W. J. Buox Pretabular Varieties
of Modal Algebras

Abstract, We study modal logics in the setting of varieties of modal algebraa.
Any variety of modal algebras generated by a finite algebra — such a variety is
called tabular — has only finitely many subvarieties, i.e. ig of finite height. The con-
verse does not hold in general. It is'shown that the converse does hold in the lattice -
of varieties of K4-algebras. Hence the lower part of this lattice consists of tabular
varieties only. We proceed to show that there is a continuum of prefabular varieties
of K4-algebras — those are the non-tabular varieties all of whose proper subvarieties
are tabular — in contrast with Maksimova’s result that there are only five preta-
bular varieties of S4-algebras.

Much of the literature on modal logies has been engaged in introducing
new logics and comparing them with existing ones regarding their strength.
Such investigations are really part of the more ambitious attempt to
provide a description of the lattice of all modal logics. Though such
a description, even of the lattice of normal extensions of K, to which
we will restrict our attention, seems to be well out of reach yet, a con-
siderable amount of information on the lattice has been obtained by now.
The observation that the lattice of normal extensions of K is dually iso-
morphic to the lattice A(M) of subvarieties of the variety M of modal
algebras enables us to invoke general results of the algebraic theory
of lattices of varieties, in particular the results obtained by B. Joénsson
for varieties of algebras whose lattices of congruences are distributive.
To mention just a few of the immediate consequences of these general
results: the lattice A(M) is atomic (Makinson [10] showed that there
are two atoms), A (M) is complete, distributive and dually Brouwerian,
every Ke AM), K M, has a cover in A(M) and all of the varieties
corresponding with the familiar modal logies like K, T, K4, S4, S4.3, S5
are join-irreducible. Using somewhat more elaborate methods it is possible
to characterize the varieties in 4 (M) having m covers for any cardinal
number m ([2]).

It follows from one of Joénsson’s results that any congruence distri-
butive variety generated by a finite algebra — such a variety is called
a labular variety — has only finitely many subvarieties. Hence tabular
varieties are close to the bottom of the lattice. Day [6] proved that for
varieties of Heyting algebras a converse holds: any variety of Heyting
algebras having only finitely many subvarieties is generated by a finite
algebra. This result makes, in principle, a deseription of the bottom part
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of the lattice of varieties of Heyting algebras possible. In [5] (see also [4])
we obtained a similar result for the lattice. A(MRT) of subvarieties of
the variety MRT of interior a,lgebra,s (dually isomorphic to the lattice
of normal extengions of S4). The next step was to investigate the non-
-tabular varieties of Heyting algebras and interior algebras, and, to begin
with, the minimal ones among them (which can easily be shown to exist),
called pretabular varieties. This was done by Maksimova [11] and [12],
and she came to the unexpected conclusion that there are only three
,preta;bular “varieties of -Heyting algebras and flve pretabular: varieties
of interior algebms (‘uhe lagt result was obtained independently in [7]).
The ‘question arises if results of this nature can be extended to larger
'sublaf;tmes of A(M). Not to the full lattice 4(M), as was shown in [2].
'Indeed the atoms of A(M) have 2% covers in A(M) whlch gives rise
to.a multltude of pretabular varieties and. destroys every hope to give
a description of even the lowest part of A(M). In the present paper we
investigate the lattice A(MT) of subvarieties of the variety MT which
corresponds with the modal logic K4, axiomatized by the formula
Op-~ 0O 0p.
 After a preliminary section 0 we. prove-in seetion.l that the cower
of a-tabular variety in A(MT) is tabular. This extends the results men-
tioned before and it seems that it cannot be improved:essentially®. In
fact, 'we give an example of.a non-tabular cover of an~atom ‘of A(MT)
which: satisfies [2p«>[1*p and hence is only “just” outside of MT:. .
. From. this it follows that every. pretabular variety inA(MT) is gene-
rated by its finite members, as in A(MRT). However,: here. the parallél
ends.: Whereas 4 (MRT) contains only five pretabular varicties, it turns
out in section 2 that 4 (MT) contains a continuum: of pretabular variéties.
In the final section we investigate the prefabular.variéties in sorhe
sublattices of A(MT). It is'shown that the lattice of subvarieties of the
variety corresponding to the-modal logic axiomatized by Lob’s formula
contains. a ‘countable number of pretabular varieties. The developed
methods easily yield the known results for MRT and Heyting -algebras.
Finally we show that the subvariety of MT defined by the. equation
9. == 0 (corre§ponding with-the modal. logic D4) contains only finitely
many pretabular varieties. :

Q0. Preliminaries

Modal formulas are formed in the usual way from a denumerable
set of propds"ition' letters p,q,r, ..., the classical connectives v, A, 7,
L, _'J_, T- and: the unary “moda,l” operatm S (“necessanly”) A (normal)

1 The resuﬁlts of sectlon 1 do hold, however, for the lattice of subvarieties of the
variety’ correspondmg to the modal logic axiomatized by the slightly weaker law

PAEp-C0p.
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modal logic is a set of modal formulas containing the classical tautologies
and the axiom [J(p—q)—([Jp—[lq) and closed under the rules of modus
ponens, substitution and necessitation. A set I” of modal formulas is said
to axiomatize a logic I if L is the smallest normal modal logic containing
I'. The formula [Jp->[][Jp axiomatizes the logic K4; by adding [Op—p
a8 an axiom we obtain an axiomatization of S4.

A (Kripke) frame § is a pair (W, R) where W is a set — the set of
worlds — and R is a binary relation on W — the accessibility relation.
We will often write Rwv instead of (w, v) € R. Given a modal formula ¢,
a frame § and a valuation V (that is, a map assigning subsets of W to
the proposition letters), satisfaction of ¢ in (F, V) at w, in symbols
(&, V) Eolw], is defined by means of the usual inductive truth definition.
In particular, (&, V) k Oelw] iff for every v € W such that Rwov (¥, V) k
¢[v]. Furthermore, & ko[w] iff (¥, V) kEe[w] for every valuation V,
and § Fo iff § Felw] for every we W. *

¥ § =(W,R) is a frame, W, = W, then F, = (W, Rn(W, x W)}
is called a generated subframe if Vw e W,Vv e W[Rwv=>v € W,]. The
smallest generated subframe of § containing a given element we W ig
denoted by &, = (W, R,) and is said to be the frame generated by w.
If § = &, for some w € W then § is called a generated frame. If §; =
= (W,, B), ¢ =1, 2, are frames and f: W,—~W, is a map then f: F—F.
is said to be an F-morphism if

(i) for all w,ve W,, if Rywv then R,f(w)f(v)
(i) for all we W,,veW,, if B,f(w)v then there is a v' ¢ WI’
such that R,wo’ and f(v') = v.

A modal algebra is an algebra U = (4, +,-,’,0,1,°) such that
(4, +,-,7,0,1) is a Boolean algebra, -+ and - denoting lattice sum
and product respectively, ' denoting complementation and 0 and 1 the
smallest and largest element respectively. The unary operation ° satisfies
the laws

(#-y)" = a9y’
and
1°=1.

The variety of modal algebras will be denoted by M and the lattice of
subvarieties of a variety K by 4(K). The domain of algebras %, B, %,, ..
will always be denoted by A4, B, 4,,... If we want to emphasize that
an operation -+ or a polynomial p is to be evaluated in the algebra U
we may write +% or +¢ and p” or py. To any modal formula ¢ we may
assign an M-polynomial ¢ by replacing the proposition letters by variables,
the classical connectives by the corresponding Boolean operations and [
by °. The map L—{% ¢ M| satisfies ¢ =1, ¢ € I} establishes an anti-
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-isomorphism between the lattice of modal logics and the lattice of varieties
of modal algebras. The following varieties will be of particular importance:

MT defined by a° < 2 (~ K4)
MRT defined by 2° <2, 2°< 2™ (~S4)
M"  defined by =" < a2,

o0 oft on—1.,

where 2° =, 2° = (2" ), n =1,2,3,.... Observe that MT = M>
The algebras in MRT are also known as interior algebras.

Associated with every frame § = (W, R) is a modal algebra, denoted
by ¥+, and called the Kripke algebra of §: F* = (#(W), u, n, ", B, W, 1),
where for 4 = W lg(4) = {w e W|Vv e W[Rwv=v € A]}. For any modal
algebra A there is a frame §y = (Wy, Ry), such that ¥ is a subalgebra
of . The set Wy consists of all prime filters of U, and for w, v € Wy Rywov
iff Va € A[a° e w=a € v]. The map oG = {w e Wy|a e w} is an embed-
ding of modal algebras. The pair (Fy, {@|a € A}) is called the general
frame representing N.

If K is a class of algebras then S(K) and H (K) are the classes of sub-
algebras and homomorphic images of algebras in K, respectively; P(K)
and Py (K) are the classes of direct products and ultra products of fa-
milies of algebras in K. The variety generated by a class K of algebras,
HSP(K), will be denoted by V(K); the class of subdirectly irreducibles
of a class K by Kg;. We will often use Jénsson’s [8] result that for any
class K of algebras V(K)g; € HS8Py(K) provided the lattices of con-
gruences of the algebras in V(K) are distributive. In particular, under
this condition, V (K)g; = HS(K) whenever K is a finite set of finite al-
gebras. A variety is called tabular if it is generated by a finite algebra;
it is called pretabular if it is not tabular but every proper subvariety is
tabular. A variety is called loecally finite if the finitely generated algebras
in it are finite.

If A is a set, |4| will denote its cardinality. The set of natural numbers
1,2, 8, ... will be denoted by N. If (P, <) is a partially ordered set and
¢ € P then (z] stands for {y eP |y <w}, [») for {y € P |y = 2z} and for
z,yeP [#,y] = {fecPlo<z<y}) If 2,y P and # <y such that for
all 2z € P satisfying o <<z <y either # = 2 or z = y we say that y covers
2 and we write 2 — y. If % is an algebra and 8 = A then [S] (or [81%)
is the subalgebra of U generated by S. If we want to emphasize that [§]
is to be considered an algebra belonging to K we also write [S]g. If m
is a cardinal, the free algebra on m generators in the variety K will be
denoted by Fx(m). | ,

It A eMand F < A then F is called an open filter if F' is a filter such
that for any « € F, 4° € F. In [4] we showed that the lattice of congruences
of a modal algebra is isomorphic to the lattice of its open filters — hence
distributive, so we may apply Joénsson’s theorem to classes of modal
algebras. If F is an open filter in A we write /¥ for the associated quotient
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algebra. A is subdirectly irreducible iff it has a smallest open filter, 5= {1}.
In particular, for any frame &, ' is subdirectly irreducible iff § is a
generated frame. If W eM, v € A such that 4° > u, then [4) is an open
filter in ¥ and A/[4) < (#], where (] will always be assumed to be endowed
with the usual Boolean operations and the operation °(u#] given by
2° — g°-u, for & e (u]. Finally, for any class K of modal algebras, we
have HS(K) = SH (K) since modal algebras have the congruence exten-
sion property. For further references eoncerning lattice theory and uni-
wersal algebra, consult [1].

1. Tabular varieties

In this section we want to show that in A(MT) any cover of a tabular
variety is tabular.

1.1 DEFINITION. Let § = (W, E) be a frame. An n-tuple (w,, ..., w,),
w;eW,i=1,...,m neN, is called an R-chain (of length n) if, for
¢ =1,...,n—1, Bww,, , and "1Bw, ,w;. The height h(¥) of F is the
supremum of the lengths of R-chains in §; if § = (&, @) we put 2(F) = 0.
By the height h(w) of an element w ¢ W we understand % (g,).

The class of frames of height < # turns out to be modally definable.
1.2 DEFINITION. Let for # =0,1,... ¢, be the modal formula
defined by the clauses:

i) @=L
(ii) if ¢, has been defined then

Ppt1 = pn+1'—>D( U _—]pn+1">¢n) .

1.3 LEMMA. Let § = (W, R) be a frame. If w, € W then § F ¢,[w,]
iff for every R-chain (wy,...,w,) in & m<n.

Proor: For n» =0 the assertion holds. Suppose it holds for » = &
as well. Let & F ¢y, [w,] and let (w,, ..., w,) be an E-chain in §. We
claim that § F ¢, [w,]. Indeed, let ¥V be any valuation and let V’ be the
valuation satisfying V'(p,) = V(p,), if ¢ # k+1, and V'(p;.,) {wl}
Since p,; does not oceurin g, (§, V') F¢,[w,] if and only if (§, V
@i [w,]. But, since F ko, [w,], certainly (F, V') F @ lw;]. Beeause
V' (Ppp1) = {wi} and T|Rw,w,, we find that w, e V'([0 |ps,,). Since
Rw,w, it follows that (F, V') k ¢, [w,], and hence that (F, V) k ¢, [w,].
8ince V was arbitrary we have shown that § F ¢,[w,] and it follows
that m—1 < k, thus m < k1.

For the converse, assume that § [# ¢ [w,]. There is a valuation V,
such that (§, V) |# @py1[w,]; hence there is a w, € W, such that Rw w,
and w, € V(O " 1Pgpa) bub (F, V) |- gplw,]. Since wy € V(pgy1), T1RBwqow,,
and since § |~ ¢, [w,] there isan R-chain (w,, ..., w,,)such thatm > k1.,
Then (wq,..., w,) is an R-chain in § such that m > k-+1.
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1.4 DErFINITION. Let K(n) = {{eM|UAkg, =1}, n e N.

The Kripke algebras belonging to K(n) are the algebras §*, where ¥
is a frame of height << » in virtue of Lemma 3. Subalgebras of such Kripke
algebras also belong to K(n), and in fact, every algebra in K(n) is a sub-
algebra of a Kripke algebra §* with A(F) < n:

1.5 Lemvia. Let WeM, and let (g, #'y) be the general frame repre-
senting W. Then Ak @, =1 iff h(Fy) < .

Proor: The proof is similar to that of lemma 3; we only need to
modify the first half of the proof of lemma 3 slightly. Indeed, the thing
we have to be careful about is the choice of V’'(p;, ;). If wi, w, € Wy,
such that Eyw,w,, _ingszl then there is an a e A such that @° ew,,
o ¢wy. Put 7’ (Prq1) =10 e"//.x, (where @ = {we Wy | a cw}).

1.6 CororrAary. K(n) ={UeM |H e 8(F"), T a frame, h(F) < n}.

1.7 DEFINITION. Let % € M. The height A{¥) of A is inf{n e N | YU
eKn)}. And it K < M is a variety, the height (K) of K is inf{n e N | K
< K(n)h

Hence; AN =n then there is a frame § of height » such that
Aec8(FH). Let KT (n) = K(n)nMT. Observe that if % e KT(n), then
the frame Fy of height << » obtained in lemma 5 is transitive, so &g € KT (n)
as well.

1.8 TerorEM?2. KT(n) is locally finite, n > 0.

Proor: The proof is by induction on #. ‘

(i) KT(0) = V(1). Here 1 denotes the one-element algebra.

(ii) Suppose KT(n) is locally finite and A eKT(n-+1)g is
finitely generated, say by @i, ..., #,,. Let % e 8(§"), where F = (W, R)
is a generated transitive frame of height <<n-1. Let W, = {we W}
[ h(w) < n}y By = BN(W,y XW,) and §; = (Wq, R,). Then &, is a generated
subframe of § — and we may assume it to be a proper subirame — the
height of which is < n. Since the map x—>2NW, constitutes a homom or-
phism, 8 = {#nW, |z € A}, being a finitely genera.ted algebra in MT of
height < n, iy finite. Furthermore, if 1 € 4 then #° < W, unless & = 1
or = W, and WN\W, consists of an irreflexive element since a° < &
Hence [A] = |[{my3 ...y B, USR] <22m+ y where K = |Fgqyy(m)| and B
denotes the variety of Boolean algebras. It follows that there are only
finitely many subdirectly irreducible “algebras in KT(n-1) generated
by m elements. Every m-generated algebra in KT (n 1) can be embedded
in a finite product of those, and hence will be finite.

Theorem 2.1 of [3] has an obvious generalization to the setting of
M”. We need only a special case:

2 This result was proved earlier in {i4], Ch. 1I, thm. 6.5.
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1.9 TEEOREM. ZLet A e MT be finitely generated and let B be o finite
algebra. If g: U—B is o subjective homomorphism then there is am ac A
such that a < a° and such that g | (a]: (a]->B is an isomorphism.

Proor: Let A = [{a;,..., a,} ]y and b; =g(a), ¢ =1,..., m. Then

B = [{byy ey bp}ly. Leb py (@, ..., ®,) be the projection onto the i-th
coordinate, ¢ = 1, ..., m, and let for b e B, b £ by, ..., b,, DPy(®y, ..., T}
be any M-polynomial such that p,(b,,...,5,) =b. Let Q be the set
of formulas of the form P,+D. = Dyier Do'Pe = Pooy Por = (D1)s Do
= (p)°, Po = 0, P, =1, for b,c € B. Every such formula is M-equivalent
to one of the form r =1; let 2 = {r, =114 =1,...,k} be the set
of equivalents of this form of the formulas in Q. Then B is free on {4y, ...
.y by} with respect to the relations r;(by, ..., b,) =1, 4 =1, ..., k Let

k
y = []ri(ay ..., 6,) and @ =y-9°. Then ® = (y-9°)° =9°-9° =9°>a,

3=1
thus [a) is an open filter. According to a remark in the preliminaries,

(o] =~ A/[a), wherein (a], ! = o°-q. Sinee g 2 [a), g1(al: (a]1->B
is a homomorphism, satisfying g(a;-a) =b;, ¢ =1, ..., m. Note that (a]
is generated by @,°6,..., 0, a. Ao M(a-a,..., a0, a) =71 ay,..
civy Q)@ = a, 80 (o] satisfies the relations #;(a;-a, ...,a,-a) =1,
i =1, ..., k. Hence there is a homomorphism %: B—(a] such that h(b,;)
=g;-a, i =1,..., m. Therefore hog | (a] = id | (], and it follows that ¢
is an isomorphism. ' )
Now we are ready to prove the main lemma.

1.10 LEvmmA. Let W e MT be finitely generated. If h(Y) = oo then
for every m e N there is a B, € H(W) such that h(B,) = n.

Proor: Let § = (W, R)-be the canonical frame §Fy; we may think
of A as a subalgebra of F*. Since A € MT, R is transitive. Since 2 () = oo,
h(F) = oo. First we show that if there is a w € W such that h(w) = =
then there is an algebra B,, € H (A) such that #(B,)= n. The map f: A->FE
defined by a—>eznW,, is a homomorphism since §,, is a generated sub-
frame of §. Because (F,) = n, h(f[UD <=n, and as f[A] is finitely
generated, it is finite in virtue of theorem 8. By theorem 9 there is an
a € A such that @ < a® and such that f| (a]: (a]—f[A] is an isomorphism.
Since f(a) =1, a > W,,. We claim that if v e a, then {v} e (a¢] < 4. The
properties of Fy guarantee that {v}= I {a-x | vew e A}. Butthe set {a-2 | v
ex e A} is contained in (a] and therefore finite; hence {»} e (a]. Since
f1(a] is an isomorphism and {v} #% 0 it follows that for every vea
0 # f({v}) = {p}n'W,, whence, in fact, « = W,,. Thus (a] = Fi € H(X).
Since #(%,) = n, we have h(F5) < n; however, it is easily seen (and it
also follows from Lemma 5) that k(§;5) < n is impossible. Heénce i (Ft) = #,
and by putting B, = F we obtain the sought-for algebra.

In order to complete the proof of the lemma we have to show that
there are elements w e W of arbitrary finite height. Suppose n e N is
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the smallest natural number such that there is no w e W satisfying A (w) = n.
Then there are neither any elements w € W satisfying & (w) € N, h(w) > n.
Let W, ={weW|h(w)y<n—1}. Then &, , = (W, ;, RO(W, ;X
xW,_,)) is a generated subframe of & (possibly empty), satisfying
W,_, = W since k(F) = oo, k(F,_1) = n—1. The map f: A->F,_, defined
by z—»xnW,_, is a homomorphism, and &(f[U]) < »—1. Since f[A] is
finitely generated, f[A] is finite, and as in the first part of this proof,
it follows that W,_, =a,_, €4 and that h((a,_.]) = h(f[A]) = n—1.
Observe that a, ;< a,_,. If a,_; < aj_, then let w € a5_;\a,_, and we
see that h(w) = n, a contradiction. Thus a,_, = a;_;. Consider ¥ = {F
< A | F is an open filter, F < [a,_,)}. Then ¥ # &, since {1} e . Also,
by Zorn’s lemma, ¥ has a maximal element, say ¢,. We claim that %/@,
has height n. Indeed, let g: A—->A/G, be the canonical homomorphism.
Suppose that g(a,_;) <g(®) <1, veA. We may then assume that
a, <0 V¢ GO'}" Therefore the open filter generated by G,u {v} equals
[@,_,), which implies the existence of an u € @, such that #-v-v°< a,_,,
whence #°-v° < a,_; = a,_;. It follows that g(v)° = g(v°) = g(v°)-g(u°)
~ g(v°4°) < g(a,_1), Whence g(v)° = g(a,_,)(*). Now, let § = (W', R
be the generated subframe of § corresponding with /G, — i.e., let W'
={weW|w2 Gy}, B' = RnW'xW'. (Recall that & is the canonical
frame of %). Then we may think of 4/G, as {#nW' [z e A}. If w,, w,
€ W'\@,_,, w, # Wy, then Rw,w,. For if 7|Rw,w, then there is an a € 4
such that a° ew,, a ¢ w,. Let v = (a+a,_,)NW'. Then we have an ele-
ment in A /G, satisfying a,_, < v <1.For since ), =a,_,and a’non< a,_,,
we infer that anW' non < @,,_,, thus a,_, < v, and because w, ¢ v, v < 1.
However, v° > (a°+a,_;)nW, > a,_,, contradieting (*). Thus W'\a,_, is
a cluster. Since W' > a,_, there is a w € W'\a,_;. Then k(w) <n, and
because w éa, ;, h(w) =n — contradictory to our assumption that
there are no elements of height » in §.

In this lemma, the assumption of transitivity (i.e., 2 € MT) is essential.
For example, let § = ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)}). Then A(F") = oo,
§* is finite but H(F') contains no algebras of finite height except 1.

The next result is an extension of [4], 7.2 to the setting of MT.

1.11 Lmmma. Let K <= MT be a locally finite variety, K contains an
snfinite subdirectly irreducible iff K contains infinitely many finite sub-
directly irreducibles.

Proor: Let W €Ky, be given, |A| infinite. First we show that any
finite subalgebra of % is subdirectly irreducible. Let B € §(N) be such
that B is finite. Let @ € A, a < 1 such that [a) is the smallest open filter,
# {1}, in A. Let b = > {w-#° | # € B, x < 1}. The element b is well defined
since B is finite and & € B. Since for all € B such that # < 1, z-2° < a,
b < a as well, and hence [b-}°) is the smallest open filter in B, == {1}.
Thus B is subdirectly irreducible.
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Now we define an infinite sequenee of finite subalgebras of U as follows.
Let A, = [2 Iy € S(A), then A, is finite since K is locally finite. If A, e §(A)
has been defined such that |4, is finite and 9, is subdirectly irreducible,
choose x,,; € ANA, and let A, , = [4,0u{z,, }]x &Y. Then A, , is
finite and subdireetly irreducible, by the remarks in the first paragraph
of the proof.

For the converse we only need to note that the property of being
subdirectly irreducible in MT is first order expressible. Hence, if K containg
infinitely many finite subdirectly irreducibles any non-principal ultra-
product of these will provide an infinite subdirectly irreducible in K.

Observe that this lemma holds in fact for any variety K = M"*, n € N.

Now we are ready to prove the result we are aiming at:

1.12 TueorEM. Let K € A(MT). Then K is tabular iff |A(K)| is finite.

ProoF. = Since K, is finite, by Jénsson’s theorem. <= By Lemma
10 (and lemma 5) K cannot contain finitely generated algebras of infinite
height or of arbitrary finite height. Hence K < KT(n), for some % € N,
and therefore K is locally finite. By Lemma 11, K cannot contain an
infinite subdirectly irreducible, since otherwise it would possess infinitely
many finite ones and would therefore have infinitely many subvarieties.
Thus K contains only finite subdirectly irreducibles, and, again, only
finitely many ones. Hence K is generated by a finite algebra.

1.13 CoroLrLARY. Let K, K, € AMT) be such that K, is tabular and
K, <K,. Then K, is tabular as well.

Proor: By theorem 12, A(K,) is finite. Since A(MT) is distributive,
A(K,) is finite, too. Hence K, is tabular.

1.14 CoroLLARY. Let K eA(MT) be tabular. Then K has finitely
many covers in A(MT).

Proor: Let Kg; = {W;, ..., A,}. The A, ¢ =1, ..., n are finite. Let
% =max{h(W)|i=1,...,n}, and let ¥ = min{m | A; is m-generated,
4 =1,...,n}. We claim that whenever K « K, then Ky, consists of
{finite) (k--1)-generated algebras of height <<#-+1. It will follow that
whenever K —~ K; then K, = V(Kyg;) where Kig; € H (Fgrpnsny (5-+1)).
Sinee Fgrg1) (¥ +1) is finite this shows that K has only finitely many covers.

Firstly, suppose that K « K, and that B eK,g; is such that 4(B)
=h>mn+1, B finite. Then B ~F* for some frame F = (W, R) of
height #. Let w € W be such that A(w) = n-+1. Then & is a subdirectly
irreducible algebra of height n-+1 and &) € H(B). Let K, = K+V(§),
then K<K,< V(8B), and since h(K) < h(K,) < h(K,), K< K, <K,,
2 contradiction.

Next suppose that K — K, and that 8 e K g, is such that B is not
{k+1)-generated. Choose » minimal k such that B = [{b,, ..., b,}]y, and
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let By = [{byy ...y b,_1}u. Then B, is a subdireetly irreducible algebra.
in virtue of the first half of the proof of lemma 11. Since B, is not k-gene-
rated — otherwise B would be (k+-1)-generated — we have K < K+
+V(8,) <K,. However, since |B|> |B,|, B¢ V(B,), B ¢K, thus K+
+V(B;) < K,. We thus arrived at a contradiction.

We mentioned already that in A(M) a cover of a tabular variety need -
not be tabular. This phenomenon oceurs already at a low level. Let 2
and 2% denote the modal algebras {0,1} with an operator ° satisfying
0°=0,1°=1 and 0°=1° =1, respectively. It is well-known (ses,
for example, [4]) that V(2) and V(2%) are the atoms of A(M). We shall
now give an example of a non-tabular cover of V(2*), which belongs
to M°. '

Let & = (W, R) where W = Nu{a, b}, a,0¢ N, ¢ # b, and where

W £ b, v=aqa
Ruv iff {{w,v} = {d,n} for some nelN
w>v, w,veN

b

Let 9% — [ ]n & 8(F*). Note that 4 consists of the finite and cofinit.
subsets of W. Indeed, 0° = {a} € 4, {a}° = {a,b} e 4, {a,b} = {0,1}c 4
andif {a,1,...,k} €4, k>1then{a,1,...,b+1} = {a,0,1,..., ke d
Thus 4 contains all atoms and therefore all finite and cofinite sets. Fur-
thermore, if @ € A and & is finite then so is 2°, and if # is cofinite we have
the following cases: '

(i) # = 1. Then 2° = 1.
(ii) @ = {d} or = {a}. Then &4° = {a, b}.
(iii) 2< {n}, neN. Then 2° < {a}u[1, nl.

It follows that the finite and cofinite subsets of W form a subalgebra
of §*, which equals 9. Since U is 0-generated, it is the free object on ¢
generators in the variety V(¥). Now let B ¢ V()g;, and let By, = [0 ]y
& 8(B). Then B, € H (Fpey(0)) = H(H). Let f: A~B, be an onto homo-
morphism. If fis not 1 —1, then there is an # € 4, # +# 1 such that f(z) = 1.
By the remarks above, #° = {a, b}U[1, n] forsomen € N, hence 4™ = {a}..
It follows that B, = 27, i.e. the modal algebra {0, 1}, satisfying 0° = 1°=1.
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Therefore B satisfies 0° = 1. However, the only subdirectly irreducible
modal algebra satisfying 0° = 1 is 2%, so B =~ 2*. On the other hand, if f
is 1—1, then % e 8(B,) = §(B). Hence, if K is a variety such that ¥V (2*)
S K< V() then there is a B € Kg; = V(U)g such that B 2 2+, which
implies that % e §(B) <K, whence K = V(). Since A¢ V(2+), V(2%)
< V(A), so V(A) covers V(2%). Because V(W)psr = {27}, as we have
seen, V() is nontabular. And since Vo e A, ¢ £ 1, a4~ = {a} = 27,
and obviously also 1°° ==1°°, U satisfies the equat1on ' = a° Thus
V() < M. i

A slight modification of this example- prowdes a non-tabular cover
in"M® of V(2). Indeed, let § = (W, R’), where R’ = Ru{(a, a)}, and
let W =[{a}]lyesl %}'*) Then V(2)«V(A), as one can show . using
2 somewhat more elaborate argument. : :

For an example of a family of non-tabular covers of V(2) of the car-
dinality of the continuum, belonging to MR?, we rejfer to [2]. The simpler
example we gave here can be used t0 obtain a continuum of covers of
V(2%) (and in a similar way of V(2)) in 4(M*). We indicate the prOCéduré
briefly. Let for M < N §;; = (W, R,,), where RM = R\{ b,n)|ne M},
and let Ay, =[Oy € 8(F3). Then A, satisties o> = o™, hence Ay € M2
By an argument similar to the one used above we show that V(2%)
~ V(Ay). Finally, since for M, M’' = N, M = M’', clearly W, = Ay, it
follows that V(Uy) # V(Wyy), becanse Uy = Fpa,yy(0)-

2. Pretabular varieties in A(MT)

- A-variety K = M is called pretabular if K is non-tabular but every
proper subvariety is tabular. Using the fact that each tabular variety
is finitely axiomatizable (see, for example, [4] or [13]), a straight forward
application of Zorn’s lemma shows that every non-tabular variety con-
tains a pretabular one. The continuously many covers of V(2) and V(2+)
are examples of pretabular varieties. They are not generated by their
Tmlte members. In MT (= M) the situation is nicer, however.

"2, 1 THEOREV.[ Let K e AMT), If K is pretabular, then K is genemted
by 98 fmzte members.

Proor: If K c KT (n) for some 7 € N then K is locally fmlte, and
hence certainly generated by its finite members. If K & KT(n), n e N,
then K contains finitely generated algebras of height n, for every n € N,
in virtue of Lemma 1.10. Let 9, %,, ... be a sequence of finitely generated
algebras in K such that A(%,) =5, n =1, 2, .... The ¥, are finite, again
by the local finiteness of the KT (n), and K; = V({,1» =1,2,...}) is
non-tabular, since if it' were tabular, it would be contained in some
KT(n), contradicting the fact that h(,,,) = n+1, whence U,,,, ¢ KT(n).
Hence, by pretabularity of K, K = K and K is generated by its finite
members.
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Thus far the positive results concerning tabular and pretabular varie-
ties holding for MRT are valid in MT as well. Though it would not seem
unreasonable to hope for an analogue of Maksimova’s result [11], that
there is only a finite number of pretabular varieties in MRT, the apparent
similarity between MRT and MT turns out to be deceptive: in fact, MT
containg 2% pretabular varieties, as we will show now. Our point of de-
parture is the interior algebra B(¥u(1)), i.e., an algebra in MRT whose
lattice of open elements is the free algebra on one generator in the variety
H of Heyting algebras, and which is generated by its open elements as
a Boolean algebra (cf. [3]). By modifying the frame § = (W, R}, used
to represent B(iyﬂ(l)), — in fact, by making the elements of suitable
subsets of W irreflexive — we obtain 0-generated infinite algebras which
turn out to generate pretabular varieties.

We need some preparation.

2.2 DEFINITION. If p is an M-polynomial then p* is an M-polynomial
defined by induction according to the following clauses:

(i) If p is a variable x;, then p* =p = x;.
(ii) Suppose ¢* has been defined for all polynomials ¢ of length
< n. Then, if p has length n-+41, we define:
a)y if p = g+ then p* = ¢g*+r*
b) if p = q'r then p* = q*-r*
¢) if p = ¢’ then p* = (¢*¥)’
d) if p = ¢° then p* = ¢*-¢*°.

2.3 LEMMA. Let § = (W, R) be a frame, W = F*. Let §F = (W, R")
where B" = Ru{(w,w) |we W} and let A" = (F)". Then, for any ay, ...
weis 8, €A and any n-ary M-polynomial p,

Mgy iy @) =DV Gy, .00y ).

Proor: By induction on the length of p. If p is a variable then the
statement obviously holds. Next assume that the assertion holds for
all polynomials of length < =, and let p have length n4-1. The only in-
teresting case is p = ¢°, for some polynomial ¢. Then

}’W(“u ceey By) = (qw(au seey "’n))a
= Zgr(q*”(al, ey an))
= {weW|Vve W[Ewv=ve¢¥a,...,a,)]}
={weW|VYveW[[Rwovw = v]=v e ¢*¥ay, ..., 4,)]}
= l%(q*m(“u veey an)) nq*ﬂ(“u ey B)
== (q*%)o(“ly seey an)n!l*m(“u ceey Gy)
= p*%(ay, ...y ay).

2.4 DEFINITION. Let W = Nx{0,1}. For M = N let R, be the
trangitive binary relation on W given by:
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i=3, m>n
t=1,]=0 m>n
Ry(m,i)(n,§) iff {¢=0,]=1, m>n+l
i=j=0m=mn m¢M
i =j=1m=n meM

Let {5 = (W, Ry), and let Ay = [@ 1y € 8(Fh)-
The bottom of F,, with Mn[1,5] = {1, 3}, looks like:

( 50)¢I I (51
(1.0)61 (4

(30

(200¢ I @n

(1,0 ° ~X1,)

Observe that the subalgebra of (§3,)" of finite and cofinite subsets:
of W is isomorphic to B(Fa(1)). The set {(1,0)} corresponds with the.
free generator of Fy(1) (Whioh also generates B(f‘yn(l))), and hence there-
are for every n e N unary M-polynomials p,, , and p,, such that,
Pona ({(1, 0))) = {(n, 0)} and py, ({(L, 0)}) = {(n, L)}in (§})*. By lemma 3:
for any M<N, (@5 ¥, 0} = {n, 00}, (@RFE{L, 0)))
= {(n,1)}. Now, whenever 1 € M < N, we have 0° = {(1, 0)} in §%,, so.
if 1e M then Uy = [oTn e S(Fi;) will contain all atoms of F, and
therefore the finite and cofinite subsets of W.

2.5 LemmA., If 1 e M = N then V(W) is a pretabular variety.

Proor: By the remarks preceding the lemma U, contains all finite-
and cofinite subsets of W. Let K be a variety such that K < V(). First:
we show that if K contains an infinite subdirectly irreducible then %, € K.
and hence K = V(Uy). Let A € Ky, be an infinite algebra. By Joénsson’s.
theorem W e HSPy (W) So let A, € Pur(Wyy), Az € 8(A,), b WUp—A an
onto homomorphism Note that since Wy =~ Fya,,(0), [ e = [ohe
o~ Wpp. If [ 1% == Ay, then there is a u e [0z = A, such that u° #1,.
h(v°) =1, and hence U e H((v°]™). Let u° = 9y,(0) for some unary
polynomlal g. Since the algebra (qu(O)]%M is finite, (qg[M(O)]“M

= (qu, (0)1™, by the properties of ultra products. Since (9a, (0)1™ is.
0- generated (gw, (0)1** = (1™, and hence (u°]*: is finite. But that,
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would imply that U is finite as well, contradictory to our assumption.
It follows that [@ T = %A, whence Uy e S(A) = K.

Next suppose U € Kpg;. By the argument in the previous paragraph
we see that % e H((4°]"M) for some u° e Ay, and hence A =~ (u]"M for
some u € A, More precisely, the finite subdirectly irreducible algebras
in V(%) ave the algebras ()5, » €N, i€ {0,1}. Here (Far)m,q deno-
tes, as usual, the subframe of §;, generated by the element (n, ). Now
suppose Kyg; is an infinite set. Since (Fy)h.q € H (Fuh.y Whenever
n+1 < m it follows that Kpg; = V(Wy) mer- But elearly Wy € SP({(Far)fns |
ineN, ie{0,1}}), and therefore K 2 V(Kzg) 2 V(Uy). We have thus
shown that every proper subvariety of V(‘lIM) contains no infinite sub-
directly irreducibles and only flmtely many finite ones, and is therefore
tabular.

2.6 TaEoREM. A(MT) contains 2% p?’etabular varieties.

Proor: Let M, M’ = N, such that' 1 e M, 1 € M’, and suppose that
Wys 22 Wy Lot fr Ap—>Ayp be an 1somorph1sm Since f(0) = 0, f({(n, 9)})

f(P:fﬁ{z—l)(Oo)) pjﬂ?ﬁ{z’—l) (0°) = {(n, 7)}. Hence Iz, ({(n, )¥) = {(n, 9))
it Iy, ({tn, ©)}) < {(n, )}, from which it follows that (», 9)
is reflexive in &, iff (n, 7) is reflexive in §,. Thus M = M'. Hence, if
M, M'c N,1eM, 1e M', M # M, then My, * Ay. But since Ay, and
Uy ave 0-generated, §pq,,)(0) = Ay and Fpary,,) (0) _«Q[M, it follows
then that V(Uy) # V(QIM) Hence, by lemma 5 there are 2% pretabular
varieties in A (MT).

This refutes the elalm in [13} that MRT and MT behave sumlally,
.n this respect

3. Pretahular varletles in some sublattlces of A(MT)

Though the result of the previous sectmn mdlca,tes that it will be
difficult to describe all pretabular varieties belonging to 4(MT), some
more information can be obtained if we restrict ourselves to pretabular
wvarieties having certain desirable properties. We need some preparation.
First we show that every finite algebra of given height contains at least
one element of a certain set of finite algebms of that helght a8 a sub-
algebra,

3.1 DerINITION. Let § = (W, R) be a frame., An equivalence relation
B < W xW is called a congruence relation (on &) if for all o, w',ve W
if Rwv and (w,w') € ® then there is a v e W
such that Rw!v’ and (v, v") €0, v

Fmthermore, if 0 is a congruence on &, then §/@ will denote the frame
(W0, Ri®) where WO = {@| W e W}, where W (or ®°) stands for



Pretabular varieties of modal algebras 115

{veW|(w,v) €0}, and R/O wo iff there are w’' €, v' €% such that
Bw'v'. The map W—W /O defined by w—>w will be denoted by »e.

3.2 PROPOSITION. The map vy is an F-morphism from F to § /O when-
ever O is a congruence on F.

Proor¥: By the definition of R/O, v, preserves the relation. In
order to check the second property of F-morphisms, let R/@ ws. There
are w,,v; € W such that w, ew, v, €% and Rw,v,. But then, since &
i3 a congruence, there is a v’ € ¥ such that Rwe’ and (v,, v’) € 6. Hence
ve(v') =7 =7, as was to be shown.

3.3 COROLLARY. Let § be a frame and let © be a congruence on .
Then (F[O)* € S(FT).

We recall the definition of a cluster.

3.4 DEFINITION. Let & = (W, R) be a frame. A set 0 = W is called
a cluster if

(i) for all w,» e C, Ruwo.
(i) O is maximal with respect to this property.

In particular, every cluster consists of reflexive elements. And if R
is transitive then it is easily seen that different clusters are disjoint.

3.5 DEFINITION. Let & = (W, R) be a transitive frame. Then y
{or, more explicitly, yg) will denote the relation {(w, o) |w,ve W, w = v
or w and v belong to the same cluster}.

3.6 PROPOSITION. Let § = (W, R) be a transitive frame. Then y is
a congruence relation on-§F and h(F) = b(F/y).

Proor: First observe that y is an equivalence relation. Let w, w’, v € W
such that Bwo and (w, w') e p. If w = w’ then Rw’'v and if w £ w’ then
Bw'w, Rwv, whence, by transitivity, Bw'vs. In order to verify the last
statement, we need only observe that the image under v, of an R-chain
is an R-chain.

If § = (W, R) is a transitive frame then §/y is transitive as well,
and does not contain any clusters except possibly one-element clusters,
and hence no circuits. Thus any sequence (wy, ..., w,), w; e W, i =1,...,n
satistying Rw,w;, ,, w; ¥ w;,;, is an R-chain in .

As before, let, for me N, W,, = {weW [h(w)<m} < W and §,
- (Wm’ BRo(W,, XWm))

3.7 DEFINITION. Let § = (W, R) be a transitive frame such that
o

W = U W,, containing no clusters having more than one element. 1 or,
m=1

more explicitly, 4g will denote the binary relation defined by induction
on the height as follows:

2 — Studia Logica 2-3/80
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(i) A= W, xW, is the relation defined by
Rww and Rvv
(w,v)el, Iiff or
TRww and T|Rovv,

for w, v e W, such that k(w) = h(v) = 1.
(i) Next suppose that 1, < W, xW,, has been defined. Let
Anp1 = Ap{(w, ©) | B(w) = h(v) = m+1, (w, ) satisfies (*)}, where (*)

denotes the property:

(Rww and Rwvv) or (" Rww and ~T1Rwv)
(* and
{@'n | Rwu, h{uw) < m} = {@*n | Row, h(u) < m}.

Now let 4 ={J 1 .

m=1

o8]
3.8 PROPOSITION. Let § be a tramsitive frame such that W = (J W,
m=1
containing no clusters having more than one elemeni. The relation A is a con-
gruence relation on § and §[A contains finitely many elements of height n,

for every m e N.

Proor: First we show that the 4,, m =1,2,... are congruences
on &,, m =1,2,..., with the additional property that if (w,)e i,
then h(w) = h(v) < m.

(i) Clearly 1, is a congruence on ;. Indeed, it is an equivalence
relation, and if w, w’, v € W, such that Rwv, and (w, w’) € 4,, then, since
h{w) =1, w = v, hence Rww and thus Rw'w’, whence we can take v
to be w’. Furthermore, if (w, v) € 4,, then h(w) = h(v) = 1.

(ii) Suppose that 1,, is a congruence on &,, such that if (w,»)e i,
then h(w) = h(v) < m. Firstly, using the fact that %, is an equivalence
relation on W,,, we see that 7,., is an equivalence on W, .. Let w, w’,
ve W, be such that Rwv and (w, w’) €4,,,,. I h(w) < m then w e W.
and (w,w’)el,, and since Bwwv, h(v) < m, s0o ve W,, as well. Because
by assumption 1, is a congruence, there is a v’ € W,, such that Rw’¢"
and (v, ') €4,,. Next suppose that h(w) = m-+1. Then h(w’') = m-+1
and (w, w’) satisfies (*). Suppose h(v) = m+1. Then w = v since by our
remark preceding definition 3.7 our assumptions on § guarantee that
if Rwo, w # v, h(v) = m-+1 then h(w)> m-+2. Hence Rww, so Rw'w’
as well and we may choose for o' the element w’ itself. Now suppose
h(v) < m. Then ¥m & {@' | Bwu, h(u) <m} = {@' | Rw'u, h(u) < m}, so
there is a u, such that Rw'w, and %*n = %'n. But then (v, %) € 4, S Ay, 1,
so we may choose v’ to be the element «. Again, we see that (w, v) € 1,
implies h(w) = h(v) < m 1.
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We verify that 2 = (U 4, is a congruence relation on §. If we W,
m=1

then w € W, and hence (w, w) €4, < 4. If (w, v) € 4 then (w, v) € 4,, for
some m, and hence (v, w) € 1, £ A. Furthermore, if (w,v) e i, (v,u) e i,
then there is an m € N such that both (w, %) e 1, and (v, %) € 4,,. Hence
(w, %) € Ay, < A Thus Ais an equivalence relation on W. Now let w, w’,v e W
such that Rwv and (w,w’) € .. But then, sinee there is an m e N such
that w, w', v € W, (w, w') € 4,,. Since 4, is a congruence there isa v’ ¢ W,
such that Rw'v” and (v,v)el, S A

The second assertion of the proposition is easily proved by induction.
First note that since (w,wv)e 1 implies h(w) = h(v), for every we W,
h(w) = h(®%"). Now, there are at most two equivalence classes consisting
of elements of height 1, giving rise to two elements of height 1 in W/A:
a reflexive element and an irreflexive one. Now assume that W /4 containg
finitely many elements of height < m. Let w, v € W have height m +1,
and suppose w, v are both reflexive. Note that if (w, v) ¢ 2 then {# | Rwu,
h(u) < m} # {@ | Row, h(u) < m}. Hence the map w'—{u | Rwu, h(u) < m}
is one-to-one from the set of reflexive elements of height m -1 in /2
to the set of subgets of the finite set of elements of /A4 of height < m
Hence there are only finitely many reflexive elements of height m 1
in §/4, and in the same way one proves that there are only finitely many
irreflexive elements of height m+1 in § /1. Since any element is either
reflexive or irreflexive this proves the claim. ,

It follows from 3.6 and 3.8 that for every » € N there are finitely
many frames, which we will denote by & = (W7, Ef), 1 <4< m,, such
that for any transitive frame § of height » there is an ¢, 1 <4< m,, such
that (§F/y)/A = §;. This observation enables us to give another characte-
rization of the varieties KT (%), » € N, which played an important role
in section 1. Recall that a finite subdirectly irreducible algebra B belon-
ging to a variety K is called splitting ¢n K if and only if the class {%
cK |8 ¢ SH(N)} is a variety, which then is denoted by K/B. If 8B is
splitting in K then for any subvariety K, of K, V(8) < K, or K, < K/B
(but not both); hence the lattice of subvarieties of K is the disjoint union
of the intervals [V (B)) and (K/B]. In [13] it was shown that every finite
subdirectly irreducible in MT is splitting. For a further discussion of
splitting varieties we refer to [2] and [5].

Let for n e N 8" = {87, ..., B} } denote the set of finite subdlrectly
irreducible algebras of helght n belongmg to H (@O 1r<i<mg,}).
Observe that since 7, 1< i< m, are ﬁmte, S™ ig a finite set of finite
algebras.

3.9 TueporEM. For ne N, KT(n) = ({MT/B |B 8"}

ProoF: (i) Since by 1.6 KT (» ) consists of algebras of height < »
§*+1AKT(n) = @, whence KT (n) = ({MI/B | B e S"'}.
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(i) Let Ae()MI/B |B 8"} be finitely generated and assume
that A ¢ KT (n). Then A(N) > n, and by 1.10 there is a B ¢ H(Y) such
that A(B) = n-1. In virtue of 1.8, B is finite, and hence 50 is Fy. Since
B e MT, Fy is transitive. By Lemmas 6 and 8, (Fg/y)/4 =~ FiH!, for some
i, 1 <4 < m,,,, whence there exists a BF*' € §"*! such that B! e HS(B).
But then B?*'e HSH(A) < V(A), contradicting our assumption that
e ({MT/B B eS" '} o

Observe that if § is a reflexive and transitive finite frame of height
% then (§/y)/4 is the linearly ordered frame K, on n elements. It follows
that for n e N KT(»)nMR = MRT/(K,)"; these are just the varieties
we used in [4] to establish the result that a cover in the lattice A(MRT)
of a tabular variety is tabular.

Now we want to use lemmas 6 and 8 to obtain some more information
concerning pretabular varieties. The first result deals with pretabular
varieties of finite height.

3.10 TuEoREM. For n e N, KT(n) contains only finitely many pre-
tabular varieties. -

Proor: Let K < KT(n) be a pretabular variety. Since KT(n) is
locally finite, K is generated by its finite members. Let K = V({¥, | n
=1,2,...}), where every ¥, is finite and subdirectly irreducible. Since
K < KT(n), h(N,) <n for i =1,2,.... Because K is pretabular K is
generated by any infinite subset of {W; |7 =1, 2, ...}, whence we may
as well assume that () =u, ¢ =1,2,.... Let W, =FF, ¢ =1,2,...,
where §, = (W, R;). First suppose that, up to isomorphism, there are
only finitely many algebras §;/y;, ¢ = 1, 2, ... (we write y, for vg,). Then
we may assume, in virtue of the pretabularity, that thereisan § = (W, R)
such that for all i e N &, /y; = &; let F/A =&}, where 1 < j < m,. Since
W is finite, there is a w, e W such that lv;il({wo})l, i =1,2,... is an
unbounded sequence, and since i (K) = n, we may assume that &(w,) = n.
Define a relation m; on &, as follows: for w, v e W,

(o, v)- cm, iff vlovyi(u-;) = 7,07, (v) if h(‘w) = h(v) < n

w=0o if A(w) = h(w) =n

Clearly, =, is an equivalence relation. In order to verify that =; is a con-
gruence relation, let w, w’, v € W,, such that (w,w’) e m;, Rwv. If h(w)
= n, then apparently w = w’ so we may choose v =wv. If h{w)<n
then we use the fact that y,, 4 are congruences. Since §F is subdirectly
irreducible, &, is generated, and hence so is &,;/m;. In fact, §;/n, is iso-
morphic to the frame ((WiN{v;(w,)}) vy ({w.}), B), where

Rlwv and h(w) <n
Rwy iff or
h(w) = n
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(the W, are assumed to be disjoint from W7.) Hence §;/n; is obtained
from g} by replacing the root — which is a reflexive element in this
case — by a cluster. Since the (§;/=,)* are subdirectly irreducible, and
since there are infinitely many non isomorphic algebras among them,
K is generated by the set {(§;/=;)" 14 =1,2,...}. Since there are only
finitely many frames &} to choose from, this gives rise to only a finite
number of pretabular varieties of height n of this type.

Next suppose there are infinitely many non-isomorphic algebras
&:/v;- Then we may as well assume that the §; themselves have no clusters
containing more than one element. We also may assume, again by pre-
tabularity of K, that there is a j, 1 <j < m,, such that &;/4, = §}, for
all ¢ =1,2,.... Again, there is a w € W} such that ;' ({w})l, ¢ = 1,2, ...
is an unbounded sequence. Because the §, are generated frames, any
such w will satisfy h(w) < n. Let w, be an element of maximal height &
with this property. We claim that & = n—1. For if k < #—1, then there
is for every I € N a w; € W, such that &(w;) <n—1 and w; has at least
successors in v;i;({wo}); then, however, would the ng-,"l =1,2,... be
an infinite sequence of generated frames, and hence K would be generated
by the {f,-;;il, l1=1,2,.... But since h(‘{ywil) < n—1, this would contradict
our assumption that h(K) = n. We thus showed that h(w,) =k = n—1.
Now define =; on §,; as follows: ‘

for w, v e W; let

V3, (w) = v, (0) # w,
(w,v) em; iff or
w="7.

Clearly, =; is an equivalence relation. To see that n; is a congruence, let
w, w'y v € W, such that (w, w') € n; and Rwwv. If h(w) = n then w = w' —
since the §§; are generated frames — and we may choose v' = v. Similarly
if h{w) =n—1 and w = w’, which takes care of the case vz, (W) = w,.
If h(w) < n and v, (W) # w, then v, (v) 5 w,. Since (w, w’) € A, and A; i
a congruence there is a 9" € W, such that Rw'v’ and (v,v’) € 4;. But
because v, (v) = v,%,(v’) # W,y (v, v") € m;. Note that §;/n; is a generated
frame, and that there are infinitely many pairwise non isomorphie al-
gebras among the (§;/m;,)", ¢ =1,2,.... Therefore K is generated by
{@:fm)t |3 =1,2,...}. In fact, §;/n; is isomorphic to the frame ((W7N\
Nw.p) vyt ({w,}), B), where ' -
RBiwv, w,ve Wi, w, v #w,

1
P Biww,, we Wiyw # w,, v €y’ ({w.})
Riw,w, v e W}, v # w,, w € vy ({w.})

| Bfw,w,, w, v € v,?il({wo}), W= .

(the W, are assumed to be disjoint from W}.)



120 ' W. J. Blok

Since there are only finitely many &;’ s, and every &7 has only finitely
many elements of height n —1, this gives rise to finitely many pretabular
varieties of height # of this kind as well.

In order to summarize the results of the proof of 3. 10 we introduce
some more notation. Let, for a generated frame 7, 1 <¢< m,, F(C,)
be the frame obtained from 7 by replacing the root — i.e. the element
of height » — by a cluster containing m elements, as in the first half
of the proof of 3.10. Let, for a generated frame F7, 1 < i< m,, F*(DZ)
be the frame obtained from §* by replacing the element w of height n—1
by m “copies”, like in the second half of the proof of 3.10. Then it follows
from the proof of 3.10 that any pretabular variety K of height # is either

VB (CR) Im =1,2,...}), for some 4; 1<i< m,, or VH{FHDL* |m
=1,2,...}, for some 4, 1<@<m and some w e W} of height n—1.
Although, conversely, not every set of algebras of this form gives rise
to a pretabular variety, it is not difficult to see that there are countably
many pretabular varieties of finite height in MT. Indeed, let L, = ({1, .

..y #}, <). Then h(L,) ==, L, is a generated frame and since S(L*)
= {Lt}, L, e{‘{;“|1<z<m}LetKn V({L,(D%) | m =1,2,...}. The
frames L,(D2) look like:

Lo Ny QY
h ‘4 | ‘4

n *n

Lp= Ly (D2 L, 103) | L, (0%)

For every n € N, K, is pretabular, and if » s m then K, £ K,,.

" A modal formula which has attracted considerable attentlon in the
literature ([14], [1B]) is Lob’s formula: [O(Op->p)—Cp. Let L_ be the
normal extension of K axiomatized by Lob’s formula. The logic L -is
complete — in fact, it has the finite model property — and [p—[Cp
is one of its theorems. Furthermore, for any frame § = (W, R), § k L
iff B transitive and the.converse of R is a wellfounded relation. In parti-
cular, if § F L then R is irreflexive. Let MITA be the variety of modal
algebras corresponding with Lob’s logic, i.e. the subvariety of M (which,
because Op—[Op € L, turns out to be a subvariety of MT) defined
by the equation (2 -+o) +a° = 1.
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3.11 TurorEM. MITA. contains countably many pretabular varieties.

ProoF: The varieties K,, given in the preceding paragraph, belong
to MITA; hence MITA contains at least countably many pretabular
varieties. In virtue of 3.10, MITA contains only countably many preta-
bular varieties of finite height. Now let K = MITA be a pretabular variety
of infinite height. By 2.1, K is generated by its finite members. Let
% = (W, R) be a finite frame, such that §* e K. Then § contains no
circuits and is irreflexive, henee §/1 = Ln(: (L, ...,n}, < )), for some
n e N. Since K is of infinite height K contains infinitely many L;%s,
thus K = V({L} |» =1,2,...}). Therefore MITA contains only one
pretabular variety of infinite height.

Another extreme is the case where the relations of the frames involved
are all reflexive, i.e. where we restrict ourselves to subvarieties of the
variety MRT of interior algebras, defined by the law 2°-z = #°, in addition
to the axioms of MT. The pretabular subvarieties of MRT were first de-
termined by Maksimova [11] (whose proof is based on an announcement
by Kuznetsov [9]), later by Esakia and Meskhi [7] (whose proof, however,
containg an esgential gap) and by Rautenberg [13].

Let, as before, K, = ({1, ..., 7}, <).

3.12 TurorEM. The pretabular varieties of interior algebras are:

(1) V({Kl(om)+ fm =1,2,...})
(i)  V({K(C)" Im =1,2,..3)
(i) V({Ey(Dp)" |m =1,2,..3)
(iv) V({Ks(szn)+ jm =1,2,..})
(v) VUK, |n =1,2,..}).

Proor: It is a matter of easy verification te show that these five
varieties are pretabular. Now let K be pretabular, K =< MRT. By 2.1, K
is generated by its finite members. Let § = (W, R) be a finite frame
such that F* € K. Since every element of w is reflexive, (F/y) /Z ~ K,,
for some n e N. If K contains mfmltely many algebras K, .then
K=V({K}|n=1,2,..}). If not, then K is of finite height, say of
height », and by the remark following 3.10, K = V({E, (C;)* | m
=1,2,..}) or K =V({E,(D;)" | m =1, 2,...}). However, since
K,(0,)" € 8(K,(0,)*) whenever n > 2, and likewise K, (D;,)* € 8 (K, (Dj,)*)
whenever n > 8 it follows that K is of height < 3, and is one of the varie-
ties listed in (i)-(iv).

By a result in [5], the lattice of varieties of Heyting algebras is iso-
morphic to the lattice of subvarieties of the variety MRTA, corresponding
with the modal logic axiomatized by the formula [ (O(p— Dp)—->p)—>p
(in [14] referred to as Grzegorczyk’s formula). The only pretabular varie-
ties contained in MRTA are the ones listed as (iii), (iv) and (v). Hence
there are three pretabular varieties of Heyting algebras (ef. [12]).
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As a last example we want to determine the pretabular varieties
in MT satisfying the equation 0° = 0, that is the pretabular subvarieties
of MT/2*, That the ten varieties mentioned in the theorem are pretabular
was observed by V. Meskhi; we shall prove now that these are all. Let
ford c {1,...,n}, MZ = ({1,...,n}, < U{(i,4)|iecd}).

3.13 THEOREM. The pretabular subvarieties of MT satisfying 0° = 0
are:

d)-(v) of 3.12 ‘

(vi)  V{MPDL) |m =1,2,...})
(viiy  V{MPH D) [m=1,2,...})
(viii) V({MP3DE) |m =1,2,...})
(iX) V({M§3}(D7%rb)+ |m = 17 2, })

(x) VMM |n=1,2,..}).

Proor: It is not difficult to verify that (i)-(x) give rise to different
pretabular varieties. Now let K < MT be pretabular and assume that
0° = 0 in K. By 2.1, K is generated by its finite members. Let § = (W, R}
be a finite frame such that §* ¢ K. Then §, = §/y/4 is a frame which has
one (reflexive) element of height 1. Let §, = (W, E,), and let wy, w,, ...
ooy W, € W, be such that w; is reflexive for ¢ =1,...n, Bww;, ,, w;
Wi, 6 =1,...,n—1, and h(w,) =1. Define f: F—K, by f(w)
=min{jlje{l,...,n}, Rww;}. Since for all we W, Rww,, f is well
defined and since the w; are reflexive and ~|Rw,w; if j < 4 f is onto. Fur-
thermore, f is an F-morphism. For if w,v» < W such that B,wv then
min {j | Rww;} < min {j | Row;}, by transitivity of R, whence f(w) < f(v).
And if B,f(w)j, then k& = f(w) < j, whence Rww,, Rw,w;, so Rww;. But
sinee f(w;) = j, it follows then that f is an §-morphism. We infer that
if K contains Kripke algebras of finite frames with reflexive R-chains
of arbitrary length, then K — V({K} |» =1,2,...}). If K is not of
finite height but not of this form — i.e., for every frame § such fthat
&t eK, every reflexive R-chain is of length <{m for some fixed m —
then there is for every »n ¢ N a finite frame § = (W, R), containing no
clusters with more than one element, such that §* e K and A (§)—r = n,
where 7 = max {h(w) | w reflexive, w ¢ W}, as an easy argument shows.
Let @ be the equivalence relation on § defined by

h{w), h(v) <r
(w,v) e®@ ifi or
h(w) = h(v)
Clearly, ® is an equivalence relation. And if w, w’,ve W such that
(w, w’) € ® and Rwo, then if h(v) < r take for v’ the element of § of height:

1. If h(v) > r, then h(w)> h(v)>r, so h(w) = h(w’). Hence there is
a v’ € W such that Rw'v’ and h(v’) = h(v), i.e., (v',v) €. Thus O is
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a congruence relation. Clearly §/O o MY, thus K = V({M"+|n
=1, 2,...}). It follows that (v) and (x) are the only pretabular varieties.
of infinite height in MT which satisfy 0° = 0.

The case that K is of finite height remains. Suppose that K has height.
n. In 3.10 we have seen that K = V({F(0,)"|m =1,2, ...}), or
K =V({FD)tim =1,2,...}) for some 4, 1<i< m,, where h(w)
=n—1. On the frames §7(0,) we define a congruence relation 6; as.
follows: -

(w, v)e O] iff h(w), h(W)<n~1 or w =12
and on the frames 7 (DY) a congruence @ as follows:
(w,v) €O? iff w,ve WP, w, v #w,, h(w), h(v) <n—1 or w = v,

0; and O} are congruences, essentially because F7 has only one element:
of height 1 which is reflexive, F7" satisfying the equation 0° = 0. It
follows that §7(C,)/@; is isomorphic to either K,(0,) or K,(0,) and
D)6} to Ky(DL), MP(DL), K,(DL), MUI(DE), ME3(D) or
M (DZ2). Hence K is equal to one of the varieties listed under (ii), (iii),.
(iv), (vi), (vii), (viii) and (ix). ,
Apparently, it is the fact that 0° > 0 in general in MT which is respon--
sible for the presence of so many pretabular varieties. Note that the-
varieties V (2,,) constructed in section 2 satisfy 0° = 0° whenever 2 ¢ M —-
hence, there are 2% pretabular varieties in MT satisfying 0 = 0°.
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