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Abstract. Given a normal (multi-)modal logic O, a characterization is given of the finitely 
presentable algebras M whose logics L d  split the lattice of normal extensions of O. This is 
a substantial generalization of Rautenberg [10] and [11] in which 61 is assumed to be weakly 
transitive and ~r to be finite. We also obtain as a direct consequence a result by Blok [2] that for 
all cycle-free and finite d L d  splits the lattice of normal extensions of K .  Although we firmly 
believe it to be true, we have not been able to prove that if a logic A splits the lattice of extensions 
of O then A is the logic of an algebra finitely presentable over 61; in this respect our result remains 
partial. 

A. Introduction 

The concept of a splitting has been very fruitful in modal logic. Although 
splittings originated in lattice theory they proved to have rather surprising 
applications to modal logics with no obvious relation to lattice theory. The 
idea of a splitting in modal logic is this: given a logic O, is there a logic ~9/d 
whose models are all the O-models that omit d in the sense that the variety 
they generate does not contain ~',, or, equivalently, does there exists a least 
logic containing 0 not having d as a model? If it exists it is called the splitting 
of O by' d .  

Splittings first appeared in pure modal logic in Fine [-5] where they were 
called frame logics. By showing that the lattice of normal extensions of $4 has 
N o incomplarable splittings, Fine showed that this lattice has 2 ~~ elements. In 
[2-[, W. Blok applied splittings to obtain completeness results. He proved that 
a normal extension of K is complete exactly if it is a splitting logic of K and 
that the degree of incompleteness is 2 ~~ otherwise; and that an algebra splits 
the lattice of K if and only if it is finite, subdirectly irreducible and cycle-free. 
The first general and theoretic approach to splittings was given in Rautenberg 
[10-[, [11] and [12-[. He not only showed that many important extensions of 
K4 are splitting logics of K4, but also gave a way of deciding whether or not 
O (P) is a splitting logic of O. However, the splitting theorem presented there 
only treats weakly transitive logics~ In modal logics this is not a severe 
restriction, but as soon as the language has more than one modal  operator - 
e.g. in tense logics - transitivity is no longer a desirable property. 

Our main aim is a general characterization of all algebras which split O for 
an arbitrary normal modal logic without any assumptions of transitivity. We 
allow the language to have more than one modal operator, and also the 
splitting algebra to be infinite. However, we have to assume that the algebras 
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we are dealing with are finitely presentable over O. The road to the main 
splitting theorem presented here is quite long compared to the splitting 
theorem for transitive logics because it is no longer true that only the finitely 
presentable, subdirectly irreducible (s.i.) algebras induce splittings. Moreover, 
since O does not necessarily have the finite model property, it is not true that 
the class of splitting algebras of O coincides with the class of finite s.i. algebras, 
which is then also the class of finitely presentable s.i. algebras. The inves- 
tigation into this problem leads directly back to the lattice-theoretic definition 
of a splitting and the characterization of splitting elements in a lattice. 

The first section contains all the relevant lattice facts about splittings. In the 
next section we introduce modal logics and a new semantics which unifies both 
modal and dynamic logics. Although we do not include any application for 
dynamic logic it will become clear that this semantics makes the application of 
our results even within modal logics easier and more concise. We have tried to 
keep this part as short as possible. The third part is the heart of the paper, 
where we prove the splitting theorem. There we try to flesh out the 
interconnection between the structure of O-algebras and the structure of the 
lattice of normal extensions of O. As a byproduct we get several theorems 
which are of interest in their own right. They deal with the problem of how to 
decide whether a s.i. algebra is in the variety generated by a set of other 
algebras. Finally, a nontrivial example of an infinite splitting algebra is given. 

I am very grateful to Prof. Rautenberg for his supervision of my diploma 
thesis out of which the present paper developed as well as to Frank Wolter for 
carefully reading this paper and making many helpful suggestions. Some 
anonymous referees have also helped to significantly improve earlier versions. 

B. Splittings in Lattices 

The notion of a splitting was first used in the context of varieties of algebras 
by McKenzie [9]. However, splittings as a concept of lattice theory date back 
to P. Whitman [13] who also coined this expression. 1 

Let ~ := (L, V], U, [-], k_l, 0, 1) be a complete lattice. For aeL  define 
@ a : =  {xsL[x  >t a}, the filter generated by a, and J a : =  {x~Llx <. a}, the 
ideal generated by a. Also define g a : =  ( ~ a ,  n ,  k_l, V-I, k.J, a, 1). ga  is 
called the extension lattice of a. 

DEFINmON 1. (p, q) is called a splittin9 of ~ if L = Yq  + J p  that is, 
L = o~q u J p . a n d  O = ~-q n Jp .  In that case we say that p splits c~ and that 
q is its splittin9 companion, q is uniquely determined by p and  denoted by 5f/p 
or sometimes by  0/i). 

1 Whi tman  claims that  Birkhoff [11 uses 'cleavage' in much the same sense as 'splittings' but  
this is not  correct. A cleavage for a prime ideal in a lattice is defined in [1] as a prime quotient b/a 
such that  a s P but  b r P. Incidentally, our usage of 'splitting' which we borrowed from [9] differs 
slightly from the original one in [13]. 
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Dually, we say that q co-splits 5e if for some p J p  + ~ q  = L. Again, p is 
uniquely determined by q and called the co-companion of q. Hence there is 
a bijection between splitting elements and co-splitting elements of A ~ If p splits 
Ao and p ~-~a  then p splits ga  and alp = a U 0/1). If p r d~ we define alp:= a. 
Splittings can be iterated, e.g. (~/p)/r. There it need not be the case that r splits 
s but if it does it is easily checked that (s = (s = s U ~ / r .  Thus 
for a set N of splitting elements we define Y / N : =  U (5e /p[p~N) .  

DEFINITION 2. a ~ L is called irreducible if a = [-] ( x  (i)]i ~ I )  implies 
a = x (/) for some i ~ I. a e L is called prime if a 1> [-] (x  (i) J i ~ I )  implies a ~> X (i) 
for some ie  I. 

The dual notions are join-irreducible and join-prime. If a is prime a is also 
irreducible. If the lattice is upper continuous, i.e. if a V1 U ( b i l i e I )  = 
= tA (a cq bili~ I) ,  then every join-irreducible element is also join-prime. This 
is the case with the lattice of normal extensions of a modal  logic. 

TrtEOR~M 3 (McKenzie [9]). p splits Af iff p is prime in ~ .  

By duality, q co-splits A a iff q is join-prime in c~. Thus we have a bijection 
a ' S * - ~  Z ,  from the set of prime elements Z* of 5e onto the set Z ,  of 
join-prime elements of 5~ defined b y  o-(p):= ~ / p .  Moreover, if p ~< q in 27* 
then a(p) ~ a(q) in 27, and vice versa, in other words, a is an isomorphism of 
posets. 

C. Modal Logics: Syntax and Semantics 

We assume that the reader is familiar with the basic ideas of modal  logics 
and elementary dynamic logics. For  the latter we refer to Harel [7]. For  several 
reasons we use the language of dynamic logics. First of all it is-more general 
and flexible than modal  logics. Second, the development of dynamic logic 
cannot be ignored by modaltogicians.  Instead, they should make their results 
accessible to a wider audience by adopting the new language of programs. And 
third, most  of our general results can be stated in a more compact way  in terms 
of programs. Thus our language is the language of EPDL (Elementary 
Proposit ional Dynamic Logic). It consists of a countable set Var of proposit ion 
variables, a countable set Prg:= {rcil i em } of elementary program constants, 
the connectives -7, ^ ,  v ,  ~ ,  ,~-~,; w as well as [ ] and ( ) .  We also use the 
symbols 0 (false), 1 (true) and 1 (no operation). The brackets [ j and ( )  turn 
programs into modal  operators. Thus if # is a program and P a proposit ion 
then [#] P and (/z) P are propositions. By ~ we denote the set of propositions 
generated by Vat and Prg, by 5e, the subset of propositions generated by Var 
and {rciJien}. However, it should be said that  none of our  results ultimately 
depends on the choice of the language of programs as long as it contains ' u '  
since all o u r  results only depend on the semilattice-structure of the pro- 
grams defined by 'w'. It is only for shortness and simplicity that we 



458 M. Kracht 

have not included the star '*'. Or we could have added the intersection ' n '  
or negation ' \ '  of programs (which for a program rc yields a program \ n  
which makes all and only those worlds accessible which are inaccessible for re). 
The splitting theorem and all the others remain valid. However, our results do 
not extend to dynamic logics which have the '?' because we have no semantics 
for it. In fact, the semantic framework used here  does not extend to any 
semantics for '?'. 

The important innovation of dynamic logic is the notion of a program as an 
object of a different category. In E P D L  and P D L  the programs form an 
algebra generated by a set of basic programs in Pr o and ;, w and (in PDL)*. 
We call this algebra a P-ring: 

DEFINITION 4. An algebra 5f = ( X ,  1, w, ;) of type (0,  2, 2 )  is called 
P-rin 9 iff the following equations hold: 
(ra;) 7c; (tr; z) = (7:; tr); z 
(rl;) 7c; 1 = 1; rc = 
(raw) r c w ( a w z ) = ( r c w a ) w z  
(rcw) 
( r iw)  7rwrc = ~ 
(rdl) . re; (or w z) = ~z; tr u re; z 
(rdr) (~ w a); z - re; z w a ;  z. 

A P-ring is always assumed to be finitely generated by X o c Prg. 

DEFINITION 5. An algebra ~f = ( X ,  1, w, ;, *) of type (0,  2, 2, 1) is 
called a P*-ring if ~ [{1, w, ;} is a P-ring and for all rc e X 

(in*) (1 w ~z); re* = 7r*. 

This equation is reflected in dynamic algebras by the induction axiom 

(rc*) (p p). --, .p -* p. 

As we said already, we will not discuss the case of the star (viz. dynamic 
algebras) for this would make our introduction unnecessarily long. However, it 
should be clear that it runs exactly parallel. 

DEFINITION 6. Let A = (A,  1, \ ,  c~) and B = (B,  1, \ ,  c~) be boolean 
algebras, z: A ~ B is Called a hemimorphism, if zl = 1 and z (a c~ b) = za c~ zb for 
all a, b e A .  The set of all hemimorphisms from A to B is denoted by 
Hem (A, B). If A = B we simplify this to Hem (A). If r z e Hem (A, 13) we define 
a w z  by ( t r w z ) a : = ~ a n z a .  

PROPOSITION 7. ~ (A):= ( H e m ( A ) ,  id, w ,  o )  is a P-ring. [] 

DEFINITION 8. Let ~r be a P-ring. A X-algebra is a pair ~r = (A,  f )  where 
A is a boo lean  algebra and f :  ~r ~ ~ (A) a P-homomorphism. 2 A homomor- 

2 We generally refer to ~-algebras as modal or multimodal algebras. If X is a P*-ring we call 
them dynamic algebras. 
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phism between f -a lgebras  (A,  f )  and (B,  g)  is a pair (h,  t )  of mappings, 
h EHom(A, 13) and t: i ra ( f )~  ira(9) a P-homomorphism," such that for all 
~ X :  
(xh) 
(xp) 

h o f ( = )  = e o h 
t ( f ( n ) )  --- g (n). 

h ,'~ B ~ . ~  imif) 
h ,[g(~r} ~ ~ t 

A ~ B im(g) 
The idea of this semantics is best explained with an example. Take the 

variety ~ ,  of algebras with n modal  operators, d = (A,  ( v i l i~n) )~  ~ ,  is 
then a boolean algebra with n operators. Alternatively, if H,  is the P-ring freely 
generated by {n, Ii ~ n}, the assignment f :  n i ~ zi induces a P-homomorph ism 
f:  H, ~ Hem (A) whose direct image is the subring generated by the zi. This 
shows how to turn an n-modal algebra into a H,-algebra. 

Under  certain circumstances it is possible to replace H,  by a homomorphic  
image. For  consider the case when f :  H,  ~ Hem (A) factors through g: H,  ~ ~r 
Then (A,  f )  can equally be viewed as a ~ The conditions under 
which this identification is possible can be spelled out explicitly. For  f factors 
through g i f f f ( n ) =  f(a) for all n, a such that  g ( n ) =  g(a)..So we must  have 
f(n)(a) = f(a)(a) for all a ~ A which is equivalent to ( A , f )  ~ [n] p 

[ a ] p  for all such pairs. The algebras satisfying these identities therefore form 
a variety. A particular example is the class of interior algebras or S4-algebras, 
which are modal  algebras satisfying the identities a n  [ ] a  = [ ] a  and 
[] [] a = [] a. An interior algebra as an H~-algebra can also be construed as 
a Hralgebra,  where H~ is H~ factored through 1 w n o = n o and no; n o = n o. It 
turns out that  H i has only two elements, namely 1 and no. In general, distinct 
logics need not  have dictinct rings of programs. The interior algebras provide 
an example. It is readily checked that  if an extension A of $4 has a proper  
image of Y'i as it's ring programs, this ring must  satisfy t = n 0. Consequently, 
A =_ S4(p Qp). 

The kernel of a homomorph ism of f -a lgebras  is an open filter: a subset 
F __%. A is called an open filter if it is closed under 

( f  <.) a~F and a <~ b ~ b e F  
( f n )  a, b e F = , . a n b ~ F  
(f[[]) a e F  and n e X ~ [ n ] a e F .  

Open filters are in one-to-one correspondence to surjecfive homomorphisms.  
In the same way we define f - f rames  (or Kripke-frames) as we have done for 

f-algebras.  A f - f r a m e  F is a pair (G,  7) where G is a set (the set of worlds) 
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and ~ : X -~ Rel (G) a homomorph i sm into the P-ring of relations over G. We leave 
the details of this construction to the reader. Mappings between X-frames are 
called p-morphisms. As an example he may check the definitions in the S4-case 
which is the most  simple one. Other P-rings of interest are 5f,, the P-ring freely 
generated by n elements, and Xk,, the P-ring generated by n elements in which 
every p r o ~ a m  is k-transitive. To define X~ we need some notation: 

(exm) re~ 1 nm+l :=  ~m; n 
(ex <.) n(~ 1 7c(m+~):= ~(m) t.)~m+l 
(df~) ~ :=  ~ (re, l ien) .  

X~ is generated by {7hlien } and the equation ~(k+l)= ~(k).. X~ is called 
k-transitive. A logic O is called k-transitive if [~(k+1)]p~-~[~(k)]peO and 
weakly transitive if it is k-transitive for some k e 03. In a frame for a k-transitive 
logic every path consisting of more than k successive moves from one point to 
another  can be replaced by a path of at most  k moves joining these points. 

NOW let X be any P-ring generated by {hi l ien }, Y~_ Far a set of 
proposit ion variables. .~-(Y):= (Fret (IT), p)  denotes the free E-algebra gener- 
ated by I7. Fr=(Y) is the boolean algebra generated by X and Y and the 
equations 

(ie;) [#; a] p = [a] ([#] p) 
(ie w) [# L2 a]p = [#] p A [o'] p 
(/el) [1] p = p 
(ie#) [#] 1 = 1 
(sin A) [#](p A q ) =  [#]p.  ^ . [#]q  for all #, a e X .  

p : X  -~ ~ (Fret(Y)) is defined by p(n)(Q):= [7c] Q. If sr = ( A , f )  is a X-alge- 
bra and r :  Y ~ A  a valuation then fl defines a unique extension 
hp:(fl, t ) : ( F r x ( Y ) , p ) ~ ( A , f ) .  We say, (~r a) is a model for P if 
0 < a ~ fl(P) and we write ~ ' ,  fl ~ P > 0. We say, (~ ' ,  r )  satisfies P if 
(~r fi, 1) is a model  for P and write s / ,  fi ~ P. This corresponds to the usual 
definition of a model  where instead of an algebra a frame g is given: (g ,  r ,  s)  is 
a model  for P iff g, r ,  s ~ P. We also say that  (g,  r )  is a model  for P if such an 
s e g exists. The logic L~r of d is the set of all P e L~~ which are always 
satisfied: L~ '  : = {Is e ~ ,  [Vfl: var (P) ~ A : sO, fl ~ P}. 

A normal  (n-)modal logic is a subset of ~ ,  which contains the axioms of 
classical logic, the axioms corresponding to the above equations, 

(bd) [- Ere] (p ~ q). ~ . [ n ]  p ~ [rc] q, rce X 

and which is closed under  substitution of formulas for proposit ion variables, 
modus  ponens and necessitation: P/[n] P, n e X. Usually, we denote logics by 
upper case Greek letters. A logic O corresponds to a uniquely determined 
variety r (O) : = {~']L~r ~ O} of X,-algebras and every variety of ~r,-algebras 
V determines a logic ~ (V): = ~ (LsClsr  e V). The minimal normal  n-modal 
logic is denoted by K,.  



A n  almost general splitting theorem . . .  461 

D. Splitting Varieties of Modal Logics 

D.1. Irreducible and Prime Logics 

The aim of this section is to describe how the concepts from lattice theory 
are translated into properties of algebras and varieties of modal Mgebras. We 
assume that the language is some fixed ~q~, and the logic O __ _qa. We will show 
that the splitting logics are of type L d  where d :  is not only subdirectly 
irreducible (henceforth s.i.) but also prime in ~ ( O ) ,  and then proceed to 
describe the notion of primeness in terms of algebras and their varieties. We 
have seen in Section B that in contrast to irreducibility of an element a in 
a lattice ~a, which depends only on the structure of the local extension lattice 
ga, primeness depends on the overall structure of ~o. It is therefore natural to 
expect that irreducibility corresponds to an internal property of an algebra i.e. 
a property that depends only on the structure of the algebra itself; and that 
primeness of an algebra is dependent also on the variety it is contained in. But 
even in tile case of irreducibility the matter is quite complicated. Suppose we 
are given a P-ring Y and the corresponding variety ~ of X-algebras and 
O corresponds to a subvariety of r Then we have the 

THEOREM 9. A e g o  is irreducible only if  A = L d  for a subdirect irre- 
ducible d .  

PROOF. Surely we have A = L d  for some s t  e ~ ,  If d is not s.i., say d is 
a subdirect product of ( d i l i e I ) ,  where every d i  is s.i., then we have 
L d  = 0 ( L d i [ i e I ) .  Hence there is a d~  such that L d  i = L d  = A. [] 

A criterion for subdirect irreducibility is given in Rautenberg [10-]: 

THEOREM 10. deC/"  is s.i. iff there is a ceA\{1} such that 
VaeA\{1}:3#eX:[12]a<. . .c .  Every c that has this property is called an 
opremum of d .  c is not uniquely determined. I f  ~ '  is finite then d is s.i. iff the 
corresponding frame is generated by a single point. 

But the converse of Theorem 9 is generally false. As an example take the 
S4-frame ({oe} w c0, <~) with s<~ t i f f s  = oe or s/> t. This frame is generated 
by oo and therefore the algebra d of finite and cofinite subsets of that frame is 
s.i, However, it can be shown that L d  = S4.Grz.3 which has the finite model 
property (f.m.p.) and is therefore not irreducible in gK. To obtain a converse of 
Theorem 9 we remind ourselves of the fact that in a lattice an element a is 
irreducible iff it is prime in r So we find 

THEOREM 11. A is irreducible in gO if and only if A = L d  for a s.i. algebra 
such that L d  is prime in NLW. [] 

which reduces the problem of finding the algebras whose logics are irreducible 
to the more general problem of characterizing splitting algebras. Therefore we 
will now attempt such a characterization. 
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By analogy, an algebra ~r or a frame F is called prime in d~8 or 3r r (O) if 
LsC(LF) is prime in gO.  In previous work only finite algebras have been 
considered (see for example Blok [2], Rautenberg [10, 12]). This restriction is 
only justified if the base logic 8 has f.m.p. For  if a logic is prime in g 8  it is also 
irreducible and so it is generated by a s.i. algebra. Thus, if O has f.m.p, then onty 
finite algebras can induce splittings of  gO,  Since we want the most  general 
characterization of splitting algebras we do not  want to make any assumptions 
on O. However, we  have  not  been able to obtain full generality. Our  charac- 
terization is restricted to the class of finitely presentable algebras over 8, which, 
from a technical point  of view, is the most  natural class of algebras to work with. 

D.2. Finetely Presentable Algebras 

DEFINITION 12. Let d e ~ / ( O )  be finitely generated by {ai[ir }. ~ is 
Called finitely presentable over 8 if there exists a formula A r ~ .  so that  
var (A) ~_ {p~]i ~ k} and the canonical homomorph i sm pr: ~ e (vat (A))/<A) ~ sr 
defined by pr(pl)= a t is an isomorphism, ~ 'o(Y) denotes the free O-algebra 
generated by Y and <A > the open filter generated by A. We call A a diagram of 
d over  O. A is not  uniquely determined. 

We also say that  M is k-presentable to indicate that A is based on no more 
than k variables. Similarly we use the expression that  d is k-generated if a set 
of no more than k elements of A exists which generates d .  

EXAMPLE. Let ~ denote the recession frame, which is defined by 
:=  <co, < > where n <  m iff n ~< m +  1 (see Blok [3] and Rautenberg [12]). 

Let & be the algebra of the finite and cofinite subset of co and O : =  L ~  = 
= K ([-3 ~ p ~ ~ []  []  p, []  p ~ p, ~ p ^ [] (p ~ []  p) ~ p) o ~ is 1-generated 
e.g. by { 0 } _  o~. Thus we have a surjective homomorph i sm r c : ~ ' ( p ) ~  
defined by u ( p ) =  {0}. {0}. satisfies the equation []  {0} = O and if we let 
A :=  -3 []  p we get ~ -  ~o(p)/<A>. It is known (see Blok [3], Theorem 5.2) 
that  ~ is s.i. and 8A ~ 3 (see picture). Hence ~ is prime in g O  and induces 
a splitting d~ = L [ ] ,  where [] denotes the frame with one reflexive point. 

1 

3: L [ ]  

O 

If d is finite then d is k-presentable iff it is k-generated. In particular, d is 
k-presentable for k = card (A): 

PROPOSITION !3. Let d be finite. Define 
A ( d ) : =  A~Pa  v pb,~--~pa~,bla, b~A> 

^ A<-3  P,~--rP\ala~A) 
^ A <[rc]P.+-~'Pt~la[a~A, n ~ X o )  

Then A (d )  is a diagram for d over O. 
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PROOF. Consider ~: ~-o (var (A)) ~ ~ :  p, ~ a. ~ is surjective and factors 
through pr, that is, e = pro:~ for a homomorphism ~. Since pro~ = e is 
surjective, pr is surjective. It remains to show that pr is injective. This is done by 
showing that x ( P ) =  ~ (Q) iff P ~ Q ~ (A)  and for every P there is a a ~ A such 
that P~--~p,~(A> which is proved by induction on P. Hence card(im(x))= 
= card(A) and since A is finite, pr is injective. [] 

D.3. Varieties of Modal Algebras 

DEFINITION 14. Let A be a diagram of d over O, : ~ e f ' ( O )  and 
y eX.  ~ is said to be #-consistent with d ,  if a valuation f l :var(A)~ B exists 
such that ~ ,  f l~  -7 Pc ^ [#] A > 0, where pcevar(A), c being an opremum of 
~r If M c X is a set of programs, N' is called M-consistent with d if 
a valuation f l :var(A)~B exists satisfying ~ , f l ~ - q P c  ^ [#]A > 0  for all 
#~M.  

We say that M exhausts X if V~ E X3# ~ M: ~ c #. If ~ is #-consistent with 
d for every # ~ M (M-consistent with d )  and M exhausts ~ then ~ is said to 
be weakly consistent with d (extremely consistent with ~r 

REMARK. ~ is y-consistent with ~r iff 3f l :g ,  fl ~ [#] A ^ 7 Pc > O iff 
[#] A ~ pc~L~r iff ConL~ [#] A ~ Pc. Also, ~ is M-consistent with ~r iff 
COnL~ {[#-1A ~ p~[# ~ M}. If M exhausts X this is equivalent to ConL~ {[Tr] A 
~p~lrceX}. Hence extreme consistency does not depend on M. Weak 
consistency does also not depend on the choice of M. 

TrtEOREM 15. Let ~r be s.i. and finitely presentable over O. Then the 
following assertions are equivalent for all ~ ' / / ' ( O ) :  

(i) ~ is extremely consistent with d 
(ii) ~ '  ~ SH (:~) 
(iii) ~ '  ~ HS (~3). 

PROOF. Let A be a diagram of d over O. 

(i)=,-(ii): Let M exhaust ~ and let f l ' va r (A)~B  be such that 
~ ,  f l~  7 Pc ^ [#]A > 0 for all #~X.  Define F : =  {b~BI3#~M:fl([#]A) ~ b}. 

F is an open filter: 

(f<-N) is obviously fulfilled. 

(fc~) Let bx, b2eF and fi([#~]A)<-..b~, i =  1, 2. Then there is a #3 ~ 
#1 w #2, for M exhausts Y'. Hence fl([#3] A) ~ fl(E#1 k..) #2] ,s 
/7([#a] A) c~ if([#2] A ~< ba c~ b2 and therefore ba n b2 ~F. 
(fFl) Let b e E  and rceX. We have fl([#] A) ~< b for a certain # ~ M  and 

there is a / ~ M  such that #; ~ ~/~ and/~([/i] A) ~< fl([#; re] A) = [rr] ~([#] A) 
~< [re] b whence [~r] b ~ F. 

Consider the induced mapping e: :~ ~ ~ / F  =:  c6 and set ~ : = e o fl: var (A) 
C. Then ~-([#]A)= 1 for all # ~ M .  The morphism ~ factors through 

~l : ~ o  (vat (A)) --, ~ ,  for ~r ~ ~-o (var (A))/(A). 

3 -- Studia Logica 4/90 
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var ( r ) 

~e(var( #11 

s' 
.4 

The induced mapping ~ is injective because d is s.i. and has a minimal 
nontrivial congruence relation which is generated by c. It is therefore sufficient 
to show that ~ (e) r 1 or equivalently ~ (\c) ~ O. But ~ (\c) = ~ o t / (7  Pc) = 
= ,}(7 Pc) e o f l ( 7  Pc) > 0 because for every a e F : # ( 7  pc)ha >>. f l (7  pc)n 
c~ fl([#] A) = # ( 7  Pc A [#] A) r 0 for some # e M  with #([#] A) ~< a. Hence ~ is 
injective and d e S (cg) c SH (~). 

(ii) ~ (iii): from universal algebra. 
(iii) ~ (i): Let d eHS(~) .  Then there is a cg such that z'cg--, N is injective 

and ~ : cg ._, d is surjective: 

Here, ~ : = o~ o (var (A)) and • is the canonical mapping. ~ is free and afortiori  
projective and thus x can be lifted over 9 to 7 : ~  ~ ~. Then fl = e o ~. For 
every rceX, ~ ( T p ~ A  [ ~ ] A ) = z ( 7 P c ) > 0  and since e is injective, 
f l(Tp~ A [ r c ] d ) = e o T ( T p ~ / x  Ire]A) > 0- for every rceX. Hence N is ex- 
,tremely consistent with d .  [] 

LEMMA 16. Let ~r be s.i. and finitely presentable over O, N e"U(O). I f  
weakly consistent with sr then there is a b~ which is extremely 

consistent with d .  

PROOF. Let M exhaust X and flu" vat (A) ~ B be such that 
~-u(7 Pc A [#]A) > O. Then define 5e :=  I - I ~ / u ,  or'= ~-lflffU, ,where U is 
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an ultrafilter on M which contains all sets of the form Mu:= {/i[/i D/2}. Such 
an ultrafilter exists because Mu c~ M~ ___ M~ # O for some /2 _~ # w/i. Then 
a( - t  p, ^ [#3 A) > 0 for every p ~ M ,  for {/ilflo(-q pc ^ [#3 A) > 0} _~ {/1[/1 = #} = 
= Mue  U. Hence 50 is extremely consistent with ~'.  [] 

This lemma can be generalized as follows: If M satisfies 'r #2]#3 :#~ u 
#2 ~ #3 and for every p e M there is a ~u e B - B  a class of algebras - ,  

which is #-consistent with ~r then there exists a 50~Pu(B) which is 
M-consistent with d .  50 will be explicitly constructed in the p r o o f  of the 
splitting theorem. 

Putt ing our results together we get the the following result which also 
makes use of J6nsson's lemma on congruence distributive varieties: 

THEOREM 17. Let ~1 be s.i. and fn i te ly  presentable over O. Then the 
following assertions are equivalent for every ~ ~ r (O): 

O) ~ is weakly consistent with 
(ii) ~ e SHPv (N) 

(iii) ~ e HSP (N). 

PROOF. (i) => (ii) There is a 50 e Pv (~) which is extremely consistent with 
~ .  Hence ~ e SH (50) _~ SHPv (~). 

(ii) ~ (i): If N is not weakly consistent with s~' then there is an M exhaust- 
ing X and a # ~ M such that N ~ [#] A --. p~. It follows that ~ ~ [p] A --. p~ for 
any 50eP~j(~). Hence 50 is not extremely consistent with ~ '  and thus 
~ '  r SH (5~ Since this valid for all 5 r ~ Pu (N), ~ r SHP~j (N). 

(ii) <:~ (iii): J6nsson's 1emma. [] 

D.4. The Splitting Theorem 

THEOREM 18. (Splitting Theorem). Let d be s.i. and finitely presentable over 
6). L d  is prime in gO iff there is a # ~ X  such that for all d e  ~(6))  
(t) I f  ~ is p-consistent with s~ then ~ is weakly consistent with d .  

PROOF. ( ~ )  Let M = X. Assume that : ( t )  is not satisfied for all p eM.  
For  every p e M  there is a Nu which is p-consistent with d but not 
#'-consistent for a p '~  M. Hence by t h e  preceding theorem d ~ HSP(Nu) or 
L~u ~ L d .  But by the generalized Lemma 16 we know that there is 
a 5 0 e P u ( { N , l # e M } )  which is extremely consistent with d .  So ~ e H S ( 5 0 )  
and therefore d e HSP ({N,[p e M}), i.e. L ~  _ (-] ( L ~ ,  [# e M) .  Hence L~ '  is 
not prime in 6 0 .  

(~ )  Let (t) be fulfilled by some M and p e M  for all NecK(O).  Let 
L d  ~_ 0 ( L N i [ i ~ I )  i.e. d e n s a ( { N i l i e I } ) .  For  a suitable 50ePu({~i [ ie I} ) ,  

~ HS (50). Hence 50 is extremely consistent and afor t ior i  #-consistent with 
~ .  Consequently, there exists an i e I such that N~ is p-consistent with sr By 
assumption, Ni is then weakly consistent with d and so by Theorem 17 
d eHSP(N~) and thus L s r  L ~ .  Hence L s t  is prime in d'6). [] 
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COROLLARY 19. 
have 

I f  sO and I~ fulfill the conditions of the Splitting Theorem we 

e s / d  = 8 A --, P3 

PROOF. ~ ~ ~/r ( # O / d )  iff L ~  ~ L~qr iff ~r ~ HSP (~) is not weakly consis- 
tent with d iff ~ is /z-inconsistent with d for some # e X  iff [#]A 
~ pc e L ~ .  [] 

It can be shown that if A splits 8 8  then ~O/A  = 0 (P) for some formula 
P and A = L d  where d EH~a(var(n));  thus d is card(var(P))-generated. We 
conjecture that d is also finitely presentable so that this assumption can 
effectively be dropped from the Splitting Theorem. 

CONJECTURE 20. I f  d is prime in ~/f (O) then d is finitely presentable 
over 8 .  

In addition we would get a characterization of algebras whose logics are 
irreducible. For  if d is s.i. and finitely presentable over L d  then Lsr is 
irreducible iff sr is prime in HSP (~r iff ~r satisfies (t) within HSP (sO). Now if 
primeness implies finite presentability we get the 

CONJECTURE 21. A is irreducible iff A = L s i  for a s.i. d which is finitely 
presentable over L~r and satisfies ('f) of the Splitting Theorem for HSP(~r 

An important specialization of Theorem 18 is 

COROLLARY 22. I f  YC has a maximal element #, every finitely presentable s.i. 
algebra is a splitting algebra. In particular every finite s.i. algebra is a splitting 
algebra. 

PROOF. {.It} exhausts Y'. [] 

As a consequence we get the following theorem due to Rautenberg [10]:  

COROLLARY 23. Let 8 be weakly transitive. Then every finite s.i. 8-algebra 
splits 8 8 .  [] 

This result implies among other that if 8 is weakly transitive and has f.m.p. 
then no infinite s.i. 8-algebra can be finitely presentable. If the free algebra on 
k generators is infinite it is therefore not s.i. Looking again at the counterexam- 
ple for Theorem 9 we surprisingly get that the constructed algebra is not 
finitely presentable although it is 2-generated. 

With the help of Theorem 18 a theorem of Blok [2] can be generalized. Let 
us say that a finite W-algebra is cycle-free iff ~ r  [~"+! ]0  for some mere. It 
can be seen that sr is cycle-free iff the corresponding Kripke-structure contains 
no cycles, a If ~r ~ [~m] 0 then [~m] 0 is an opremum of ~r 

COROLLARY 24 (Blok [2]). Let d e  ~/r be finite s.i. and cycle-free. Then 
s t  is prime in every variety containing it. 

3 Generally, we would define a n-cycle to be a sequence <aJie n> such that a t <~ at+ l~moa(.~) 
but a s ~ aj for i~j.  A cycle is then simply a {-cycle, 
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PROOF. Let d ~  [4"]0.  Then # : =  ~(m) satisfies (~') in Theorem 18. 
For  if ~ ,  fl ~ [4 (")] A ^ [4"] 0 > 0 then ~ ,  fl ~ [4 (" + r)] A A [~m] 0 > 0 becau- 
se t- [4"] 0 ~ [4"] [~'] A = [~m+ r'] A for all r >~ 0 whence 0 < [4 (")] A A [r 0 
~< [~(")]A ^ [~m][~']A for all r. Since m : =  {~(r)[r~co} exhausts Y" ('~) is 
satisfied for all :~. u 

In general, the application of the Splitting Theorem is not straightforward. 
For  example, the converse of Corollary 24 is also true. This can be shown with 
the help of the ramification technique (see Rautenberg [12]); but there seems to 
be no simple proof  for this - let alone for the stronger result by Blok [2] that 
1 ~ A = K / N  for some set N of algebras iff N is a set of finite, cycle-free 
algebras. 

E. An Infinite Splitting Algebra 

In this chapter I will conctruct a modal  logic which has infinitely many 
nonfinite splitting algebras. This logic is O :=  $4.I3.2/{A1, A2, F1, Fz}.  Here, 
$4.I  3 is the logic of S4-frames of width 3. O is complete (see Fine [4]) but lacks 
the finite model property since it has a nonfinite splitting frame. 

1 <" �9 - - - - - - -~  e . ~ 0  | �9 �9 

D 

Let 

'<" i 
be the following frame 

F2 �9 �9 O ~ 0  

d" 
l'/2 

~ 1 $3  

�9 �9 ~-0 t 0 

M M /  
�9 ~ �9 > 0  

S~ S 1 

and let a be the following valuation on F: ~(ri) = {ul}, ~(qi) = ' "~ "t~i;, a(p) = {t}. 
Also let ~ : =  ~ e ( X ) / ( Q )  where X = {Pl, P2, P3, q, r l ,  r2} and 
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Q = Pi-*  - I r i  A --Ir 2 A --lq ^ --[P2 A --lP3 
A P 2 --> --l r 1 A -] r z A -l q ^ -l p t A --] P 3 
A P 3 - * - ] r l  A - ] r 2 A  --]qA --lpl A --]P2 
^ q ~ ' - l r l ^  - ' I t 2  A --]plA --IP2A --lP3 
A rl--~ - I t 2  A --IqA 7 p l A  7 P 2 A  -1/13 
A r 2 - * - - l r l  A - ] q A  --]pl A --lp2 A -]P3 
A - ] r l  A -]r2--~[ ' - ] (-]r  1 A --tr2) 
^ P l  ~ ()~:~i ^ 7 ( > r 2 ^  0 q ^  
A p2-* --] ~ r  1A--I  (} r2A 0 q a  
AP3-~--I  ~ r  1A -] 0 r 2  A 0 qA  
A q - ~ E ] q  

A r l - ~  (}rEA ( } q A  (}pl A (}P2 
^ r 2 ~ r l ^  O q A  O P l ^  0 1 ) 2  

-I Op2 ^ - 1 0 P 3  
- 7 0 p l ^  - 1 0 P 3  
-] OP2 A -] OP2 

^ OP3 
^ OP3. 

Let d be the algebra of finite and cofinite subsets of F. I will now prove the 
following 

PROPOSITION 25. The canonical homomorphism h : ~  ~ d  induced by 
h (p) = ~ (1)) for  p ~ X is an isomorphism. 

Having proved this proposition, the rest will easily follow. Since F is 
generated by a single point, d is s.i. and since d is finitely presentable we have 
thus shown with the help of Corollary 22 that d is a splitting algebra of O. 

The way we assess the proof for the proposition is by showing that the dual 
map for h between the frames for N and d is an isomorphism. Having thus 
found the underlying frame of N it is routine to check that ~ is the algebra of 
finite and cofinite subsets of F. Before we start the proof  we need a couple of 
definitions and observations. Let us say that a subset N of a frame A is a slice iff 
it is a maximal set of incomparable points. Equivalently, since A is reflexive and 
transitive, N is a slice of h iff Vu ~ h3m ~ N :  m <~ u or u-~ m. If card (N) = k we 
also call N a k-slice. If N is a slice of h and T ___ N we say that u is a unifier for 
T i f f  Vn e N:  u <~ n ~*- n s T and u immediately precedes every t e T but  
- ] 3 n s N : n < ~ u .  If c a r d ( T ) = k  we call u a k-unifier. Now let ~ 5 : X ~ 2  D 
a valuation on A. 

LEMMA 26. I f  U 1 and u z are  within the same cluster and h, 6, u 1 ~ p iff 
h, 6, u 2 ~ p for  all propositional variables of  X then h, 6, u 1 ~ P iff h, 6, u 2 ~ P 
for  all P with variables in X .  [] 

LEMMA 27. I f  U~ is a 1-unifier for  {u2} and h, 6, u 1 ~ p iff h, 6, u 2 ~ p for  
all propositional variables o f  X then h, 6, u 1 ~ P iff h, 6, u 2 ~ P for  all P with 
variables in X .  

PROOF. By induction on P. The nontrivial case is P = 0 Q- Suppose, 
u 1 ~ (> Q. Then there is a v ~>u 1 such that v ~ Q. If v = ul then by induction 
hypothesis u z ~ Q whence u z ~ 0 Q. Ifv ~ u 1 then, since u 1 immediately precedes 
u z, Uz<a v a n d t h u s u 2 ~  0 Q-Conversely, i f u z ~  0 Q t h e n u a ~  0 Qaswell.  [] 
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LEMMA 28. Let  N be a slice and ul ,  u 2 be unifiers for  T 1 and T 2 with 

T 1 ~ T 2. Then u 1 and u 2 are incomparable. 

PROOF. Suppose u 1 <~ u 2. Then either ul and u 2 are in the same cluster, in 
which case T~ ~ T 2 cannot hold, or u~ does not immediately precede every 
t ~ T 1. [] 

PROOF OF THE PROPOSITION. Let A bb the frame of ~ whose points are the 
ultrafilters o f ~  with U<~ T ~ V [ ]  a e  U : a e  T Now take an ultrafilter U such 
that q e U. Then [] q e U by Q and 7 Pi, -3 r j, []  -7 pl, [] -3 rj e U, i ~< 3, j ~< 2. 
Thus U <  T iff T -- U. Likewise, let P l e  T Then [] -3 rl ,  [] -3 r 2, []  -3 P2, 
[]  -3 P3, A q e  T and so T ~  T' iff T = T' or qe  T' i.e. T' = U. Thus one can 
prove that A contains exactly one point of depth 1 and exactly 3 points of 
depth 2 which form a 3-slice. Finally, it can be shown that r~ e T implies T<~ T' 

for all T'. Consequently, if S, S' are two points of finite depth > 2, we have for 
all generators p e X:  p e S ~ p e S'. (In fact, Yp e X:  p ~ S). Lemma 26 guarantees 
that all dusters with more than one point are of infinite depth. 

Now we show by induction that for every n e ~, n > 1, there are exactly 
3 points of depth n which are incomparable and that the points of depth n + 1 
form a slice of all 2-unifiers of the slice of depth n. Looking at A we see that d is 
built the same way and so A -  F. 

(A) To start the induction, we note that the points of depth 2 are a 3-slice 
since they satisfy d. 

(B) Now assume that the points of depth n are a 3-slice. Call them x!, x2 
and x a. Let y be of depth n + l .  Then y immediately precedes an x~. 
Furthermore, y must be a unifier because if it precedes a point of the slice it 
must immediately precede it. y cannot be a 3-unifier because A omits A~, since 
it is a O-frame. Also, y cannot be a 1-unifier because of Lemma 27. Thus y is 
a 2-unifier. What is left to prove is that there are 3 2-unifier for {x~, x2, X3}. 
Clearly, there cannot be more. Let us therefore see whether there might be less. 

(i) If there is just one unifier y we can assume that it unifies {xl, x2}. Then 
{x3, y} is a 2-slice. For  assume y ~  u and x 3 ~  u. Then neither xl<~ u nor 
x 2 <~ u can hold. Hence u <~ x~ for some i. If i = 3 we are done. If i ~ 3 then 
u must precede either xl or x2. But then it must precede both because there is 
no 1-unifier for {xi}. Hence u<~ y. Thus {y, x3} is a 2-slice, and again by 
Lemma 27 we see that there are no 1-unifier, there can only be a single 2-unifier 
z. But then A does not omit A z since the p-morphism which maps all points of 
depth < n onto a single point maps the subframe generated by z onto A z. 

(ii) Thus assume that there are two 2-unifier, Yl unifying {X2, X3} and Y2 
unifying {xl, xa}. Again, it can be shown that now we have a 2-slice 
{Y~, Y2}. Again there are no 1-unifier so there is a single 2-unifier z. If z is 
contained in 2-point cluster, the subframe generated by z maps onto F~. But 
if {z} is an 1-point cluster we can show that {z} is a 1-slice. Then the map 
which reduces all points between the initial cluster of A and z onto z reduces 
A to F 2. 
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But A omits all those frames. Hence the points of depth n + 1 are a 3-slice 
consisting of all the 2-unifiers of {x 1, x 2, xa}. [] 

THEOREM 29. d iS a nonfinite splitting algebra of O. 

The same proof can be used not only for F but for frames of similar shape. 
For  if F ~ A is a subframe and {ul} is a slice of A such that there are only 
finitely many points x <~ ul in A then A is finitely presentable and if A is one 
generated it therefore underlies a splitting algebra. Thus we have the 

THEOREM 30. 6) has infinitely many infinite splittino algebras. [] 
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