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Abstract. A numerical model for layered composite structures based on a geometrical nonlinear shell theory is presented. The 
kinematic is based on a multi-director theory, thus the in-plane displacements of each layer are described by independent 
director vectors. Using the isoparametric approach a finite element formulation for quadrilaterals is developed. Continuity of 
the interlaminar shear stresses is obtained within the nonlinear solution process. Several examples are presented to illustrate 
the performance of the developed numerical model. 
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1 Introduction 

In recent years the application of composite materials in structures has become increasingly 
popular. The advantages of these materials are high strength and stiffness ratios coupled with a 
low specific weight. Thus composites are used in highly loaded light weight structures. Often the 
designed constructions are thin shells which are very sensitive against loss of stability. 

The structural response is characterized by the fact that laminated composites typically have 
very large bending modulus to shear modulus ratios. Due to the varying fiber orientations and 
the anisotropy of the material each ply tries to behave independently of the other plys. Thus, large 
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edge stresses are necessary to preserve compatibility of deformations. Therefore the precise 
computation of stress distribution and especially the interlaminar shear stresses is crucial for 
composite shells. However, the analysis of composite structures is more complicated when com- 
pared to metallic structures, because laminated composite shells are characterized by bending- 
stretching coupling. 

Theories for multilayered plates and shells have been subject of much research since the early 
1970s, see e.g. Pagano (1970), Epstein and Glockner (1977), Tsai and Hahn (1980), Reddy (1984), 
Niederstedt (1985). Since there are very many papers on this subject, only a few representative 
results are mentioned in the following. For detailed surveys we refer to Kapania and Raciti (1989) 
and Noor et al. (1989). 

Shear deformation models are variants of the Reissner-Mindlin th.eory which were originally 
proposed for homogeneous isotropic plates. A generalization of the shear-deformable plate theory 
leads to the classical laminated plate theory where coupling of bending and stretching occurs. 
Closed form solutions for bending problems of cross-ply and angle-ply laminates have been 
presented by Whitney and Pagano (1970). These models do not account for continuity of the 
normal and shear stress components acting on laminar interfaces. The performance of the first- 
order shear-deformation model is dependent on the factors used for adjusting the transverse shear 
stiffness, see e.g. Whitney and Pagano (1970). Several approaches have been proposed for calculating 
shear correction factors for laminates. 

Cubic polynomials in thickness direction are used in third-order shear-deformation models to 
interpolate the displacements. However these models do not fulfill continuity of the stresses across 
the interfaces. Levinson (1980) presented a higher order shear deformation theory with a displace- 
ment field satisfying the condition of zero transverse shear stress on the top and bottom surfaces. 
A variationally consistent set of governing equations has been derived by Reddy (1984) from the 
principle of virtual displacements. 

In discrete-layer models the transverse variation of the displacement field is represented by 
piecewise linear functions (multi-director theory). The number of field equations and edge boundary 
conditions depends on the number of layers. Each layer is considered as a homogeneous shell with 
constant material properties. 

Numerical models for linear composite plate and shells have been considered in e.g. Epstein 
and Huttelmaier (1983), Toledano and Murakami (1987), Reddy et al. (1989), Ladeur and Batoz 
(1989), Li and Owen (1989), Tessler and Saether (1991), Lee and Liu (1992). Finite Elements based 
on mixed variational principles are developed in e.g. Puchta and Reddy (1984), Jing and Liao 
(1989), Pinski and Jasti (1989), Peseux and Dubigeon (1991). Hierarchical models are discussed in 
Babugka et al. (1992). 

Geometrical nonlinear FE-formulations are presented in e.g. Reddy and Chandrashekhara 
(1985), Huttelmaier and Epstein (1990), Wagner and Gruttmann (1991), Wagner and Stein (1992). 
In the paper of Dorninger and Rammerstorfer (1990) material non-linearities in terms of stiffness 
degradation due to matrix or fibre cracking are taken into account. Yoda and Atluri (1992) perform 
postbuckling analysis of stiffened laminated composite panels. A finite strip formulation is applied 
within a 5-parameter higher-order shear deformation theory. 

The objective of this paper is to present a geometrical nonlinear formulation of a layered shell 
with orthogonal anisotropic material behaviour and an associated finite element formulation. In 
the first part we describe the kinematics of the shell. Each layer has constant material properties 
thus may be treated as a homogeneous shell. The reference surface is the middle surface of the first 
layer. We assume constant transverse shear strains for each layer. Based on this assumption the 
field equations are derived, where the interlaminar stresses are taken into account. Continuity of 
the interlaminar stresses is automatically obtained within the nonlinear solution process. 

The second part is concerned with the finite element formulation for quadrilaterals. For the 
problems considered here the local rotations are moderate. Within the so-called isoparametric 
approach we use bilinear shape functions to interpolate the reference surface, the displacement 
vector and the two rotations for each layer. The displacement vector refers to the reference surface 
(bottom layer). We present the discrete weak form of equilibrium and derive analytically the 
tangent stiffness matrix. Numerical examples show the effectivity of the proposed FE-model. 



F. Gruttmann et al.: A nonlinear composite shell element with continuous interlaminar shear stresses 177 

2 Variational formulation of the boundary value problem 

In this section the variational formulation of the boundary value problem is presented. We consider 
the kinematics of a layered shell, derive the static field equations and the associated weak 
formulation. Furthermore the orthogonal anisotropic material law is formulated. 

2.1 Kinematics of the shell 

The shell consists of N layers with orthotropic material behaviour. Each layer is treated as a 
homogeneous shell with constant material properties over the layer thickness ih. In the definitions 
and relations that follow Greek subscripts and superscripts refer to covariant and contravariant 
surface tensor components, respectively. The summation convention applies to each repeated pair 
of indices. Commas are used to denote partial differentiation based on the geometry of the reference 
surface ,(2 (midsurface of the bot tom layer). The position vector X o is labeled with convective 
coordinates ~ .  An orthonormal basis system tk is attached to this surface where t 3 is the normal 
vector. Accordingly the unit vectors t~ are given by partial differentiation of the position vector 
X o with respect to the associated coordinates. This leads to a convenient representation of the 
orthogonal anisotropic material law (see Sect. 2.3). 

Furthermore the orthonormal basis system ia k describes the deformed cross section of layer i. 
Due to the transverse shear strains the director v e c t o r  ia 3 is not normal to the current middle 
surface of layer i. 

The transformations between the different base systems are given by 

tk(~ ~) = Ro(~:~)ek, i a k ( ~  , t) = iR(~, t) tk(~ ~) (1) 

where R 0 and iR are proper orthogonal tensors. The associated components are specified for 
moderate rotations in Sect. 3. 

The kinematic of the shell is based on the assumption of layerwise constant transverse shear 
strains. Thus the position vector of layer i follows from 

i h i h 
< '( < + -- (2) ix(~Ct, i~) = ix0(~ct) ~_ i~ia3(~ct) 2 2 

with i( the coordinate in thickness direction. Since ia 3 is a unit vector we assume inextensibility 
in thickness direction. This assumption is valid for thin layers and is also justified by the restriction 
to small strains. Further equations concerning the kinematics of nonlinear shells especially with 
finite rotations are given in e.g. Grut tmann et al. (1989), Wriggers and Grut tmann (1990). 

2.2 Field equations and weak formulation 

It is common practice in the analysis of thin shells to assume that external forces are applied to 
the midsurface of the shell configuration. Here external loading is acting in normal direction to 
the reference configuration. Since the shell is inextensible in thickness direction there are no effects 
of surface loading within the variational formulation. 

Hence the stress boundary conditions of the shell problem can be written as 

Oq = 0 Nq = ~ = Nz.3t3" (3) 

The set of static field equations are derived using the local balance equations of the three- 
dimensional theory, accordingly 

Div P + pb = 0, t r= o "r. (4) 

Here tr and P denote the symmetric Cauchy stress tensor and the First Piola-Kirchhoff  stress 
tensor, respectively. The body forces pb are neglected in the following equations. 
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ih/2 ih/2 

in~:= S P%d( imn:= j" (ix-iXo) x P%d(. 
-- ih/2 -- ih/2 

Inserting kinematical assumption (2) into (5)2 one obtains 
ih/2 

imn = " i~ll~ i(n~ = ta  3 X I (P%d( 
- ih/2 

h e n c e  i M n 3  = i m n . i a  3 ~ 0 i s  incorporated. 
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The stress resultants and interlaminar stresses of layer i are introduced according to Fig. 1 

(5) 

(6) 

Integrating (4) in thickness direction and inserting (5) yields the set of static field equations 

i h . 
i n ~ [ n q i  q ~- lq=0 ,  i n i x inn i- ,q) - m In+ o,n × + - - ' a 3  × ( i q +  = 0 ,  i n O  (7) 

2 

and boundary conditions 

Vniff ' = 0 v n i m  n = 0 o n  ~3Oa, i u = ifi ia  3 : i~l 3 on 00..  (8) 

The associated weak formulation is obtained by weighting the field equations with test functions 
6~Xo and 6iw. Summation over the layers yields 

N 

~ [(,nnl, + (,q _ i- lq)).6,xo]d O 
(~) i = i 

+ S ' m % +  i 'n - ' - lq )  "6'w dO X0, n × + ' a  3 x (iq + (9) 
(a) i= ~ 2 

N 

+ S ~ [(vJff')'6~Xo + (vjm~')'f~w] d o O  = 0 
t~.Q~r i =  1 

where 6~w follows from the variation of the basis system ~ak in the current configuration 

t~iak = t~iw X ia k. (10) 

In the following the contribution of the interlaminar stresses within the variational formulation 
is examined, accordingly with Oq = 0 

h 1 I 2 (~q-- i - lq) '6 'Xo+~'a3 x( 'q+~-Xq) "6iw dO 
(o) i= i 

( h )  1 = ~" ~ ( iq_ i - lq ) .  ~ ix0+_6 iaa  +~-tq.ih~ia3 dO 
(~) ~= ~ 2 

= f iq-(61:~-ai+~:~)+iq.'+*hai+la3 dO+ j" [Nq'fN~]dO (11) 
(.O) L i= I (o) 

= I ( ' q -  'a  3 dO + I [Nq'gNR] dO 
(-(2) m i = I (.Q) 

(~) 

i h i+lh 
• i x 0  where 6'R = aix o + - -  t~ia3 - -  6 i +  _ "- ~ i +  l a 3 "  Thus continuity of the interlaminar stresses 

2 2 
across the interfaces is automatically attained within the nonlinear solution process. 

The components of the stress resultants are introduced with respect to the basis system 
{iXo,n, ia3 } 

in= : i N ~  iXo,~ -F i Q~ia  3 , i l i l ~  : i j V l  Ctfl i X o ,  fl "q- i M ~ 3 i a  3 . (12) 
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Fig. 1. Stress resultants and interlaminar stresses of layer i 

Furthermore we define strains of layer i 
i . l ( i  .i i .i X i . i .i a i . i .  i .' i . (13) 
•afl "= 2 t  X0,a X 0 , f l -  Xo,a  o,fl), K~tfl.= Xo,a 3 , f l -  Xo,~ ta,fl, 7~ . =  X0,~ ~ a 3 -  Xo,~ t3 .  

These strain measures are the Green-Lagrangian  strains E i j =  ½(x,/x,s-X,~.X j) of the three- 
dimensional theory considering kinematic assumption (2). 

Application of the divergence theorem to (9) and inserting (11-13) leads after some algebraic 
manipulations to 

N 

(if2) i = 1 

The virtual work of the external forces is deduced from 

6/-/ext = I ~l '6ud~2= f Nz36wdf2, 6w=t3"6u" (15) 
(~) (~) 

In (14) symmetric membrane forces @,a and shear forces i(~ are given by the relation 

i ~ a  = iNca _ ib~i~a~ ' iO~ = iQ, _ ib3i~Uy (16) 

where the curvatures follow from the derivative of the director vector 
ib3i a i = ib~ixo ~ + (17) a3,~t , ~t 3" 

t ~t3 As shown in e.g. Simo et al. (1989) the stress couple resultants ~ t  do not contribute to the virtual 
work. 

In Appendix A an alternative representation of the weak formulation is derived by inserting 
the equilibrium Eq. (7)1 into the equilibrium of stress couple resultants (7)2. 

2 . 3 0 r t h o g o n a l  anisotropic material law 

Besides the kinematical relations and the equilibrium equations we have to formulate a constitutive 
law to determine the deformations of the shell. In a pure mechanical theory we neglect thermal 
influences on the deformation process and thus are lead to a hyperelastic, isothermal constitutive 
law. 

Each layer is considered as a homogeneous shell with constant material properties over the 
layer thickness. In contrast to a first order shear deformation theory no coupling occurs between 
ip~,p and i~t "~. It is assumed in the following that the skew-symmetric part of the stress couple 
resultants i2~t'~ is zero, i.e. only the symmetric part of the curvatures i~c~ is used. Thus the stress 
resultants as defined in the previous section are written in matrix notation and expressed as 

iS = iD iE  (18) 
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with 

iS=[iN11, iN22 iN12, i~/111 i]~/[22, iI~/i12 i01, i02]T ' i E :  [-iel 1, i822, 2ig12, iK11, i/£22, 2i/¢(12), i):1, i72] T 

iD = 0 iDb iota = i h i C  iDb = - -  ih3 i f  iDs = ihiCs. (19) 
0 0 i ' 12 

The material matrix iC refers to the orthonormal coordinate system t~ and is deduced from the 
local matrix CL by a simple transformation 

i C : i T T C L i  T 

i cos z iq~ sin 2 ~p sin i( D COS iq) 1 
iT = sin 2 i~0 COS 2 i(~9 -- sin iq~ cos i~o J - 2 sin i~p cos ~q~ 2 sin ~p cos ~p cos 2 ~p - sin 2 ~p 

(20) 

01 1 
G12 1 --  v 2 ( E 2 / E 1 )  vE  2 E 2 _] 

Here, i~0 is the angle between fiber direction and basis vector tl. Transformation of the shear 
stiffness yields 

E 01 iCs = i s,~sL - s  'Ts = -s in~p c o s i q ~ ]  G2 3 " 

Using (18) plane stress condition is incorporated. The material law is postulated in terms of Second 
Piola-Kirchhoff stresses and Green Lagrangian strains. We restrict ourselves to small strains thus 
transformations between different stress tensors are neglectable and we can use material parameters 
of the linear theory. 

3 F i n i t e  e l e m e n t  f o r m u l a t i o n  

In this section the finite element formulation of quadrilaterals is developed. The initial geometry 
is approximated using standard bilinear shape functions. Since shear deformations are considered 
in the theory presented only C°-continuity for the displacements and rotations is needed at the 
element boundaries. 

3.1 Approximation of  geometry and displacements 

In the paper of Rammerstorfer (1992) besides the two rotations of the shell middle surface 2(N - 1) 
additional rotational degrees of freedom are used at each node. This leads to a rather complicated 
representation of shell strains for layer N. Therefore in this formulation the director vector of each 
layer is described with independent degrees of freedom. 

Let us assume that the shell surface is approximated by a finite element discretization of the 
form 

helm 

~r'~h= U ~t~e' (22) 
e = l  

where nelm is the number of finite elements in the discretization, and -Qe denotes a typical element. 
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Within an element g2 e, the position vector X 0 of the middle surface of the first layer is 
interpolated by 

4 

Xo = ~, NK(~,t/)XoK. (23) 
K = I  

Here the functions NK(~, tl) are the standard bilinear element shape functions. Then the local 
cartesian basis system ti and associated coordinates s, are deduced from (23). The normal vector 
t a is obtained by the cross product of the tangential vectors Xo, ¢, Xo, ., whereas t 1 and t 2 c an  be 
chosen as any arbitrary set of orthonormal vectors normal to the undeformed director vector. 
Then application of thejacobian matrix [ J ~ ]  with components J,~ = X0.,'t~ yields the derivatives 
of the shape functions Nr with respect to the coordinates s,. 

Furthermore the displacement vector of the bot tom layer u0, the incremental rotation vector 
diaa and the initial director vector t 3 are interpolated 

4 4 24K:1NK(#,rl)t3K 
Uo = ~ Ur(~,r/)Uor, dia3 = Z Nr(~,r/)dia3r, t3 -- " (24) 

K : 1  K : t  II ~-~ =1 NK(¢, ~/)t3K H" 
Here d~aaK is given by transformation of the local rotational degrees of freedom ~fl~K to the cartesian 
coordinate system e~ 

diaag --AKiflK, AK:[--t2K, tlK ], iflK=~ifllgl. (25) 
L'~=K1 

Now we are able to express the director vector of the current configuration and the position vector 
of layer i in initial and current configuration, respectively 

i a 3 = t 3 + d i a 3  , i X o = X o +  + E J h +  t3, 
j = 2  

i -  1 i h . 

ix 0 = X  0 + u o + f l a 3 +  ~ JhJa3+ 
j = 2  2 ~a3" 

(26) 
Note that iX is in general not a unit vector 0,~t 

[liX0,~[r={>ll i=2,u.i=l (27) 
Thus expression i [I Xo,~ ]l has to be considered when computing the strains. 

Finally the variations of ix0, ,, ia 3 and ia3, , can be expressed by inserting the FE-interpolations 
(24) 

t~ix0,~t = 2 NK,~ 6u° + AK 26tflK + JhJJflr +~6iflK 
K = I  j = l  

4 4 
~ia3 E i NKAK 6 ilK, ~ia3,~ = E i = NK,~AK6 ilK" (28) 

K = I  K = I  

Since the tangential vectors t , r  at the nodes have to be unique we are restricted to differentiable 
surfaces -(2. This nodal basis system is computed within the mesh generation in such a way that 
special boundary conditions of the calculated problem can be accommodated. Using transformation 
(25) we are restricted to moderate rotations. An extension to finite rotations is basically possible, 
however it is not necessary for the class of problems considered here. Concerning the problem of 
finite rotations for laminated shells we refer to Wagner and Grut tmann (1992). 

3.2 Discretized variational formulation and linearization 

Inserting the preliminary interpolations of the last section into the virtual work expression we now 
derive the FE-equations in matrix notation. In order to compute the virtual work we need to 
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compute the variations of the strains 

6iF.~fl __ 1 i .i 3,fl "i- 0,~ -- ~(6 X0, a X0, fl 71- iXo ,a '6 iXo , f l )  , 6ilq,~fl = 6iXo,~-ia ix -6ia3,/~ 
6i?~ = 3ix0,= • ia 3 + iXo,~'61a3 . 

Introducing the displacement vector of node K 

VK = [a °, l & . . .  j& . . .  7 K"" T 

the virtual strains can be expressed as 

6iE = [6 /e l l ,  6i822, 261812, 6iK11,6i/£22, 26iK(12), 6i71,6i~2] T 

I i mu " 4 BK 'BKP'] 
6 iE=  ~ i B T 6 v  K iBK = iBKbU iRb~ " 

K = I i su i sl3 _J 
B K Br 

Here the matrices 

I i T ( i T 
N K ' I  Xo'l ~ N K ' I  a3,1 ~ r N i a r q  

i m u =  i T i T BK- i T BK NK,2 X°,2 I '  IB~"= N K,2 aa,z / '  i s , _ l  K,1 31 
i r i r i r i T LNK,2a3A 

N/c A Xo,2 + NK, 2 X0,vJ N/c A a3,2 + NK,2 a3,t_l 
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(29) 

(30) 

(31) 

(32) 

Hence the general form of the tangent stiffness for one finite element consists of a material and 
geometrical part 

n e l  m 4- 4 N 

6v Togh(v,  6v)'Av ~ Z Z T = 6VKKTKLAVL, KTKL ~ Z i Ti i = ( B K D B L + i G K L ) d . Q  e. (38) 
e=l K=I L=I (.Qe) i= 1 

with 
A6ie~/~ 1 i . i = 3(6 Xo,~ A x0m + NXo ~'6iXo,,), 
A6i?~ = 61Xo, -Aia3 + Aixo,~.6ia3 . (37) 

A3ix~a = 6iXo,a-Aia3,¢ + Aixo,~'6ia3,#, 

(36) 

refer to u °, whereas the matrices 

il[-.12 illimu'~ A iRsfl = ( i H  l iRsu 2- iI.l[2 iRss'~ A iRmfl - -  i l " l l i l~muA iRbfl = ( i H l i R b u  -q- v K + Jtt VKi~Jt K 
~ K  - -  ~tA U K  ~ K ,  ~ K  ~ K  ~ ~ " K  I ~ K ,  ~ K  

i SSBK=VNKxoA]I r ' i l l1=  ...Jh . . . . . .  h . 0 ,  iH 2=[0 . . . 0 . . . 1 . . . 0 ]  (33) 
LN K Xo,2J 2 

refer to the rotational degrees of freedom {1fir . . .  JflK"" ipK"" NPK}. The finite element approximation 
of the virtual work (14) yields 

6vTgh(v, 6v) = U Z I - K  ~ - N r q  dl'2e = O. (34) 
e = l  K = I  (.Oe) i = l  

The solution of the nonlinear algebraic Eq. (34) is obtained by Newton's method. For this purpose 
we have to construct the tangent stiffness of gh by computing the directional derivative. This leads 
to the following incremental solution scheme 

Dgh(Vk)'AVk+ X = -- gh(Vk), Vk+ 1 = Vk + AVk+ 1. (35) 

The tangential stiffness matrix is derived by employing a consistent linearization procedure to the 
weak form. The external loads are not displacement dependent, thus 

N 
Dg h'Av= ~" Z [AilV~¢61e,a + A i M ' a 6 i ~ a  + AiO. '6 '?,  + @:'A61e:, + i-~tI'aA6ir~,, + 'O'A317~] d~Q 

(I2) i= 1 
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The geometrical  part  is derived by inserting the element shape functions into (37) and is expressed 
a s  

~ i u u  i["~u~O -] 
• GKL ~KL|  
~GKL = l i(~. #u ic.#l~ r 

t.. V KL V KL ..a 

lh i(~u# : i]~__ i]Qj h 
V K L  2 

V K L  

i u u  i1~ 1 GKL = 

i~l OIAL ' 

i]~ l h 2  ' ^  xh " l h  
'N - -  Jh i~ 1 _ _  

4 2 2 

. ~ .  I h 
'NJh __ i~Jh2 i~lJ h 

2 

i~2 xh ih __ i~2j h i~3 - -  

2 2 

0 0 0 

{[ lh I}T 
iC,#U = i]~__ il~j h i~2 0 A K 
~ K L  2 

0 

0 

0 

0 

T A K A  L 

(39) 

where 

i ]~ l i ~[ ~fl ( [~ ]~T i 0 2  i ~ot 
: 2 z '  , , ~ , K , ~ . , , L , # + N K , # N L , ~ ) ,  i ~  : i]~#NK,#NL,~ ' i 0 1  ~-- i~~Q NK,~NL ' : Q NL ,c~NK,  

"~ih i~1, i~2 i]~ ih i1~/i i~2, i~3 i]~ ih iO, i02 ,~]x = 'N -- + 'M + = -- + + = -- + 2'A4 + + . (40) 
2 2 2 

Associated with shear elastic shell formulat ions are locking phenomena .  Since o u r m a i n  goal is 
the formulation of layered shell elements we use selective-reduced integration technique to overcome 
locking. Thus  the shear-terms in residual and tangential  stiffness are obtained by one-point  
integration. 

4 Numerical examples 

In this section we present several numerical  examples which demonst ra te  effectiveness of the finite 
element formulat ion presented above. The obtained results are compared  to known  solutions in 
the literature. The elemental  scheme was implemented  using an enhanced version of the p rogram 
F E A P  documented  in Zienkiewicz, Taylor  (1988). 

4.1 Bendin 9 of a clamped cylindrical panel 

The first problem is concerned with the bending of a cross-ply [0/90] c lamped cylindrical panel 
under  uniform load. This example has been previously investigated in Reddy, Chandrashekhara  
(1985). The geometrical  data  are given in Fig. 2. Material  data  of the cross-ply laminate are 

E 1 = 25 x 106psi, E 2 = 106psi, G12 -- G13 =0 .5  x 106psi, 

G23 - 0.2 × 106 psi, v = 0.25. (41) 

We discretize one quarter  of the shell with 8 x 8 4-node shell elements. The load deflection curve 
is compu ted  and depicted in Fig. 3. The results agree with a solution obtained with a first order  
shear deformat ion theory. 
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Figs. 2 and 3. 2 Bending of a clamped cylindrical shell under a uniform loading. 3 Load deflection curve cylindrical shell 

4.2 Plate strip subjected to uniform loading 

The next example has been investigated by Babugka et al. (1992) using hierarchical models. We 
consider a plate strip consisting of three plies which are symmetrically arranged with respect to 
the middle plane (see Fig. 4). The fiber direction is parallel to x in the two outer layers and parallel 
to y in the central layer. Constant loading is acting in z-direction. The length to hight ratio is 
I/h = 10. Material data are those of Eq. (41). The plate strip is assumed to be in a state of plane 
strain with respect to the x-z  plane. Considering symmetry at x = 1/2 only one half of the plate strip 
is modeled using a 15 x 1 mesh of shell elements. The normalized displacements t7 x = 3E2ux(O , z)/(qh), 
normal stresses tr~(x = I/2) and transverse shear stresses axz(X = 0) are depicted in Figs. 5-7. There 
is good agreement between our results and the reference solution. Especially the shape of the 
transverse shear stresses across the thickness could be essentially improved compared to a solution 
obtained with a first-order shear-deformation theory. 

4.3 Rectangular plate under uniform uniaxial extension 

This well-known problem, presented in Fig. 8, is examined as next example, see e.g. Ladeur (1992). 
The laminates considered in this study consist of four identical plies symmetrically stacked in 
(90/0/0/90) stacking sequences. The width to height ratio is b/h = 40, where h represents one layer 
thickness and b half the width of the plate. The elastic constants with respect to principal material 

tt 'tttt  't 'q 

i x 
q Fig. 4. Plate strip subjected to uniform loading 
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axes are: 

E l = 2 0 x 1 0 6 p s i ,  E 2=2 .1x106ps i ,  G12=G13=G23=0.85x106psi, 
G23 = 0.2 x 106 psi, v -- 0.25. (42) 

The stress state is constant in x-direction with Sxx-- 10 -4, thus one element is sufficient in this 
direction. Considering symmetry only a quarter of the system is modeled by 50 elements in 
y-direction. In thickness direction each layer is subdivided into two. 

The shear stresses zyz are computed along the line z -- hi2 and depicted in Fig. 9. Furthermore 
a finite element solution obtained with a 3d-element mesh (x x y x z-- 1 x 50 x 4) is given. The 
results show that large edge stresses are necessary to preserve compatibility of deformations. These 
stresses are mainly responsible for delamination. The developed FE-formulation is able to represent 
the steep ascent of the shear stresses along the free edges. 

5 Concluding remarks 

In this paper a geometrical nonlinear theory of laminated shells is outlined. The kinematic is based 
on the assumption of constant transverse shear strains for each layer. The underlying field 
equations and the associated weak formulation are derived. Continuity of the interlaminar shear 
stresses is automatically attained within the nonlinear solution process. The finite element formu- 
lation for quadrilaterals is based on the so-called isoparametric approach. Initial geometry, 
displacement vector and rotations of each layer are interpolated using bilinear functions. Exact 
linearization of the variational equations leads to tangential stiffness matrices hence to asymptotic 
quadratic convergence behaviour. Several numerical examples are presented. Especially the shape 
of the transverse shear stresses across the thickness has been improved compared to a first order 
shear deformation theory. The computed results are in good agreement with solutions in the 
literature. An extension of the presented model is possible by introducing stresses in thickness 
direction. 

Appendix A 

An alternative expression of the weak formulation can be derived by eliminating the interlaminar 
stresses within the variational formulation. With continuous interlaminar stresses across the 
laminar interfaces and summation of the equilibrium Eq. (7)t over the layers 1 < j < i one obtains 

i i 
[ Jn~ ' l , ,+ (Jq-J - lq ) ]=  ~ Jn~'l~,+iq=0. (43) 

j = t  j = t  

Inserting (43) into the second equilibrium Eq. (7)2 leads to 

ih. ( ~-1 ) 
im~ I~ + i in~ - - -  (44) XO, ~ X ta 3 x in'J, + 2 ~ Jn'l~ = O. 

2 j=l 

Using the definition 

,h( ,1 ) 
Ai~ ~ = in~ + 2 ~ Jn ~ (45) 

j = l  

and the derivative of (6) 

im~l~ = ia3 ,  ~ X il'll~ '-{-ia 3 × ifil~l~ (46) 

one obtains 

ia 3 × (irh~]~ -- Airh=l~) + (iXo,= × ina A- ia3, = × ilila) = O. (47) 
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Weighting (47) with test functions 6~w, integrat ion and applicat ion of the divergence theorem yields 
the weak formulat ion 

N 
~ [(ilW -- AqW).6'a3, ~ - ('Xo, ~ x in ~ + ia3,~ x 'rh').6'w]d£2, - ~ ~1"6ud£2= O. (48) 

(o) i= 1 (~2) 

Inserting the decomposi t ion  of the stress resultants (12) with respect to basis system ~ix ~a 
yields 

N 
i ~ 3  i i I 2 [ (  iA~p - -  AiA~f~#)iXo,# + ( iA~f~3 - -  A M ) a3"~  a3, ~ 

(~) i= 1 

( i l~f ~t ~ i v i [ i ~"/f ot # i v 
- -  [iXo, a X t ~' ~0,/~ + iQaia3) + a3,a x ~ . . . .  0,# + i lVl"3ia3) ' (~iw]d-Q 

- ~ ~ ' 6 u d a  = 0 .  (49) 
(~) 

ib3i a Then int roducing the curvatures ~a3,~ = ib~ixo,# + ~ 3 (17) and considering the identities 

[iXo, ~ x iN~'PiXo,a + ib~ixo,, x iM=aiXo,p] "6iw = ( i N ~ ' ° -  ib~iM#y)(iXo,~ × iXo,fl)'l~iw 

: iNclllecl#(iXo, 1 × iXo,2)'I~iw ~ 0,  

i2~4~3 [ia3"(~ia3, ~ - -  (ia3, ~ × ia3)" g i w ]  (50) 

= ilVlC~3[ia3"(~ia3, ~ -.I- (~iaz'ia3,~] = i /~a3~(a3-a3,~)  = 0, 

iJ~/I~3 ib~3(ia 3 x i a3 ) .~ iw - :  0. 

the virtual work expression becomes 
N 

I 2 [il~l~'~ia3,~ a t - ' f i~ '6 ia3]  dl2 -- ~ ~ '6udl2  = 0  (51) 
(o) i= 1 (o) 

where 

irh~ = ( iA~r~" - NA4~a)iXo,, - -  Ai]~f~3ia3, ifl7 --  i]Vle'ib3ix~ 0,, .-t- ion ia  3. (52) 

i 3  i • i  i Using the constraint  It 'a3 II = 1 the curvature ib~ can be expressed as b~ = - b~( Xo, ". a3) << 1, thus 
can be neglected. The associated finite element formulation is obtained by inserting the interpolation 
functions according to Sect. 3. 
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