general 
frame represengng ~.  

If K is a class of algebras then S(K)  and H ( K )  are the  clusses of sub- 
algebras and homomorphic  images of algebras in K, respect ively;  P ( K )  
and _Pu(K) are the  classes or direct products  and ul t ra  products  of f~- 
rallies of algebras in K. The var ie ty  generated b y  a class K of algebras,  
H S P ( K ) ,  will be  denoted b y  V(K);  the  class of subdirect ly  irreducibles 
of a class K b y  Ksz. We  will often use J6nsson 's  [8] result  t ha t  for any  
class K of algebras V(K)z z _~ HSLPv(K ) provided the  lat t ices of con- 
gruences of the  algebras in V(K) are distr ibutive.  In  particular~ under  
this condition, V(K)s  ~ _~ H S ( K )  whenever  K is a finite set of finite al- 
gebras.  A var ie ty  is called tabular if i t  is generated b y  a finite algebra;  
i t  is called pretabular if it  is not  tabular  bu t  every  proper  subvar ie ty  is 
tubular .  A vnr ie ty  is called locally fi~ite if the  f initely generated algebras 
in it are finite. 

If  A is a set, [A{ will denote its cardinMity. The set of na tura l  numbers  
1, 2, 3, . . .  will be denoted b y  N. If  (P,  4 )  is a par t ia l ly  ordered set  and 
x e P  then  (x] s tands for {y e P  ] y ~ x}, [x) for {y e P  [ y ~ x} and for 
x, y s P  [x , y ]  -~ { z e P [ x ~ z ~ y } .  If x, y e P  and x < y  such tha t  for 
all z s P satisfying x ~ z K y either x = z or z = y we say tha t  y covers 
x ~nd we write  x -< y. I f  9~ is ~n Mgebr~ and S _c A then IS] (or [~q]~) 
is the  subalgebra of ~ generated b y  S. I f  we wan t  to emphasize t ha t  [S] 
is to b e  considered an algebra belonging to K we also wri te  [S]K. If  m 
is a cardinal, the  free algebra on m genera to r s  in the  var ie ty  K will be  
denoted  b y  3~(m).  

If  2 s M and F _c A then km is called an open fi$ter if 1~ is a filter such 
t ha t  lo t  any  x ~ F ,  x ~ e/~.  I n  [4] we showed ~h~t the  lat t ice of congruences 
of a modal  algebra is isomorphic to the  la t t ice of its open filters -- hence 
dis tr ibut ive,  so we m a y  apply  J6nsson 's  theorem to classes of modal  
algebras. If  F is an open filter in 9~ we wri te  9~//~ for the  associated quotien~ 
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algebra.  9X is subdirectly irreducible iff it has a smallest open filter, ~ {1}. 
:In particular,  for any  f rame 3, 3 + is subdirect ly irreducible iff 3 is 
genera ted  frame. If  ~ ~ M, u ~ A such tha t  u ~ >~ u, then  [u) is an open 
f i l ter  in 9~ and 9.Ilia) =_ (u], where (u] will always be assumed to be endowed 
wi th  the  usual  Boolean operations and the  operat ion ~ given by  
x ~ = x~ for x e (u]. Finally,  for any  class K of modal  algcbras~ we 
have  HS(K)  = SH(K)  since modal  algebras have the  congruence exten- 
sion property.  For  fur ther  references concerning latt ice theory  and  uni- 
versal  algebra, consult  [1]. 

1.  Tabular varieties 

In  this section we want  to show tha t  in A (MT) any  cover of a tabular  
var ie ty  is tabular .  

1.1 DEFINITION. Let  3 = (W,  R) be a frame. An n-tuple (wl, . . . ,  wn), 
w ~ e W ,  i = l , . . . , n ,  h e N ,  is called an R-chain (of length n) if, for 
i = 1, . . . ,  n - - l ,  Rw~wi+ ~ and --]Rw~+lw~. The height  h(3  ) of 3 is the  
sup remum of the  lengths of R-chains in 3 ;  if 3 = ( g ,  ~)  we pu t  h(3  ) = 0. 
:By the  height  h(w) of an element w e W we unders tand  h(3w). 

The class of f rames  of height  ~< n turns  out  to be modal ly  definable. 

1.2 DEfinITION. Let  for n----0, 1, . . .  ~n be the  modal  formula 
defined by  the  clauses: 

(i) ~Oo = .L 
(if) if ~o~ has been defined then  

q~+l = / ~ + 1  ~ []  ( []  NP~+I-  ~ ) -  

1.3 LI~]~A. .Let ~ = (W,  R) be a frame. I f  w~ e W then 3 ~ q~[Wl] 
i f f  for every R-chain (wl, . . . ,  wm) in 3, m ~< n. 

P~oo~:  For  n = 0 the  assertion holds. Suppose it holds for n = k 
~s well. Let  3 ~ ~k+~[w~] and let (w~ . . . ,  w~) be an R-chain in 3. We 
claim tha t  3 r qk [w2]. Indeed,  let V be. any  valuat ion and let V' be the  
valuat ion satisfying V ' ( p ~ ) =  V(Pi), if i # k-4-1, and V ' ( p k + I ) =  {wt}. 
Since tok+~ does not  occur in q~, (3,  V') ~ ~k[w2] if and only if (3~ V)~ 
~ [ w : ] .  But ,  since ~ ~ ~v~+~[w~], certainly (3, V') ~ ~+a[w~]. BeCause 
V'(~%+~) = {w~} and  -]Rw~w~, we find tha t  w~eV' ([]~lo~+~) .  Since 
Rw~w~ i t  follows tha t  (3 ,  V') ~ q~[w~], and hence tha t  (3 ,  V) ~ ~[w~].  
Since V was a rb i t ra ry  we have shown tha t  3 ~ q~[w~] and  it  follows 
~hat m - - 1  ~ k~ ~hus m ~< k + l .  

For  the  converse, assume ~hat 3 I# q~+l [w~]. There is a valuat ion V~ 
such tha t  (3,  V ) [ #  ~+~[w~] ;hence  there is a w~ e W, such tha t  Rwiw~ 
and  w~ e V(~--]Pk+~) but  (3, V ) l #  ~[w~].  Since w~ e V(p~+~), - ]Rw~w~ 
~nd since 3 [#  ~a [w~] there is an R-chain (w~, . . . ,  w~) such tha t  m > k +1.  
Then  (w~ . . . ,  w~) is an R-chain in ~ such tha t  m > k A-1. 
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I.~ D~FL~I~IO~. Let K(n) = {~ a M I ~ I: ~, = I}, ~ e X, 

The Kr ipke  algebras belonging to K(n)  are the  algebras ~§ where 
is a f rame of height  ~ n in vi r tue  of Lemma  3. Subalgebras of such Kripke  
algebras also belong to K(n),  and in fact,  every  algebra in K(n)  is a sub- 
algebra of a Kr ipke  algebra g+ with  h ( ~ ) <  n:  

1.5 LE~_~A. Zet 91 s M, and let ( ~ ,  C/z) be the general frame repre- 
senting 9I. Then 91 ~ ~ = 1 fff h ( ~ )  ~< n. 

P~ooF:  The proof is similar to t ha t  of l emma 3; we only need to  
modi fy  the  first  half of the  proof of lemma 3 slightly. Indeed,  the  th ing  
we have  to be careful about  is the  choice of V'(p~+I). I f  Wl~ w2 e W ~  
such tha t  R~wlw2, "TR~w2w ~ t h e n  there  is an a ~ A such tha t  a~ w~ 
a 6wl .  P u t  V'(Pk+I) = ~' e r (where Y~ = {w e W~ ] a ew}). 

1.6 COI~OLLAI%Y. K(n)  = {91 e M  191 s S(~+), ~ a frame, h(~) ~ n}. 

1.7 DEFInITIOn. Let  9 / e M .  The height  ,~j;.:Q~ of 91 is inf{n e N191 
e K(n)}. And if K c M is a var ie ty ,  the  height  h (K)  of K is inf{n e N I K  
_= K(n)}. 

Hence,  if h(91) = n then  there  is a f rame ~ of height  n such t h a t  
91eS(~+) .  Let  K T ( n ) = K ( n ) r ~ M T .  Observe tha t  if 91eKT(n) ,  then  
the  f rame ~u of height  ~< n obtained in l emma 5 is transit ive,  so ~ e KT(n} 
as well. 

1.8 T~EO~E~ ~. KT(n)  is locally finite, n >~ O. 

P~oo~:  The proof is by  induct ion on n. 
(i) KT(0) = V(1). Here  1 denotes the  one-e lement  algebra. 

(ii) Suppose KT(n)  is locally finite and 9 1 ~ K T ( n + l ) s ~  is 
f ini tely generated,  say by  x~, . . . ,  x~.  Let  91 e S(~+),  where ~ = (W, R} 
is a genera ted t ransi t ive  f rame of height  ~< n + l .  Let  W~ = {w e W~ 
[ h(w) <~ ~}, R~ = R n ( W 1  • and ~ = (W~, /~) .  Then ~ is a gene ra t ed  
subframe of ~ -- and  we m a y  ~ssume it to be a proper  subframe -- t h e  
height  of which is ~< n. Since the  mup x~+xnW~ consti tutes ~ h o m o m o r -  
phism, S ---- { ~ W ~  I x e A}, being a f ini tely genera ted algebra in MT of 
height  ~< n, is finite. Fur the rmore ,  if x e A then  $ o <  W~ artless $ ----1 
or x = W~ and  W \ W ~  consists of an  irreflexive element,  since x~ ~~176 
Hence  IAt = l[{x~, . . . ,  x~}wS]sl ~< 2 ~ + ~ ,  where K = IgKT(,)(m)l and B 
denotes the  var ie ty  of ]~oolean algebras. I t  follows tha t  there are only 
f ini tely m a n y  subdirect ly irreducible a lgebras  in K T ( n + I )  generated 
by  m elements.  E v e r y  m-genera ted  algebra in KT(n  +1)  can be embedded  
in a finite p roduc t  of those, and  hence will be finite. 

Theorem 2.1 of [3] has an obvious generalization to the  setting of 
M ". We need only ~ special case: 

This resul~ was proved earlier in [14], Ch. If ,  ~hm. 6.5. 
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1.9 T ~ o ~ E ~ .  Zet 9~ ~ MT be f in i te ly  generated and let ~ be a f i n i t e  
algebra. I f  g: 9~- ,~  is a subjective homomorphism then there is an a ~ A 
such that a <~ a ~ and such that g ] (a]: ( a J - ~  is an isomorphism.  

P~oo~:  Le t  9~ = [{al, ...~ am}] M and b~ -~ g(a~)~ i = 1, . . . ,  m.  Then 
---- [(bl, ...~ b j ] M .  Let  iabi(x~, . . . ,  x~) be  the  project ion onto the  i- th 

coordin~te~ i ---- 1, ...~ m, and let for b e B ,  b ~ b~, . . . ,  bin, pb(x~, ...~ xm): 
be any M-polynomial  such tha t  p~(b~, . . . ,  bin) = b. Let  ~ be the  set 

O of formulas of the  form Pb-~ID~----i~b+~, Tb'P~ =Tb.c,  i~b' = (Pb)', Pb 
= (Pb) ~ Po ~-- 0, p~ = i, for b~c ~ B .  E v e r y  such formul~ is M-equivalent  

to one of the  form r - - - - l ;  let  ~ ' = ( r  i = 1 1 i  = 1 , . . . , ~ }  be  the  set  
of equivalents  of this form of the  formulas in ~ .  Then !~ is free on (bl, .. 
. . . ,  b~} wi th  respect  to the  relations ri(b1~ . . . ,  bin) = 1, i -~ 1, . . . ,  k. Let  

Y = I~ rl(a~, " " ,  am) and a = y.y~ Then a ~ -- (y.y~176 ---- y~176176 = y ~  >~a~ 
t=1 

thus  [a) is un open filter. According to a remark  in the  preliminaries~ 
(a] ~ 9~/[a), where in (a], x ~ = $~ Since g-~({1}) ~ [a), g I (a]: ( a ] ->~  
is a homomorphism~ satisfying g(a~.a) -~ b~, i = 1, . . . ,  m.  l~ote tha t  (a] 
is genera ted  b y  a l . a ,  . . .~ am'a.  Also r~](a~.a, . . . ,  a ~ .a )  = r~(a~, . . .  
. . . ,  a ~ ) . a  = a, so (a] satisfies the  relations ri (a~.a , . . . ,  am.a  ) : 1~ 
i = 1~ ...~ k. I{ence there  is u homomorphism h: ~ - ~ ( a ]  such tha t  h(bi) 

~-- a~.a, i = 1,  . . . ,  m. Therefore h o g  I (a] = id [ (a], and it  follows tha t  g 
is an isomorphism. 

~ o w  we are r eady  to prove  the  main lemma. 

1.10 Lv.~_A. Let  9~ e M T  be f in i te ly  generated.  I f  h ( 2 )  = c~ theq~ 
for  every n e N there is a ~ n  e H(9.I) such that h ( ~ )  = n. 

1 ~ o o ~ :  Ze t  ~ = (W, R) be  the  canonical f rame  ~ ;  we m~y th ink  
of 9~ as a subalgebra of ~+. Since 9~ e MT, /~  is transit ive.  Since h (9~) ---- 0% 
h(~) = c~. l~irst we show tha t  if there  is a w e W such tha t  h(w)  = n 

then  there  is an  algebra !D~ e H ( 2 )  such tha t  h ( !~)  = n. The map f :  ~I-+~ + 
defined b y  x~-~xmWw is a homomorphism since ~ is a generated sub- 
f rame of ~. Because  h ( ~ )  = ~, h ( f [9~] )~  n, and as f[9~] i s  ~initely 
generated,  it is finite in vi r tue  of theorem 8. ]~y theorem 9 there  is an 
a e A such tha t  a ~ a ~ and such tha t  f I (aJ: (a]-~f[!~I] is an isomorphism. 
Since f ( a )  = 1, a ~ W ~ .  We claim tha t  if v e a, then (v) s (a] _~ A. The 
propert ies  of ~ g u a r a n t e e  tha t  {v} = I I  {a .x  I v e x e A }. B ut  the  set { a . x  t 
e x c A }  is contained in (a] and therefore finite;  hence {v} e (a]. Since 
f l (a]  is an isomorphism a n d  {v} r 0 it follows tha t  for every v e a  
0 r = (v}(~Ww, whence, in fact,  a = W~. Thus (a] ----~+ eH(9~). 
Since h ( ~ )  = n~ we have  h(~ +) ~ n;  however,  it is easily seen (and it 
also follows from Lemma 5) tha t  h(~ +) < n is impossible. Hence  h(~ +) = n~ 
and b y  put t ing  ~ = ~+ we obta in  the  sought-for algebra. 

In  order to complete  the  proof  of the  lemm~ we have  to show t h a t  
there  ~re elements w e W o~ ~rbi t rary finite height.  Suppose n e N is 
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the  smallest na tura l  number  such tha t  there  is no w e W satisfying h (w) = n. 
Then there  are nei ther  any  elements w e W satisfying h (w) e N,  h (w) > n. 
L e t  W~_I = {w e W I h(w) • n - - 1 } .  Then ~ _ ~  = (W~_I,  R n ( W ~ _ I  x 
x Wn_l) ) is a genera ted  subframe of ~ (possibly empty) ,  satisfying 

W~_~ r W since h(~) = 0% h(~n_l) = n - -1 .  The map  f :  9~-->~+_1 deiined 
b y  x ~ x n W ~ _ l  is a homomorphism,  and h ( f [ 9 / ] ) ~  n - -1 .  Since f[9/]  is 
f ini te ly  generated,  f [9/]  is finite, and as in the  first  pa r t  of this proof, 
i t  follows t ha t  W~_~ = an_ ~ e A and tha t  h((a~_~]) = h(f[9/])  n - -1 .  
Observe  t ha t  an_ 1 ~ a~_ 1. I f  an_ ~ < a~_l then  let  w e a~_~\an_ ~ and we 

O see tha t  h(w) = n, a contradict ion.  Thus an_ ~ = an_ ~. Consider ~ ---- {F 
_~ A I 2' is an open filter, 2' ~ [an_~) }. Then ~ r Z,  since {1} e ~. Also, 
b y  Zorn's  lemma~ ~ has a maximal  element,  say  Go. We  claim tha t  9//Go 
has height  n. Indeed,  let g: 9I-->9i/Go be the canonical homomorphism.  
Suppose  t ha t  g(a~_~) < g(v) < 1, v ~ A .  We m a y  then  assume tha t  
a~_l < v, v e g o .  Therefore the  open filter generated b y  Gou{v} equals 
[a~_~), which ~mphes the  existence of ~n u e g o  such t ha t  u.v.v-'~ ~ a~_~, 
whence u~176 ~ a~_~ ~-an_~. I t  follows t ha t  g(v) ~  g(v ~ -~ g(v~  ~ 
- -  a * ~ 1  --g(v~ ~ ~g(a~_~) ,  whence g(v) ~ = g( , _ 1 ) ( ) .  Now, let = (W ~, B ~) 

be  the  genera ted  sub~rame of ~ corresponding with ~/Go -- i.e., let W ~ 
= {w e W l w ~_ Go}, R ~ ---- B n W  ~ x W ~. (l~ecall t ha t  ~ is the  canonical 

f rame of 9/). Then we m a y  th ink  of A/Go as { x n W  ~ I x  e A} .  I f  w~, w~ 
e W~\an_~,  w~ % w~, ~hen Rw~w~. For  if -]Rwzw~ then there  is an a e A 
such t ha t  a ~ e w ~  a ~ w . .  ~e t  v = ( a - ~ a n _ ~ ) n W  ~. Then we have  an ele- 
men t  in 9I/Go satisfying a,_~ < v < 1. ~o r  since a~_~ = a,_~ and a ~ non ~ a,_~, 
we infer tha t  a n W  ~ non ~ a,_~, thus  a,~_~ ~ v, and because w ,  C v, v < 1. 
]Xowever, v ~ ~ (a ~ + an_l ) nW1 > a~_~ ~ contradict ing (*). Thus  W~\a~_~ is 

cluster. Since W ~ >  a~_l there  is a ,o e W ~ \ a , _ ~ .  Then h ( w ) ~  n~ and 
because  w ~a ,_~ ,  h ( w ) - ~  n -- cont radic tory  to our assumpt ion  tha t  
Chert ~re no elements of height  n in ~. 

In  this lemma, the  assumpt ion  of t rans i t iv i ty  (i.e., 9 / e  MT) is essential. 
~o r  example,  let  ~ = ({1, 2,  3}, {(1, 2), (2, 3), (3, 1)}). Then  h (~  +) -~ c% 
~+ is f ini te  b u t  H ( ~  +) contains no algebras of finite height  except  1. 

The nex~ result  is an extension of [4], 7.2 ~o the  sett ing of MT. 

1.11 :L]~vgh. Let  K c_ M T  be a locally f in i te  variety. K confains an 
in f in i te  subdireetly irreducible i f f  K contains inf ini te ly  many  f in i t e  s~b- 
directly irreducibles. 

P n o o ~ :  Le t  ~ e K ~  be given~ [A[ infinite. Fi rs t  we show tha t  any  
f ini te  subalgebra of 9/ is subdirect ly  irreducible. Le t  ~ e S(~)  be  such 
t h a t  B is finite. Ze t  a e A ,  a < 1 such t ha t  Va) is the  smallest open filter, 
v~ (1}, in 9~: Le t  b : ~ { x ' x  ~ [ x eB~  x < 1}. The element b is well defined 

since B is finite and b e B. Since for ~ll x e B such t ha t  x < 1, x .x ~ ~ a, 
.b ~ a ~s well, and hence [b .b ~ is ~he smallest open ~ilter in ~ ,  va {1}. 
'Thus ~ is subdirec~ly irreducible. 
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Now we define an infinite sequence of finite subMgebras of ~I as follows. 
Le t  9~ 0 = [~ ]~ e 8(9~), then  9~ 0 is finite since K is locally finite. If  ~n e S(!~I) 
has  been defined such tha t  [A,] is finite and ~I, is subdirect ly irreducible, 
choose x,+l e A \ . A ,  and  let 9~,+ 1 = [Anw{x,+l}]~ ~ 9.I. Then 9~n+ 1 is 
fini,te and subdirectly irreducible, by  the remarks  in the  first  paragraph  
of the  proof. 

For  the  converse we only need to note t ha t  the  proper ty  of being 
subdireet ly  irreducible in MT is first order expressible. Hence,  if K contains 
infini tely m a n y  finite subdirectly irreducibles any  non-principM ultra- 
p roduc t  of these will provide an infinite subdirectly irreducible in K. 

Observe tha t  this lemma holds in fact  for any  var ie ty  K _= M ~, n e N. 
Now we are ready  to prove the  result  we are aiming a t :  

1.12 T~_EoI~ .  Let K ~ A(MT). Then K is tabular i f f  [A(K)I is finite. 

PgooF. ~ Since Ksx is finite, by  J6nsson's theorem. r By  Lernma 
10 (and lemma 5) K cannot  contain finitely genera ted algebras of infinite 
he igh t  or of a rb i t ra ry  finite height.  Hence  K _ KT(n),  for some n e N, 
~nd  therefore K is locally finite. By  Lemma  11, K cannot  contain an 
.infinite subdireet ly irreducible, since otherwise it would possess infinitely 
m a n y  finite ones and  would therefore have  infinitely m a n y  subvarieties. 
Thus  K contains only finite subdirectly irreducibles~ and, again, only 
f in i te ly  m a n y  ones. Hence  K is generated by  a finite algebra. 

1.13 Co~orrA~v.  Let K~, K~ e A(MT) be such that K~ is tabular and 
K~ --, K2. Then K2 is tabular as well. 

P~ooF:  By theorem 12, A(Kx) is finite. Since A(MT) is distributive, 
A(Kz) is finite, too. Hence K~ is tabular.  

1.14 CO]~OLLAI~Y. T~et K a A(MT) be tabular. Then K has finitely 
many  covers in A(MT). 

P~oo~:  Let  Ksz = {21, . . . ,  2~}. The 2~, i = 1, . . . ,  n are finite. Let  
~n = max{h(~I~) [ i = 1, . . . ,  n), and let k = min{m I~I~ is m-generated,  
i = 1, . . . ,  n}. We clMm tha t  whenever  K -~ Kx then  K~s I consists of 
{finite) ( k§  algebras of height ~< n §  I t  will follow t h a t  
whenever  K ~ Kx then  K1 = V(K~s~) where Klsr ~ H (~KT(n+~) (k +1)).  
Since ~KT(~+ ~)(k §  is finite this shows tha t  K has only f ini tely m a n y  covers. 

First ly,  suppose t h a t  K -~ K~ and tha t  ~ e K ~  x is such tha t  h(!~) 
= h > n §  ~ finite. Then ~ ~ +  for  some f rame ~ - - - - ( W , R )  of 

:height h. Let  w e W be such tha t  h(w) =- hA-1. Then ~+ is a subdireet ly 
irreducible algebra of height n §  and ~+ ~ H(!D). Let  Kz = K + V ( ~ + ) ~  
s K ~< K~ ~< V(!D)~ and  since h(K) < h(K~) < h(K~)), K < K~ < K~, 

contradiction. 
Next  suppose tha t  K - - (  K~ and tha t  ~ e K~s ~ is such tha t  !D is no t  

(k-? l ) -genera ted .  Choose r minimal ]~ such tha t  ~ -= [(b~, . . . ,  b~)]~, and 
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let  !81 = [{bx, . . . ,  br_i}]M. Then !D~ is a subdireet ly  irreducible algebra. 
in v i r t u e  of the  first  half  of ~he proof  of lemma 11. Since ~ is not  k-gene= 
r a t ed  -- otherwise !~ would  be  (k~-l ) -generated -- we have K < K . ~  
+ V ( ! ~ )  ~<K~. t~owever~ since IB] > ]B~I, !~ !~ Y(!D~), !D CK~ thus K +  
+ V ( ~ )  < K~. W e  thus  a r r ived  a t  a contradiction.  

W e  ment ioned  a l ready t ha t  in A (M) a cover of a t~bular  val~iety n e e f l  
no t  be  tabular .  This phenomenon  occurs a l ready a t  a low level. :bet 
and 2 + denote  the  modal  algebras {0, l}  with an opera to r  ~ sat isfying 
0 ~  0, 1 ~  1 and  0 0 - -  1 ~  1, respectively.  I t  is well-known (see, 
for example,  [4]) t ha t  V(2)  and V(2 +) are the  a toms of A(M). We shall. 
now give an example  of a non- tabular  cover of V(2+), which belongs 
to M ~. 

]her ~ = (W, /~)  where W = Nt , {a ,  b}, a, b r N~ a # b, and where  

Rwv iff | (w,  v} = (b, n} for s o m e n z N  
ttw>v~ w~q~N 

"b 

Let  !~I = [~]~, r  Note  t ha t  A consists of the  f ini te  and cofinit .  
subsets  of W. Indeed,  0 ~ ---- {a} c A ,  {a} '~ = {a, b} c A ,  {a, b} ~ ---- {a, i}  e A  
andff {a, i, ..., k} cA, k>~ i then {a, I, ..., k+l} = {a, b, I, ..., k} ~ eA 
Thus _4 con ta ins  all a toms and therefore  all finite and cofinite sets. :Fur- 
thermore,  if x e A and x is finite then so is x ~ and if x is Cofinite we h a v e  
the following cases: 

(i) x----1. Then x ~ = 1 .  
(if) x = { b } '  or x = { a } ' .  T h e n  x ~ = {a,b}. 
(iii) X~< {n}', q~ eN. Then x ~ _~ {a}•[l, n]. 

I t  follows t ha t  the finite and cofinite subsets  oi W lorm a suba lgebra  
of ~+, which equals 2 .  Since ~ is 0-generated, i t  is the  free object  on 0. 
generators  in t h e  var ie ty  V(~[). Now let  !D e V(9~)~z, and let  !Do ---- [~ ]~ 
r @(!D). Then Be e H(~r(~)(0) ) = H(9~). Le t  f :  ~ ->~o  be un onto homo-  
morphism.  I f f i s  not  1 --1, then  there  is an x e A, x r 1 such t h a t f ( x )  ---- 1.  
:By the  remarks  above,  x ~ _~ {a, b}w[1,  n] for some n e N~ hence x ~162176 = {a}o 
I t  follows tha t  ~o  2+, i.e. the  modal  algebra {0, 1}, satisfying 0 ~ = 1 ~ =1 .  
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Therefore  !~ s~tisfies 0 ~ = 1. ]~owever, the  only subdirect ly irreducible 
modal: a lgebra satisfying 0 ~ = 1 is 2 +, so !8 ~ 2 +. On s other  h~nd, if f 
is 1 , 1 ,  then  9~ e S(!B0) ~ S(!~). ]~ence~ if K is a var ie ty  such tha t  V(2 +) 

K _~ V(2)  t h e n  there  is a !B e Kst  _~ V(~I)si such t h a t  !~ ~ 2 +, which 
implies t h a t  9I e S (~ )  ~:K,  whence K -- V(9~). Since 9~r V(2+), V(2 +) 
< V(PI), so  V(9~) c o v e r s  V(2+). Because V(9~)Fs~ = {2+}, as we have  
seen, V(9~) is nontabular .  And since Vx c A ,  x # 1, ~~176 {a)~ = x ~176176 
~nd obviously also 1 ~176 = 1~176176 9~ satisfies the  equation: x ~ x . Thus 
V(2)  c M ~ . . . .  ' 

A slight modification of this example-provides  ~ non-tubular  cover 
i n : M  ~ of V(2). Indeed,  let  ~ '  -~ (W,/~ ' ) ,  where /~' = Rw{(a, a)}, and 
let  ~I, ---- [{a}]~ e S(~'+).  Then V(2) ~ V(~), as one can show u s i n g  
a somewhat  more elaborate a rgument  . . . .  . . . . 

For  an example of a family  of n o n - t a b u l ~  covers of: Y(2) of the  car- 
dinMity of the  cont inuum,  belonging to MR a, we refer to [2]. The simpler 
example  we g~ve h e r e  can be used tO Obtain a cont inuum of covers  of 
V(2 +) (~nd in a similar W~y of V(2)) in A(M~): We indicate the  procedure  
briefly. Let  for M c N ~ -- (W, RM) , where R ~  - - I ~ { ( b ,  n)'[ n e M}, 

o~ o~ ~nd let 9~M = [O]~ e S(~+) .  Then 9~ M satisfies $ = x , hence ~ e M ~. 
:By an a r g u m e n t  similar to the  one used above we show t h a t  V(2 +) 
'.~ VOI~). Finally,  since for M, M' ~_ N, M r M', clearly ~M ; 9~M', i t  

i o l lows  tha t  V(2M) r V(9.I~.), because ~ = ~v(a~)(0). 

2. Pretabular  varieties in A(MT) 

A-va r i e ty  K c M is called ~retabular if K is non-tabular  bu t  every  
proper  subv~riety is tabular.  Using the  fact  t ha t  each tabular  var ie ty  
is f initely axiomatizable (see, for example,  [4] or [13]), a s t ra ight  forward 
applicat ion of Zorn's lemma shows tha t  every non- tabular  var ie ty  con- 
tMns a pre tabular  one. The continuously m a n y  covers of V(2) and V(2 +) 
a re  examples  of p re tabu la r  varieties. They  are no t  genera ted by  their  
~inite members,  I n  MT( M s) the  si tuation is nicer, however.  

�9 :. 2 . !  T]~EOI~E~ .... Let K e A (MT). I f  K is pretabular, then K is generatee~ 
by its finite members. ... . .  

P~oo~:  I f  K c KT(n)  for some ~ e 25 then  K is loeMly finite, and  
hence certainly generated by  its finite members.  I f  K ~  KT(n),  n e N, 
t hen  K contains f ini tely generated Mgcbras of height  n, for every  n e N ,  
in vir tue of Lemma  1.10. Let  9~1, 9~2, . . .  be a sequence Of finitely genera ted 
algebras in K such tha t  h(9~n) ~ n, n -- 1, 2, . . . .  The ~n are finite, agai~ 
by  the  locM finiteness of the  KT(n)~ and  K~ = V((9~ n i n  -= 1~ 2, . . .))  is 
non-tabular ,  since if i t '  were tabular~ it would be conta ined in some 
KT(n) ,  contradict ing the  fact  t ha t  h(9i,+~) -~ n +1 ,  whence 9~+~ r KT(n).  
:gence, by  pre tabular i ty  of K, K K ~  ~nd K is generate~l b y  its f in i te  
members .  
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Thus far the  positive results concerning tabular  and pretabular  varie- 
ties holding for MRT are valid in MT as well. Though it  would not  seem 
unreasonable to hope for an analogue of Maksimova's result [11], tha~ 
there is only a finite number  of pretabular  varieties in MRT, the apparen~ 
similarity between MRT and MT turns out  to be deceptive:  in fact~ MT 

c o n t a i n s  2 ~0 pretabular  varieties, as we will show now. Our point  of de- 
par ture  is the  inter ior  algebra B ( ~ ( 1 ) ) ,  i.e., an algebra in YIRT whose 
lattice of open elements is the  free algebra on one generator in the  variety 
I t  of ]~eyting algebras, and which is generated by its open elements as 
a Boolean algebra (cf. [3]). By modifying the  frame ~ = (W, R), use4 
to represent B(~n(1)), -- in fact, by making the elements of suitable 
subsets of W irreflexive -- we obtain 0-generated infinite algebras which 
tu rn  out  to generate pretabular  varieties. 

We need some preparation.  

2.2 DEFIni t ion.  If  p is an M-polynomiM then  p* is un M-polynomial 
defined by induction according to the  following clauses" 

(i) I f  p is a variable x i ,  then p* = p  = x~. 
(if) Suppose q* has been defined for all polynomials q of length 

n. Then, if p has length n §  we define: 
a) if  p = q + r  then p*  = q * §  

b) if p ~ q . r  then p* = q*.r* 

c) i f  p --- q' then p* = (q*)' 

d) if p = q~ then  p*  =- q*.q*~ 

2.3 LEvL~. Let  ~ -~ ( W ,  tg) be a f r am e ,  9.I ~- ~+. Le t  ~r _ ( W ,  R ~) 
where t~ ~ =- Rw{(w, w) [ w ~ W }  and  let 9~ r = (~r)+. Then ,  for  any  al ,  . .~ 

. . . ,  a ,  ~ A and  any  n -ary  M-polynomia~ p ,  

p*~(a l ,  . . . ,  a~) ~-~p (al ,  . . . ,  

P~ooF:  By induction on the  length of ~. I f  p is a variable then t h e  
s ta tement  obviously holds. Next  assume tha t  the assertion holds for  
all polynomials of length ~ n, and let p have length n q-1. The  only in- 
terest ing case is iP = q~ for some polynomial  q. Then 

~ 

P ( a l , . . . ,  = ( q  (ax , . . . ,  
= . . . ,  

= (w e W I V y  ~ W[R~wv=>v eq*~(a l ,  . . . ,  a.)]} 
:= {w e W I V y  ~ W [ [ R w v v w  : vJ=~-v ~q*~(a l ,  . . . ,  a,)]~ 
~- l~(q*~(a~, . . . ,  an) ) nq*~(a~,  . . . ,  a,~) 

= (q*~)~ . . . ,  an)nq*~(a~,  . . . ,  a~) 

= p*~(a~, . . . ,  an). 

2.~ DE~NIT~ON. Let  W = N •  For  i ~  N let R M be th~ 
transit ive binary relation on W given by:  
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i = j '  m > n = 1 ,  j = 0 ,  m > n  

Rz~(m, i ) (n , j )  iff = 0 ,  j = 1 ,  m > n q - 1  
= j = 0 ,  m = n ,  m ~  

. = j  = 1 ,  m n, m e M  

Let ~ = (W, Rz~), and let 9/~ = [Z]~ eS (~+) .  
The bot tom of ~M~ with MObil, 5] = {1, 3}, looks like: 

Observe tha t  the subMgebra of ( ~ ) +  of finite und cofinite subsets~ 
of W is isomorphic to B ( ~ ( 1 ) ) .  The set {(1, 0)} corresponds with tho. 
free generator of ~H (1) (which also generates B(~.(1))), and hence there.. 
are for every n e N unary M-polynomiMs ~2~-~ and P~n such that ,  
P2~-1 ({(1, 0)}) = {(n, 0)} and~o2~ ({(1, 0)}) = {(n, 1)}in ( ~ t )  +. By lemma 3. 

* + 
for any M _c N, (~*~_1)~+({(1, 0)}) = {(n, 0)}, (Psn)~a~({(1, 0)}} 
= {(n, 1)}. bow,  whenever 1 e M _ N, we have 0 ~ = {(1, 0)} in ~ + ,  so; 
if 1 e M then  9/~ = [~]H e S(~ +) will contain all atoms of ~ + ,  and~ 
therefore the  finite and cofinite subsets of W. 

2.5 LE~rA. I f  1 ~ M ~ N then V (9~z ) is a pretabular variety. 

P~ooF:  By the  remarks preceding the lemmu ?l~ contains all finito. 
and cofinite subsets of W. Let K be a variety such tha t  K _= V(9/). F i r s t  
we show tha t  if K contains an infinite subdirectly irreducible then 9i~ e K 
and hence K = V(91M). Let 9 /e  Ksz be an infinite algebra. By J6nsson's: 
theorem ~ eHSPv(91zz). So let 9/1 e_P~z(9/M), 9/2 e S(9/~), h: 9X~-~9/ an 
onto homomorphism.  Note tha t  since 9IM ~-~V(UZ~)(0), [~t~ 1 =  [ ~ ] ~  

~I~. If  [~ ]~ ~ ~IZ~ then  there is a u e [~ ]~2 c A~ such tha t  u ~ # 1~ 
h(u ~ = 1~ and  hence ~ eH((u~ Let  go = q~2(0) for some unary 
polynomial  q. Since the algebra (q~M(0)] ~z~ is finite, (q~(0) ]  ~ '  
~--(q~(0)]~b by the  properties of ultra products.  Since (q~(0)] *~ is~. 
0-generated~ (q~(0)] ~ = (u~  and hence (u~ is finite. Bnt  that ;  
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would  imply tha t  9/ is finite as well, cont radic tory  to our assumption.  
I t  follows tha t  [~]~-~--9/z~, whence 9/~ e S ( 9 / ) c  K. 

Nex t  suppose 9/~  KFs r. By  the  a rgument  in the  previous paragraph  
we see t h a t  9/eH((q~~ for some u ~ e A ~  and hence 9 / ~  (u] eM for 
some u e A ~ .  More Precisely , t h e  finite subdirect ly irreducible algebras 
in V(9/~) are the  algebras (~)(n,t),+ n e N, i e {0, 1}. Here  (3M)(~,~) deno- 
tes,  as usual, the  subframe of ~M generated by  the  e lement  (n, i). Now 
suppose KFs x is an infinite set. Since + (3~)(~,t) e H ((3~)~,t)) whenever  
n + 1  < m it  follows t h a t  K~s I - V (9/~)Fs~. Bu t  clearly 9/M e S/) ({ (~M)(~.~) [ +  
In  e N~ i e {0, 1}}), and  therefore K ~ V(KFsx) _ V(9/M). We h~ve thus 

shown tha t  every  proper  subvar ie ty  of V(9/~) contains no infinite sub- 
d i rec t ly  irreducibles and  only f ini tely m ~ n y  finite ones, and is therefore  
tabular .  

2.6 Tm~O~E~. A(MT) contains 2 ~o pretab~tlar varieties. 

P~0OF: Let  M, M'  c_ N, such that'l ~ M  i 1 e M', and suppose tha t  
9 /~  ~--_ 9/M'. Let  f :  9/~--;"9/M" be ~n isomorphism. Since f(0)  -- 0, f({(n,  i)}) 

*~M 0 o ~*~M'  =f(p~,~+(~_~)()) = ~+(~_~)(0~ ~- {(n, i)}; Hence  / ~ ( { ( n ,  i)}') _c {(n, i)}' 
iff l~z,({(~, i)}') < {(n, i)}' , f rom which it follows t h a t  (~ , i )  
is reflexive in 3 ~  iff (n, i) is reflexive in 3~• Thus M -- M'.  Hence,  if 
M, M '  c_ N, I e M, 1 e M' ,  M r M',  then  9/~ r 9/~,. Bu t  since 9/M and 
9/~, are 0-generated, 3~(u~)(0) _~ 9 ~  and  3~ (~ , )  (0) ~ 9/M,, i t  follows 
t h e n  tha t  V(9/~) r V(9/~,). Hence,  by  lemma 5, there  are 2 s0 pre tabular  
varieties in =4 (MT). " . . . .  

This refutes t h e  ClMm in [13] t ha t  M E T  and  lYIT behave  Mmilarly, 
n this respect.  

3. Pretabular varieties in some sublattiees of  A(MT) 

Though the  result  of the  previous section indicates t ha t  i t  will be 
4iff ieul t  to describe all p re tabular  varieties belonging to A(MT),  some 
more  informat ion can be obtained if we restr ict  ourselves to pre tabular  
varieties having cer tain desirable properties.  We need some preparat ion.  
:First we show tha t  every  finite algebra of given height  contains a t  least 
one e lement  of a cer tain set of f inite algebras of t ha t  height  as ~ sub. 
Mgebra.  

3,1 DEFINItIOn. L e t  3 -: (W,  1~) be a frame. An equivalence relation 
O c W x W is cMled a congruence relat ion (on 3) if for all ~v, w', v e W 

if Rwv and  (~v, w ' ) e  O then  there  is ~ v ' e  W 
such tha t  Rw~v" and (v, v ~) e O. - 

:Furthermore,  if O is a congruence on 3, then 3 / 0  will denote the  f rame 
~ W / O , R / O )  w h e r e  W / O -  { ~ l W e  W}, where N (or No) stands for 
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{ v e W l ( w , v )  eO},  and RIO ~ iff there are w ' e ~ , v ' e ~  such t ha t  
Rw'v ' .  The map Wz->W/O defined b y  w-+~ will be  denoted b y  vo. 

3.2 PROPOSITIOn. The map ~ is an 3-morphism from 3 to 3 / 0  when- 
ever 6) is a congruence on 3. 

P~ooF:  B y  the  definition of R/O, ~o preserves the  relation. In  
order  to check the second proper ty  of 3-morphisms,  let R/O ~ .  There 
are  wi,  vl e W such tha t  w i e  ~, v~ e ~ and Rw~v~. B u t  then,  since O 
is a congruence, there  is a v' e ~ such tha t  Rwv'  and (vi, v') e O. t t ence  
~o(v') ----V = ~, as was to be  shown. 

3.3 CO,OraLly .  Let 3 be a frame and let 0 be a congruence on ~. 
Then (3 /0 )  + e ~(3+). 

We recall the  definit ion of~ a cluster. 

3.4 DEFI~I~IOZ~. Let  3 = (W, R) be a frame. A set C ___ W is called 
cluster if 

(i) for all w, v ~ C, Rwv. 
(ii) C is maximal  with respect  to this proper ty .  

In  part icular,  every cluster consists of reflexive elements. And if R 
is t ransi t ive then it  is easily seen tha t  different clusters are disjoint.  

3.5 DEFII~ITIOlq. Let  3 - - - - (W,  R) be a t ransi t ive frame. Then 7 
(or, more explicitly, y~) will denote the  relation {(w, v) I w, v e W, w =- v 
or w and v belong to the  same cluster}. 

3.6 PltOPOSITiO~. .5et 3 (W,  R) be a transitive fl'ame. Then 7 is 
~t congruence relation o n  3 and h(3 ) = h(3/7  ). 

PllooF:  Firs t  observe tha t  7 is an equivalence relation. Le t  w, w', v e W 
~such tha t  Rwv and (w, w') e y. I f  w = w' then R w ' v  and if w r w' then 
R w ' w ,  Rwv, whence, b y  t ransi t ivi ty,  Rw'v .  In  order to verify the  las~ 
s ta tement ,  we need only observe tha t  the  image under  ~, of an R-chain 
~s an /~-chain. 

If  3 = (W,  R) is a t ransi t ive frame then 3/Y is tJransitive as well, 
~nd does not  contain any clusters except  possibly one-element clusters, 
and  hence no circuits. Thus any  sequence (w~, . . . ,  w,),  w i e W, i -= 1, . . . ,  n 
sat isfying Rwiw~+l, wi ~ wi+~, is a,n R-chain in 3. 

As before,  l e t ,  for m e N ,  W~ = { w e W l h ( w ) < ~ m } c  W and 3m 
= ( w i n ,  

3.7 DE~xz~xOZ~. Let  3 = (W, R) be ~ t ransi t ive frame such t ha t  
oo 

W = (.J W~, containing no clusters having more than  one element. 2 or, 

more  explicitly, 2~ will denote the  b inary  relation de f ined  b y  induct ion 
on  the  height ns follows: 

- - S t u d i a  .~.ogica 2-3180 
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(i) 21-~ W1 • is the relat ion defined by  

t 
R w w  and Rvv 

(w,v)  e i l  iff or 

--]Rww and 7 R v v  , 

for w, v e W, such t h a t  h(w) = h(v) = 1. 
(ii) I~ext suppose t h a t  i,~ ~_ W.~ •  m has been defined. Le t  

lm+ 1 -- l ~ w ( ( w ,  v) ] h(w) -= h(v) = r e + l ,  (w, v) satisfies (*)}, where (*} 
denotes the  proper ty :  

I 
(Rww and Rvv) or ( - ] R w w  and ~ R v v )  

(*) and  

Now let 2 = [~ i . 
m = l  

3.8 P~oPosITIO~. Let ~ be a transi t iw frame such that W = U W , ~  
m = l  

containing no  clusters having more than one element. The relation 1 is a con. 
gruence relation on ~ and ~ / I  contains f initely many elements of height n,. 
for every n e N.  

PROOF: Firs t  we show t h a t  the i,,~, m = 1, 2, . . .  are congruences 
on ~ ,  m = 1, 2, . . . ,  with the addi t ional  proper ty  t ha t  if (w, v ) e ) ~  
then  h(w) = h(v) <~ m. 

(i) Clearly i~ is a congruence on ~1. Indeed,  it  is ~n equivalence. 
relation, and if w, w', v e W1 such t h a t  Rw% and (w, w') e 11, then, since 
h(w) = 1, w =-v, hence R w w  and thus  R w ' w ' ,  whence we can take v ~ 
to be w'. Fur thermore ,  if (w, v ) e  i~, then h(w) -= h(v) = 1. 

(ii) Suppose t ha t  2~ is s congruence on ~m such t h a t  if (w, v) E ~,~ 
then  h(w) = h ( v ) ~  m. Firs t ly ,  using the fact  t h a t  ~m is an equivalence. 
relat ion on W~, we see t h a t  im+~ is an equivslenee on W~+~. Let  w, w' t 
v e W~+~ be such t h a t  Rwv  and (w, w') e i~+~. If  h(w) ~ m then  w e W~ 
and (w, w')e)~m, and since Rwv, h ( v ) ~  m, so v e W~ as well. Because 
by  assumption ~ is a congruence, there  is ~ v' e W~ such tha t  Rw'v"  
and (v, v ' ) e ~ .  ~ e x t  suppose t h a t  h(w) = m + l .  Then h ( w ' ) ~ - m §  
and (w, w') s~tisfies (*). Suppose h(v) = m §  Then w = v since by  our  
remark  preceding definition 3.7 our assumptions on ~ guarantee t h a t  
if Rwv,  w ~ v, h(v) = m §  then  h ( w ) ~  m + 2 .  Hence Rww,  so Rw'w"  
as well and  we m~y choose for v' the  element w' itself. :Now suppose 
h(v) ~ m. Then ~,m e {U ~ I Rwu ,  h(u)  ~ m} = {~.m I Rw '  u, h(u)  ~ m}, so. 
there is a u, such t h a t  R w ' u ,  ~nd ~ = ~-~. Bu t  then  (v, u) e ~  ~ tm+~, 
so we m a y  choose v' to be the  element u. Again, we see thn t  (w, v) e i~,+~ 
implies h(w) = h(v) ~ m + l .  
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We verify tha t  2 = ~) 2~ is a congruence relat ion on ~. If  w e W, 
m = l  

then w e W,~ and hence (w, w) e 4~ _~ 4. If  (w, ~) ~ 2 then (w, v) ~ 2~ for  
some m, and hence (v ,w)  ~ 2m ~- 2. :Furthermore, ff (w~ v) e 2, (v, u) e 2, 
then there is an ~ e N such t h a t  bo th  (w, v) e 4 m and (v, u) e 2m. Hence  
(w, u) e 2~ G 2. Thus 2 is an equivalence relation on W. Now let w, w' ,  v e W 
such tha t  Rwv and (w, w') e 4. Bu t  then, since there is an m e N such 
tha t  w, w', v e W~i  (w, w') e 4~. Since 2~ is a congruence there is a v' e W,,  
such tha t  Rw,v '  and (v, v') e 4~ _~ 4. 

The second assertion of the  proposit ion is easily proved b y  induction.  
Fi rs t  note  tha t  since ( w , ~ ) e 4  implies h(w) = h(v), for every  w ~ W, 
h(w) = h(~) . . :Now,  there are at  most  two equivalence classes consisting 
of elements of height 1, giving rise to two elements of height 1 in W/2:  
a reflexive element and an irreflexive one. Now assume tha t  W/2 contains 
finitely many  elements of height ~ m. Let  w, v ~ W have height m §  
and suppose w, v are bo th  reflexive. :Note tha t  if (w, v) $ 4 then {~ I Rwu,  
h(~e) ~ m} # {~ I Rvu, h(u) ~ m). Hence  the map @~-~{~ I Rwu, h(u) ~ m} 
is one-to-one from the  set of reflexive elements of height m §  in ~/~ 
to the  set of subsets  of the  finite set of elements of ~/2 of height K m .  
Hence  there are only finitely many  reflexive elements of height m §  
in ~/2 7 and in the  same way  one proves tha t  there are only finitely m a n y  
irreflexive elements of height m §  in ~/2. Since any element is either 
reflexive or irreflexive this proves the  claim. 

I t  follows from 3.6 and 3.8 tha t  for every n e N there are finitely 
many  frames~ which we will denote b y  ~ = (W~.', R~), 1 4 i ~ m~, such 
tha t  for any  transi t ive frame ~ of height n there  is an i~ 1 ~ i ~ m n such 
tha t  (~/y)/2 ~ ~ .  This observat ion enables us to give another  characte-  
r ization of the  varieties KT(n),  n e N~ which played an impor tan t  role~ 
in section 1. Recall  t ha t  a finite subdirect ly  irreducible algebra !8 belon- 
ging to a var ie ty  K is called splitting in K if and only if the class {9~ 

K t!B ~ SH(9~)} is a variety,  which then is denoted b y  K/N.  If  ~ is 
spli t t ing in K then for any subvar ie ty  K~ of K~ V(~)  _~ K~ or K~ _~ K/!B 
(but  not  both) ;  hence the lat t ice of subvarieties of K is the  disjoint union 
of the  intervals [V(~))  and (K/N].  In  [13] it was shown tha t  every  finite 
subdirect ly  irreducible in MT is splitting. For  a fur ther  discussion of 
splitt ing varieties we refer to [2] and [5]. 

= ~ . . .  !D~} denote the set o f  finite subdirec t ly  Le t  for n e N S ~ { ~ ,  , 
irreducible algebras of height n belonging to H ( { ( ~ ) +  [1 ~ i ~ m~}). 
Observe tha t  since ~ ,  1 ~ i ~ m~ are finite, S ~ is a finite set of finit~ 
algebras. 

3.9 THEOlOgY. For  n e N, KT(n) = ('~(MT/!B ] ~  e Sn+~}. 

P~oo~:  (i) Since b y  1.6 KT(n)  consists of algebras of height ~ n~ 
S~ '+~KT(n)  ~ ~ ,  whence KT(n)  _~ ( -~OITi~ ] ~  e S~+~). 
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(ii) Le t  ~ ~ N( IT/  e s be finitely generated and assume 
t h a t  ~[ r KT(n).  Then h(2)  > n~ and b y  1.10 there is a ~ e H(9~) such 
t h a t  h(!~) = n -~ l .  In  v i r tue  of 1.8, !D is finite~ and hence so is ~u.  Since 

EMT, ~ is t ransi t ive.  B y  :Lemmas 6 and 8, ( ~ / ~ ) / ~  _~ ~ + 1 ,  for some 
~ + ~  H 8 ~ ) .  9~ n+~ e S  n+~ s u c h t h ~ t  ~ i  e i~ 1 ~ i ~ m~+~ ~ whence there exists a .~i 

B u t  then .~i9~+~ eHSH(9 . I )_~  V(9~), contradict ing our assumpt ion tha t  

Observe  tha t  if ~ is a reflexive and t ransi t ive  finite f rame of height  
n then (~/r) /~ is the  linearly ordered f rame K~ on n elements. I~ follows 
tha t  for n e N  KT(n)chMR = M R T / ( K ~ ) + ;  these are jus t  the  variet ies 
w e  used in [4] to establish the  result  t ha t  a cover in the  lat t ice A(MRT) 
of a t abu la r  var ie ty  is tabular .  

lqow we want  to use lemmas 6 and 8 to obta in  some more informat ion 
concerning pre tabnla r  varieties. The first result  deals with p re tabu la r  
variet ies  of finite height. 

3.10 T~EOlCE~. For  n e N~ KT(n)  contains only f in i te ly  m a n y  pre- 
tabular varieties. 

]?~ooF: Le t  K _  KT(n)  be  ~ pre tabula r  var ie ty .  Since KT(n)  is 
locally finite, K is generated b y  its finite members .  Let  K ---- V((gJ~ [ n 
----17 2 , . . . } ) ,  where every 9/~ is finite and subdirect ly  irreducible. Since 
K _~ KT(n),  h ( 9 ~ ) ~  n for i : 1 , 2 ,  . . . .  Because  K is p re tabula r  K is 
genera ted  b y  any  infinite subset  of {9~ i ] i  ---- 1, 2, ...}, whence we m a y  
as well assume tha t  h(9~) ----n, i = 1, 2, ..... l~et ~ - - - -~ ,  i 1, 2, . . . ,  
where  ~i ----(Wi, R~). Firs t  suppose that ,  up to isomorphism,  there  are 
only  f ini te ly  m a n y  algebras ~i/Yi ,  i = 1, 2, . . .  (we wri te  ~ for 7~). Then 
we m a y  assume, in v i r tue  of the  pre tabnlar i ty ,  t ha t  there  is an ~ = (W, R) 
such t ha t  for all i e N ~ / 7 ,  ~ ~ ;  let ~ /2  = ~ ' ,  where 1 ~ j ~ m~. Since 
W is finite, there  is a Wo e W such t ha t  [v,~({Wo})[, i = 1, 2, . . .  is an 
u n b o u n d e d  sequence, and since h(K) = n, we m a y  assume tha t  h (Wo) = n. 
Define a relat ion xi on ~, as follows: for w, v e Wi ,  

(w ,  v) e ~  iff  
[w = v if h (w)  ~- h(v) -~ 

Clearly, g~ is an equivalence relation. In  order to ver i fy  t ha t  ~ is a con- 
gruence relation, let  w, w', v e W~, such t ha t  (w,  w ' )  e z~, Rwv .  If  h(w)  
-----n, then  apparen t ly  w = w '  so we m a y  choose v ' = v .  If  h ( w ) < n  

then  we use the  fact  t ha t  yi, 2 are congruences. Since 5 + is subdi rec t ly  
irreducible,  ~i is generated,  and  hence so i~ ~ / ~ i .  In  fact~ ~ / ~ i  is iso- 
morphic  to the  f rame ((W~\{v~(Wo)})w~,~i~({Wo}), R) ,  where 

[ R ~ w v  and h(w)  < n 

R w v  iff i or 

/ - n 
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(the W~ are assumed to be  disjoint  f rom W~.) Hence  ~i lz i  is ob ta ined  
f rom ~ b y  replacing the  root  -- which is a reflexive element in this  
case - - b y  a cluster. Since the  (~t/z~) + are subdirect ly  irreducible, and  
since there are infinitely many  non isomorphic algebras among them~ 
K is generated b y  the  s e t  {(~i /z i )+]i  = 1, 2, ...}. Since there are only 
finitely many  frames ~ to choose from, this gives rise to only a finite 
number  of p re tabula r  varieties of height n of this type.  

Nex t  suppose  there are infinitely many  non-isomorphic a lgebras  
~i/Yi.  Then we may  as well assume tha t  the ~i themselves have no clusters 
co~tMning more than  one element.  We  also m a y  assume, again b y  pre-  
t abu la r i ty  of K, tha t  there  is a j ,  1 ~ j  ~ ran, such tha t  ~i/2 i = ~ ,  for  
all i = 1, 2, . . . .  Again, there is a w e W~ such tha t  lv~l({w})], i = 1, 2, . . .  
is an unbounded  sequence. Because the ~r are generated frames, any  
such w will sat isfy h ( w ) <  n. Let  Wo be an element of maximal  height  /z 
with this proper ty .  W e  claim tha t  k = n - -1 .  For  if k < n - - l ,  t hen  there  
is for eve ry  l E N a wq e Wq such tha t  h(wr ~ n --1 and wq has at  least 1 
successors in v~/1((w0}); then, however,  would the ~ q ,  1 -= 1, 2, . . .  b e  

an infinite sequence of generated frames, and hence K would be  generated 
b y  the  ~+q, I = 1, 2, . . . .  B u t  since h(~wr ~ n - - l ,  this would contradic~ 

our  assumpt ion tha t  h(K) = n. We  thus showed tha t  h(Wo) = k = n - - 1 .  
E o w  define gt  on ~i as follows: 

for w~ v e Wi let  

/ �9 ,%(w) r Wo 

(w,v)  iff or 

! 
t~learly, ~ }s an equivalence relation. To see tha t  ~r is a congruence, le~; 
w, w', v ~ W i such tha t  (w, ~o') E :~i and R~v.  If  h(w) = ~ then ~o = w' --  
since the  ~ are generated frames - - a n d  we m a y  choose v' ----v. Similarly 
if h(w) -~ n - - 1  and w = w', which takes care of the  case h/(w) = Wo. 
I f  h(w) < ~ and h~(w) =~ Wo then h~(v) r Wo. Since (w, w') e 21 and ~r is 

congruence there is a v ' e  W i such tha t  R~w'v'  and (v, v ' ) e 2 i .  Bu~ 
because  he(v) --- v~(v') r Wo, (v, v') e~r Note  tha t  ~r162 is a generated 
tram% and t ha t  there  are infinitely m a n y  pMrwise non isomorphic al- 
gebras  among the  (~/~i )  +, i = 1, 2, . . . .  Therefore K is generated b y  
{(~i/zt)_ + ] i  ----1, 2,  ...}. In  fact,  ~ / ~ i  is isomorphic to the  frame ( ( W ~ \  
\{wo}) .~ ' ({Wo}) ,  R), where 

Rwv iff 

( the W~ are assumed to be  disjoint f rom W~.) 
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Since there are only finitely m a n y  ~}~' s, and every ~ has only finitely 
m a n y  elements of height  n - -1 ,  this gives rise to finitely m a n y  pre tabular  
varieties of height  n of this kind as well. 

In  order to summarize  the  results of the  proof of 3.10 we int roduce 
n n some more notation.  Let,  for a genera ted f rame ~ ,  1 ~< i ~< m , ,  ~ ( , ~ )  

be the  f rame obtained f rom ~ by replacing the  root  -- i.e. the  element 
of height  n - - b y  a cluster containing m elements, as in the  first half 
of the  proof of 3.10. Let,  for a genera ted f rame ~ ,  1 ~< i ~ m, ,  ~ (D~, )  
be the  f rame obtained f rom ~ by  replacing the  element  w of height  n - - 1  
by  m "copies", like in the second half of the proof of 3.10. Then it follows 
f rom the  proof of 3.10 tha t  any  pre tabular  var ie ty  K of height  n is ei ther 

w -b V ( { ~  in(Cm)T I m -- 1 , 2 ,  ...}), for some ii 1 ~ i ~< m, ,  or V ( { ~ i ( D ~ )  I m 
: - 1 ,  2~ ...}, for some i, l < ~ i < ~ m ,  and  some w e W ~  of height  n - -1 .  
Although,  conversely, no t  every  set of algebras of this form gives rise 
to a p re tabula r  variety~ it is not  difficult to see t ha t  there  are eountably  
m a n y  pre tabular  varieties of finite height  in MT. Indeed,  let  L ,  -- ({1, . . .  
. . . , n } ,  <).  Then h ( L , )  = n, L ,  is a generated f rame and since S ( L  +) 
= {/~+}, L .  e {<57 1 1 ~< i ~< m.}. Let  I~, 

f rames Z~ (/)~) look like: 

1 

H 2 

!3 
!, 

1 

-: V ( { L n ( D ~ ) ] m  ~ 1, 2 , . . . } .  The 

1 I 

/ \ .  
\ d "...',, l / /  

" A " /1  

s = Ln (Dr) L n {D i)  Ln (D~} 

Fr0r every  n e N, Kn is pre tabular ,  and  if n r  m then  K n r Kin: 
~ A m o d a l  formula  which has a t t r ac ted  considerable a t t en t i on  in the  

l i te ra ture  ([14], [15]) is LSb's formula:  K ] ( [ ] p - + p ) ~ [ ] p .  Let  L b e  t h e  
normal  extension of K axiolnatized by  LSb's formula.  The logic L : i s  
complete  -- in fact,  it has the  finite model  p roper ty  -- and []p-> [] [:]p 
is one of its theorems. Fur therm0re i  for any  f rame ~ ----(W, R), ~ ~ L 
iff R t ransi t ive  and t h e  converse of R is a wellfounded relation. In  parti-  
cular, if ~ ~ Z then  R is irreflexive. Let  MITA ~ be the  var ie ty  of modal  
algebras corresponding with LSb's logic, i.e. the  subvar ie ty  of M (which, 
because [ ]p - -*~E]p  e .5 ,  turns  out  to be a subvar ie ty  of MT) defined 
by  the  equat ion (x~176 ~ -~ 1. �9 



Pretabular var@~/ies of modal algebras 121 

3.11 THEO]~E~[. MITA\contains countably many pretabular varieties. 

P~OOF: The varieties Kn, given in the  preceding paragraph,  belong 
to 1VIITA; hence MITA contains at  least countably  m a n y  pre tabula r  
varieties.  In  vir tue of 3.10, MITA contains only countab]y m a n y  preta-  
bular  varieties of finite height. Now let K ~ lYIITA be a pre tabular  var ie ty  
of infinite height. By 2.1, K is generated by  its finite members.  Let  

= (W, R) be a linite frame, such tha t  ~+ e K. Then ~ contains no 
circuits and is irreflexive, hence ~/~ = Ln( = ({1, . . . ,  n}, < )), for some 
n e N. Since K is of infinite height  K contains infinitely m a n y  /~+Ps, 
thus  K = V({L + In  = ! , 2 ,  ...}). Therefore MITA contains only one 
10retabular var ie ty  oi infinite height. 

Another  ext reme is the  ease where the  relations of the  frames involved 
are  all reflexive, i.e. where we restr ict  ourselves to subvarieties of the  
var ie ty  MRT of interior algebras, defined by  the  law x0. x = x ~ in addit ion 
to the  axioms of 1W]?. The p re tabu la r  subvarieties of MRT were first  de- 
t e rmined  by  Maksimova [11] (whose proof is based on an announcement  
b y  Kuznetsov  [9]), later  by  Esakia and Meskhi [7] (whose proof, however,  
contains an essentiM gap) and by  Rautenberg  [13]. 

Le t ,  as before,  Kn = ({1, . . . ,  n}, ~<). 

3.12 THEO~EN. The pretabular varieties of interior algebras are: 

(i) V({Ka(V~n) + ]m = 1, 2 , . . . } )  
(if) V({K2(Cm) + I m = 1, 2 , . . .} )  

(iii) V({K2(D~) + I m = 1, 2 , . . .} )  
(iv) V({K3(D~) + [ m  = 1, 2, ...}) 
(v) V({K + In  = 1, 2, ...}). 

P~ooF: I t  is a ma t t e r  of easy verification to show tha t  these five 
varieties are pretabular .  Now let K be pretabular ,  K _ MIIT. By  2.1, K 
is generated by  its finite members.  Let  ~ = (W,/2) be a f in i te  f rame 
such tha t  ~+ e K. Since every element  of w is reflexive, (~/y)/~ ~--Kn, 
for some n e N. If  K contains infinitely m a n y  Mgebras K +, t h e n  
K--V({K + In  = 1 , 2 ,  ...}). I f  not, then  K i s  of finite height,  say of 
height  n, and  by  the  r emark  following 3.10, K = V({K~(C~) + I m 
= 1, 2, ...}) or K = V({Kn(D~) + I m = 1, 2, ...}). However,  since 

K2 (Cm) + ~ S (K~ (Cm) +) whenever  n ~> 2, and likewise K2 (D~) + e S (K n (D~) +) 
whenever  n >~ 3 it follows tha t  K is of height  ~< 3, and is one of the  varie- 
ties listed in (i)-(iv). 

By a result  in [5], the  latt ice of varieties of Heyt ing  algebras is iso- 
morphic  to the  lat t ice of subvarieties of t h e  var ie ty  MRTA, corresponding 
wi th  t h e  modal  logic axiomatized by  the  formula K](D(p~K]p)-+p)-~p 
(in [14] referred to as Grzegorezyk's formula). The only pre tabular  varie- 
ties contained in MRTA are the  ones listed as (iii), (iv) and  (v). Hence  
there  ~re three pre tabular  varieties of Key t ing  algebras (cf. [12]). 
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As a last  example  we want  to determine the  pre tabular  variet ies  
in MT satisfying the equat ion  0 ~ -- 0, t ha t  is the  p re tabu la r  subvarie t ies  
of MT/2 +. Tha t  the  ten Varieties ment ioned in the  theorem are pre tabul~r  
was observed b y  V. ~ e s k h i ;  we shM1 prove  now tha t  these are all. Le~ 
f o r A  ~ {1, . . . ,  n}, M~ : ({1, . . . ,  n}, < w{( i , i )  l i cA}) .  

3.13 T;ZEOl~E~. The pretabu~ar subvarieties of MT satisfying 0 ~ =-0 
are~ 

(i)-(v) 
(vi) 

(vii) 
(viii) 

(ix) 
(x) 

of 3,12 
+ = 1,  2 , . . . } )  

+ = 1, 2 , . . . } )  
V({M{~"}(D~) + [m = 1, 2 , . . . } )  
V({M{~)(D~) + I m = 1, 2 , . . . } )  
V({M  = 1, 2 ,  . . .}) .  

l~nooF: I t  is not  difficult  to verify tha t  ( i ) - (x)  give rise to different  
pre t~bular  varieties.  N o w  let  K _  MT b e  pre tabula r  and ~ssume t h a t  
0 ~ 0 in K. B y  2.1, K is genera ted  b y  its finite members .  Le t  ~ ~ (W, R). 
be  a finite f rame such t h a t  ~+ e K. Then g l  = ~/7 /2  is a f rame which h~s 
one (reflexive) element  of height  1. Le t  g l  = (WI, R~), and let wl,  w~, ..~ 
. . . ,  w~ e W~ be  such tha t  w~ is reflexive for i = 1, . . .  n, Rwiwi+l, w~ 
# w ~ + l ,  ~ = 1, . . . ,  n - - l ,  and  h(w~) = 1. Define f :  gl-+K~ b y  f (w} 
= rain {j I j e {1, . . . ,  n}, Rwwi}. Since for all w e W~ Rww~, f is well.' 
defined ~nd since the  w~ are reflexive and ~Rw~w~ if j < i f is onto. F u r .  
thermore~ f is an g-morphism.  Fo r  if w, s e W Such tha t  R~wv then  
min {j I Rww~} <~ min {j I Rvwi}, b y  t r ans i t iv i ty  of R, whence f(w) <~ f(v).  
And if Rlf (w) j ,  then  k ----f(w) <~j, whence Rwwk, Rwkwl, so /~ww~.. Bu~ 
since f(w1) = j,  it  follows then  t ha t  f is ~n ~-morphism. We  infer t h a t  
if K contMns Kr ipke  Mgebras of f ini te  frames wi th  reflexive /~-chains 
of ~rbi t rary  length, then  K = V({K,+]n = 1 , 2 ,  ...}). I f  K is not  of  
f inite height  b u t  not  of this form -- i.e., for every  f rame ~ such that. 
~ + e  K, every  reflexive R-chain is of length ~< m for some fixed m -- 
then  there  is f o r  every  n ~ N a finite f rame ~ = (W, R), containing n(r 
clusters wi th  more than  one element,  such tha t  ~+ ~ K ~nd h ( ~ ) - - r  ----- n~ 
where r = max{h(w) I w reflexive, w s W}, as an e a s y  a rgument  shows~ 
Le t  0 be  the  equivalence relat ion on ~ defined b y  

h (w), h (v) ~< r 

(w, v) eO iff or 

h(w) = 

Clearly, 0 is an equivMenee relation. And if w, w', v ~ W such thai; 
(w, w') e O and  Rwv, then  if h(v) <~ r t ake  for v' the  element of ~ of height~ 
1. I f  h(v) > r, then  h(w) > h(v) > r, so h(w) -= h(w'), t~enee there  is 
a v ' s  W such tha t  Rw'v '  and h(v') ----h(v)~ i.e., (v', v ) s O .  Thus 0 ig 
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a congruence relation. Clearly thus K = V({M{~}+ln 
---- 1, 2 ,  ...}). I t  follows t h a t  (v) and  (x) are the  only 9retabular  Varieties 
of inf ini te  height  in MT which satisfy 0 ~ = 0. 

The  case t h a t  K is of finite height  remains. Suppose t h a t  K has hcigh~ 
n. In  3.10 we have seen tha t  K = V ( { ~ . ( C ~ ) + [ m = I , 2 ,  ..,}), or- 
K =  V ( { ~ . ( D ~ ) + ] m = I , 2 , . . . } )  for some i, l < i <  m., where h(w} 
= n - - 1 .  On the  frames ~ ( C ~ )  we define a congruence relat ion O~ as. 
follows : 

(w,v)eO~ iff h(w), h ( v ) ~ n - - 1  or w = v  

~n iDWo~ and on the frames ~ ,  ,~, u congruence 02 as follows: 

(w , v) e 02 iff w, v e W~. , w~ v # Wo~ h(w)~ h(v) < n--1 or w = V. 

O~ and  O~ are congruences, essentially because ~ t  has only one element:. 
of height  1 which is reflexive, ~ +  satisfying the  equat ion 0 ~  0. I t  
follows t h a t  ~ ~i (C~)/O~ is isomorphic to either KI(C~) or K~(C~) and 

n W 0 2 

M~}~)2 ~ ~ence  K is equal to one of the  varieties listed under  (ii), (iii), 
(iv), (vi), (vii), (viii) and  (ix). 

Apparen t ly ,  it  is the  fact  t h a t  0 ~ > 0 in general in MT which is respon-  
sible for t he  presence of so m a n y  pre tabular  v~rieties. ~ o t e  t h a t  the= 
var ie t ies  V (~I~) constructed in section 2 satisfy 0 ~176 = 0 ~ whenever 2 ~ M - -  
hence,  there  are 2 ~0 pretabular  varieties in MT satisfying 0 ~ 1 7 6  = 0 ~ 
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