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Abstract. In this paper the numerical solution of the elastic frictionless contact problem is obtained by means of boundary 
discretization techniques. Variational formulations m terms of boundary tractions are given in presence of both bilateral and 
unilateral constraints. The discretization of the boundary functional is examined from the point of view of the theory of 
approximation and it is proved that the coerciveness (but not the symmetry) of the continuum problem is preserved when 
standard B.E.Ms are employed. As a consequence, the contact problem can be cast as a L.C.P. having, as coefficient matrix, a 
generally non symmetric P matrix. A simple, but meaningful example is discussed in some detail. 

1 Introduction 

In recent years a lot of interest has been devoted to the mathematical formulation of structural 
problems involving unilateral constraints (Duvaut and Lions 1972; Panagiotopoulos 1985; Del 
Piero and Maceri 1987; Kikuchi and Oden 1988) and their numerical solutions. 

An important class of these problems is the frictionless contact between a deformable body 
and a rigid support or between two deformable bodies. In these cases the contact area is "a priori" 
unknown and the unilateral conditions have to be imposed on the relative displacements and the 
mutual reactions. These problems with "ambiguous" boundary conditions were firstly stated by 
Signorini (1933) and thoroughly studied by Fichera (1964, 1972). It is worth noting that all of them 
can be naturally expressed in terms of variational inequalities stating nothing but the principle of 
virtual or complementary virtual work in its inequality form. As it is well known, these statements 
are fully equivalent to minimizing on a convex set the potential or the complementary energy 
respectively. Since the constraints concern boundary variables only, it is quite natural to look for 
a numerical solution by means of boundary element techniques. As a matter of fact a lot of papers 
on this subject have recently appeared in the technical literature (see for instance Tralli et al. 1988). 
However, in most cases, heuristic iterative procedures (trial and error) are employed, without any 
critical discussion, to achieve a solution of the attained set of algebraic equalities and inequalities. 

The first variational formulations defined on the contact area only, rather than on the whole 
domain, were proposed quite recently, just in the seventies. For instance Kalker and Van Randen 
(1972) formulated a minimum principle for boundary tractions, whereas Duvaut (1976) suggested 
a dual variational statement in terms of boundary displacements. In a recent contribution of Buffer 
(1985) the boundary variational formulations of the frictionless contact problem are re-examined 
from a mechanical point of view. In that paper the role of the rigid body motions in a contact 
involving a "stamp" and a foundation (see also Kikuchi and Song 1980) is focused. Finally, a 
thorough mathematical treatment of variational boundary formulations in terms of Green's 
function is reported in Kikuchi and Oden (1988, Chap. 8). 

Very recently Panagiotopoulos and Lazaridis (1985, 1987) derived the two dual boundary 
variational statements from the classical minimum potential and complementary energy principles 
by means of saddle point formulations using appropriate Lagrangian functions. In detail, the 
extremum formulations of the discretized problem are derived straightforwardly from the cor- 
responding ones of the continuum problem by approximating Green's function or its inverse by 
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means of standard (i.e. based on collocations) direct boundary element procedures. That allows 
to use quadratic programming tools with a very low number of sign constrained variables, 
tractions or displacements, in the contact area. 

The aim of this paper is to analyse the numerical solution of elastic frictionless contact problems 
discretized with "standard" direct boundary elements. In Sect. 2 a variational formulation of 
linear elastic problems with bilateral constraints is given in terms of boundary tractions; their 
mathematical setting is also discussed. Then variational problems over convex sets, e.g. the 
Signorini-Fichera problem, are dealt with in Sect. 3. The discretization of the boundary functional 
is examined in Sect. 4 from the point of view of the theory of approximation and it is shown that 
the coerciveness of the continuum problem is maintained. Furthermore (Sect. 5) the approximation 
of Green's function by means of the standard direct boundary element method is studied: the 
symmetry is generally lost whereas the coerciveness is preserved. In Sect. 6 the B.E. numerical 
solution of the frictionless contact problem is presented briefly. As a consequence of the previous 
results the stationarity conditions of the discretized problem can be expressed in the form of a 
linear complementarity problem having, as coefficient matrix, a non symmetric P matrix. Finally 
a simple, but meaningful example, is discussed in some detail. 

2 "Boundary" variational formulations 

For the sake of simplicity let us discuss in the first place a paradigmatic two-dimensional linear 
problem. 

Consider an open, bounded, simply connected domain O of the plane z = 0 in the Euclidean 
space p, 3 referred to the orthogonal Cartesian reference system (0, Xi, i =  1, 2, 3). The boundary 
F = ~312 is assumed to be sufficiently regular..(2 is occupied by a linear elastic body (Fig. 1). 

It is well known that the mixed boundary value problem obtained by assigning, for instance, 
the load vector q on F q  c F and by taking into account the essential boundary conditions u = 0 
o n  /r" o ~ / - ' ,  /-" ~ f q  :~ O, has a unique solution. More precisely, such solution can be found by 
minimizing the potential energy functional 

J(u) = �89  ~ qud7 (2.1) 
rq 

with 

a(u, u) = ~ Cijhkeii(U)ehk (U) dO, (2.2) 

where Cijhk (i, j, h, k = 1, 2) is Hooke's tensor of elasticity, assumed to be constant all over the body 
and obeying the classical symmetry and ellipticity conditions 

Cijhk ~- Cjihk = Ckhji; Cijhk~ij~hk > Ceij~hk; 

W = {eij = �89 + uj,i)i, j = 1, 2}~R 2, c const > 0. 

The minimization of J(u) is to be performed over all the admissible displacements, which in the 

Fig. 1. Mixed boundary value problem for a two-dimensional elastic domain 
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present case turn out to be 

u s g  = { [ H l ( O ) ] 2 ; u  = 0 on  t o } .  (2.3) 

A boundary variational formulation of the problem we are considered can be immediately found 
if Green's matrix, related to the boundary conditions, is known. For any vector ps[H-1/2(F)]2 
we suppose to have determined a matrix G(x, 4) such that the displacements field induced by p(~) 
can be expressed as 

v(x) = I G(x, ~)p(~) dT(~), xsO.  (2.4) 
r 

Clearly, vsU as defined in (2.3). It is worth noting that (2.4) does not provide the complete 
solution of the problem, because p(~) is known on Fq, where it is equal to the prescribed load, 
vanishes on F -  (Fq w Fo), but it is "a priori" unknown on Fo. Actually, along the constrained 
boundary, a reaction force distribution, depending on the load conditions, arises in order to 
provide the global equilibrium of the body. 

However, we can note that v(x), as obtained in (2.4), belongs to the subspace V of U defined 
as follows: 

v s  V -= {[HI(~Q)]2; v r  Fo; a(v, v') - (p, V') r = O, Vv' sU}, (2.5) 

where (p, v ' ) r  = ~ p(~)v'(~)dT(~) denotes the inner product on the boundary. 
F 

We can conclude that the functional J(o) can be equivalently minimized over V instead of U. 
In particular, the solution ue V c U of the minimization problem will satisfy the Euler equation 

for J(o), namely: 

a(u,v ' ) -  ~ q(~)v'(~)@(~)=0, Vv'sU. (2.6) 
G 

Then we can take both u and the test functions v' as belonging to V; this amounts to defining: 

v'(~) = ~ G(~, x)p'(x) dy(x). (2.7) 
r 

According to the definition (2.5) of V = U, we have now 

a(u, v') = ~ p(~)v'(~) dT(~) (2.8) 
F 

if us V and, therefore, the final equation we obtain from (2.6) is 

[ [. p(~)G(~, x)p'(x) dT(x) d7(~) - ~ ~" q(~)G(~, x)p'(x) dT(x) d7(~) = 0. (2.9) 
rx r~ rx rq,~ 

On the other hand, it is quite evident that Eq. (2.9) can be viewed as the Euler equation of the 
boundary functional 

1 
J*(p) = ~ [. ~ p(~)G(~, x)p'(x)dT(x)dT(~) - ~" j" q(~)G(~, x)p'(x)d?(x)d7(r (2.10) 

rx r~ rx rq.~ 

The present development is similar to the discussion contained in a recent book of Kikuchi 
and Oden (Kikuchi and Oden 1988, pp. 216-220), where the reader can find also a simple proof of 
the ellipticity of the operator described by means of Green's function. For our successive results, 
however, it will be useful to have the explicit expression (2.10) of the boundary functional. 

3 Boundary problems over convex sets 

The variational formulation presented in the previous section exhibits some interesting features, 
even though for the classical problem considered before it is completely equivalent to any "direct" 
formulation in terms of virtual forces (Kalker and Van Randen 1972; Buffer 1985; Kikuchi and 
Oden 1988). 
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Fig. 2. Two-dimensional elastic body on a rigid frictionless support: the "obstacle" problem 

First of all, the coerciveness of the bilinear form involved in the definition of J*(o) allows a 
straightforward extension of the classical error analysis for potential problems, as we will discuss 
with some detail in the next session. Secondly, a variational formulation, that involves only 
boundary forces, seems the most favourable framework for studying a whole class of problems, 
where some constraint is imposed on the domain of the functional. A classical example is the 
Signorini-Fichera problem, also known as "obstacle problem", illustrated in Fig. 2, but we will 
see that the remarks we are presenting are far more general. 

The "obstacle problem" can be approached by considering again the potential energy functional 
(2.1) and by modifying the set of the admissible displacements as follows: 

usK = { [HI(.Q)]2; u = 0 on Fo; u'n < A(x) on Fr} (3.1) 

where n denotes the outer normal on F = ~2  and A(x) the gap measured along the outer normal 
between the body, before the deformation, and the obstacle surface. We note that K is a convex 
subset of U as defined in (2.3); as usual, it is convenient to take into account the constraint 

u ' n -  A(x) __< 0, on  F r (3.2) 

by means of a Kuhn-Tucker  multiplier 2. Thus we are led to consider the following problem: find 
a stationary point of 

JA(U; 2)= �89  ~ q 'ud? -  ~ 2(u 'n-  A(x))d? (3.3) 
rq rr 

with us U and AsH- 1/2(F); (A, 1 ) r '  < 0, VF' c Ft. 
In the present formulation, we have implicity supposed that the contact surface F~ has empty 

intersection with both Fq and Fo. The assumption F,  c~ Fo = ~ obeys to the mechanics of the 
problem itself; on the contrary, it is easy to verify that F~ n Fq = ~ is far from essential and it has 
been introduced only for the sake of simplicity. 

Now we can repeat step-by-step the deduction of Sect. 2; once introduced the space V of the 
admissible displacements, which can be expressed by means of Green's matrix G(x, {), we can 
assume also the test functions v' as belonging to the same V. Thus the Euler equation in terms of 
boundary forces, corresponding to (2.9), is obtained: 

~ p(~)G(~, x)p'(x) dy(x) dv(~) - ~ ~ q(~)G(~, x)p'(x) dv(x) dv(~) 
rx r~ rx rq,r 

- ~  ~ Z(~)n(~)G(~,x)p'(x)d~(x)dT(~)+ I Z(x)A(x)dT(x)>=O, Vp's[H-1/2(F)] 2. (3.4) 

Finally, we can observe that (3.4) is the minimum condition for the functional 

J* (p; A) = 1 I ~ p(~)G(~, x)p(x) dy(x) dT(~) + ~ A(x)A(x) dy(x) (3.5) 
rx r~ r~.~ 

over the convex set 

p e K - { [H-  1/2 (F)] 2; p(x) = q(x), on Fq and p(x) = A(x)n(x); (A, 1 ) r '  < 0, V F '  ~ F,  }. (3.6) 
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In (3.4), the conditions on Fq and F r are explicitly imposed in the weak sense, which is correct, 
since H-1/2(F) is a distributional space, and p(x) in principle does not need to have well- 
defined point values. Let us remark that the well known extremum principles with respect to the 
tractions of the contact area (Kalker and Van Randen 1972; Buffer 1985; Panagiotopoulos 1985; 
Panagiotopoulos and Lazaridis 1987) are completely equivalent to (3.5), differing from it in the 
additional term 

1 
~ ~ q(x)G(x, ~)q'(~)dT(x)dT(~) 

which is not subject to variations [see Eq. (3.6)]. Moreover, the present result differs from the one 
of the previous section in what we have here an additional unknown, the contact surface F,, which 
cannot be identified "a priori". Yet, this is not a trouble, since 2(x) is required to be non-positive 
and vanishing values are allowed. Thus, in principle, we can take Fr = F\Fo,  and in solution 2(x) 
will vanish outside the contact area. 

The relevant point in the present formulation, however, resides in what (3.4), or equivalently 
functional (3.6), has been obtained by using Green's matrix for the elastic problem without obstacle. 
In mechanical terms, this amounts to considering the solution of the complete problem as the 
superposition of two partial, solutions, the one corresponding to the body constrained at Fo and 
loaded with q(x) along/~q, the other to the body constrained at Fo and loaded with 2(x)n(x) along 
F,. The basic hypothesis here is that the reaction of the contact surface is completely frictionless: 
this allows in practice to use mathematical programming tools (i.e. linear complementary or, 
equivalently, quadratic programming), in addition to iterative procedures (trial and error), to solve 
the problem numerically [see for instance Cannarozzi (1980) for a discussion of this point]. The 
more general case, where the contact reaction involves also a tangent component due to friction, 
r(x) = 2(x)n(x) + #(x)t(x), presents some additional difficulties. First of all, an existence result for 
the solution can be proved only under the rather restrictive assumption that the total work of the 
friction forces be "small" with respect to the global deformation energy (Netas et al. 1980). Besides, 
the coefficient ~(x) of the tangent component of the reaction force does not need to be sign 
constrained, and this involves considerable difficulties in providing a complementary setting of the 
problem (Alliney 1988). 

4 Some remarks from the theory of approximation 

In abstract terms, our basic problem: find pc  I-H- U 2 ( F ) ] 2  such that 

S SP(~)G(~,x)P'(~)d7(x) d?(~)-  I I q(~)G(~,x)p'(x)d?(x)dT(~) =0 VP 'e[H-1/2(r)]2 (4.1) 
rx r~ r .  r~.~ 

belongs to a wide class of elliptic problems, for which sharp theoretical results are available. In 
this section, we will draw freely from earlier studies (namely, Le Roux 1977; Nedelec and Planchard 
1973), and we will focus our attention on the practical implication of the theory, when dealing with 
numerical approximate models. 

For the sake of simplicity, we re-write (3.1) as 

a*(p,p') = b*(q,p'), Vp' e[H-'/2(F)]2. (4.2) 

First of all, we can note that the bilinear form a*(o, o):[H-UZ(F)]2 x [H-1/2(F)] 2-~R is con- 
tinuous and coercive; furthermore, a*(p,p) represents one norm over [H-UZ(ff)] 2, which is 
equivalent to the usual one (Le Roux 1977, Theorem 1.1). Classical results also state that the 
solution p of (3.2) is the trace on the boundary of a suitable stress tensor defined inside the domain. 
In order to obtain a discrete version of problem (3.2), we have to approximate both the ambient 
space [H-1/2(F)] 2 and the curved boundary F. We will denote with F h the approximation of the 
boundary by means of straight segments and with p2 a finite dimensional subspace of [H-  x/2(Fh)]2. 

The new problem is then: find pheP 2 such that 
, ~ , t i 2 ah (Ph,Ph) = bh (qh,Ph), VphePh, (4.3) 
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where qh is an approximat ion to the prescribed load q~[H-1/2(F)]2 and a*(o, o), b*(o, o) are the 
bilinear forms corresponding to (3.2), now defined on the approximate  boundary  Fh. 

The error we introduce by searching for Ph which satisfies (3.3) has two different sources: (i) the 
approximat ion of [ H -  1/2 (F) ]  z with one finite dimensional  subspace P~; (ii) the approximat ion of 
the true b o u n d a r y / "  with a piecewise linear curve F h. The discussion that  follows is based on the 
further assumption that  the approximating subspace P~ is in practice the space of vectors, having 
components ,  which are constants over any straight segment of F h. Thus  we have 

P~(Fh) c [LZ(Fh)] 2 (4.4) 

and 

[L2(Fh)] 2 = [H~ 2 c [ H -  1/2(Fh)]2. (4.5) 

Under  such hypotheses, we claim that  the bilinear form a~'(o, o):p2 • p2 .__,p, is coercive for 
sufficiently small values of the parameter  h. Let T:PZ(Fh)-~ [ H - 1 / 2 ( / " ) ]  2 denote the operator,  
which maps a vector defined on the approximated boundary  Fh into a corresponding vector 
defined on the exact boundary  F ;  such operator  can be explicitly built up, as illustrated in Le Roux 
(1977). F r o m  now onwards, we will assume that  the boundary  F is at least of class cgm+2. 

For  any ph~P2(Fh), we have the following inequalities (Le Roux 1977): 

K1 ll TPh I[o < IlPh IlO,h < K2 [[ Tph [[o; K1, Kz > 0, (4.6) 

where II ~ II0,h denotes the norm of LZ(1-'h) and II ~ Iio the norm of LZ(1-'). Furthermore,  we have the 
following: 

Proposition 1. For any Ph ~ P~ (if'h) the following inequality holds 

I1 TPh II - x/2 > Cl hl/2 II Tph II o. (4.7) 

Proposition 2. For any phEPg(Fh), the following inequality holds 

la*(Tph, T P h ) -  a~(Ph,Ph)l < c2 hm+ l [[Ph 2 = IIo,h. (4.8) 

The proof  of these proposi t ions is but  a straightforward extension to the vector case of the result 
of Le Roux (1977) and it will not  be reported here. 

Now we are able to prove the main result, as anticipated before: 

Theorem. For sufficiently small h and for any ph~P~(Fh) as previously defined (piecewise constant 
functions on Fh), the bilinear form a*(o, o) is coercive with respect to the norm of L2(Fh). 

Proof. F r o m  (4.8), we obtain immediately 

a~(ph,Ph ) > a.(Tph ' Tph) __ c2hm+ 1 2 = II Ph II O,h- (4 .9)  

Since a*(o, o) is coercive and induces an equivalent no rm on [H-1/2(F)]2 ,  we have also 

a*(Zph, Tph) > C~ II TPh II 2-1/2. (4.10) 

Using now (4.7), we obtain the further inequality. 

a*(Tph, Zph) > cZc~h II Tph 112. (4.11) 

Recalling the bounds  (4.6), related to the operator  T, we have finally: 

a*(Tph, Zph) > f c3cl "] 2h [[Ph I1~. (4.12) 
= \ K 2  ] 

After substi tution of (4.12) into (4.9) we obtain 

a*(ph,Ph ) >= h(o~ -- c2 hm) IlPh II ~,h (4.13) 

with ~ = (c3cl/K2) 2. Equat ion (4.13) proves the theorem; notice that  the present result is somewhat  
stronger than the simple coerciveness w.r. to the no rm of [ H -  1/2(Fh)]2. 
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5 On the numerical solution by direct B.E.Ms 

The results reported in the previous section constitute the ground for the numerical solution of 
the contact problem. Namely the choice of the approximating subspace P~(Fh) as defined in (4.4), 
by using piecewise constant shape functions, allows a dramatic reduction of the computational 
effort. It is a matter of routine to verify that this amounts to using a zero-order integration formula 
over any interval of F h or, from a different perspective, to resorting to a suitable collocation method 
in the evaluation of the line integrals. 

Unfortunately, the esplicit form of Green's operator (2.4) is known only in special cases. We 
remind, however, that in discrete problems the inverse of the "stiffness matrix" plays the same role 
as Green's function of our approximation scheme, as remarked by Lazaridis and Panagiotopoulos 
(1987a, b). This suggests that Green's operator of our formulation could be given an approximate 
representation exactly in that way. Whenever standard direct B.E.Ms are employed, however, some 
comments are due. Namely, it is well-known that the stiffness matrices provided by direct B.E. 
techniques are not, as a rule, symmetric. A part from special cases (e.g. when coupling F.E. and 
B.E. solutions--see Brebbia et al. 1984, Chap. 13; and Banerjee and Butterfield 1981, Chap. 14), 
where certain symmetrization procedures are currently used, non-symmetric matrices still provide 
valid approximate solutions. Of course, classical symmetry properties, as the Maxwell-Betti 
theorem, hold only asymptotically for the discretized problem. 

In our case, the approximation outlined above amounts to an imperfect evaluation of the 
bilinear form (4.1)--of course over F h instead of F. The integrals like 

S G(~, x)p'(x) dT(x) (5.1) 
rh.~ 

will be evaluated by using the corresponding values of the inverse stiffness matrix over any 
sub-interval of the boundary: A simple argument, based on the integral average theorem, shows 
that this introduces into our evaluation an error term, which is proportional to the characteristic 
length h of the sub-intervals of the boundary; indeed, for p'(x) ' 2 =phePh the constant terms can 
be brought out of the integration operator: what remains is just one integral average of Green's 
function. As a matter of fact, we are using a zero-order interpolation method; in any case, 
a complete discussion, together with error analysis, for higher order interpolation/collocation 
methods can be found e.g. in Arnold and Wendland (1983) and Saranen and Wendland (1985). 
Taking into account the second line integration [see (4.1)], we obtain 

I I ph(~)G(~, x)p'(x) dT(x) dy(~) = ah (Ph,Ph) + h2e(ph,p'h) = ah (P,,Ph), (5.2) 
Ch,x eh,r 
where the term h2(e(ph,p'h) accounts for the error introduced into the evaluation of (5.1), after the 
second integration. Of course, the bilinear form e(o, o)--in practice unknown--cannot  be assumed 
to be symmetric: to be precise, this is just the non-symmetric error contribution which affects the 
discrete models based on "direct" B.E. formulations. As we noted before, this error contribution 
is proportional to h 2 and, therefore, such term has been pointed out in Eq. (5.2). 

Now, inequality (4.13) has to be verified for ~7~'(o, o) approximating the "true" bilinear form 
a*(o, o). Therefore, we have to verify that 

gt*(Ph,Ph) = a~(Ph,Ph) + h2 e(ph,Ph) = > h(o~ --  c2 hm) IlPh II o,h.2 (5.3) 
Here, it is sufficient to note that for h sufficiently small we have 

a*(ph,Ph ) ~ h(~ -- c2 hm) IlPh II ~,h - h2 e(ph,Ph) (5.4) 

even though the sign of e(ph,ph ) is undetermined. It follows that: 

~l~(.ph,Ph ) ~ h(~x -- c2 hm) [[Ph II ~,h (5.5) 

for any ph•P2(Fh). 
Finally let us remark that, on the basis of the quoted papers of M. N. Le Roux (1974, 1977), 

inequalities analogous to (4.13) and (4.19) hold also for more refined boundary element models, 
for instance for the linear one. 
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6 A numerical example 

In Sect. 3 variational formulations of the Signorini-Fichera problem have been presented either 
as a variational inequality (3.4), or as a minimum principle. 

In this context the use of direct boundary techniques^provides, as previously discussed, a 
discretized bilinear form 4" (Ph,Ph), whose coefficient matrix Zis non-symmetric. Consequently, the 
problem at hand cannot be directly formulated as a minimum problem and standard quadratic 
programming tools cannot be employed. 

Nevertheless inequality (5.5), in virtue of a well known result attributed to Fiedler and Pt~ik, 
guarantees that Z is a P matrix, that is all its principal minors have strictly positive determinants. 
It is even obvious to remark that any principal submatrix of Z is a P matrix. 

A more detailed discussion of direct boundary element solutions of contact problems is 
reported in Tralli, Alessandri and Alliney (1988); however for the sake of completeness some of the 
main points are mentioned in the following. 

(i) Variational inequality (3.4) (rather than the related minimum principle) is reduced to a 
variational inequality defined only on the contact surface Fr in terms of the contact pressures 
distribution pr(x) = 2(x)n(x). This can be obtained by taking into account explicitly the constraint 
p(x) = q(x) on Fq; moreover the essential boundary condition u = 0 on F 0 is directly imposed 
during the evaluation of the approximate influence coefficients. The variational inequality so 
obtained states nothing but the principle of virtual forces (Buffer 1985). 

(ii) By discretizing the problem with constant B.E., as discussed in the previous Sections, the 
following linear complementarity problem (L.C.P.) (6.1) is straightforwardly obtained: 

g z = Z P + ( W ~ + A ) > O ;  e > 0 ;  gzTp=0,  (6.1a) 

where P is the vector of "nodal" contact forces and Wq and A are, respectively, the vectors of the 
mean normal displacements, induced by the assigned external load distribution q, and the gaps. 

The L.C.P. coefficient matr ixZ(Np x Np ifNp denotes the number of elements approximating 
Fr) is a principal submatrix of Z from which it can be obtained by deleting rows and columns; 
therefore, it turns out to be a P matrix itself. As well known this property represents the necessary 
and sufficient condition to get a unique solution of L.P.C. (6.1) for any vector of assigned data 
(Wq + A); the analogy with the corresponding continuum problem (F o = ~b) is evident. Moreover 
Lemke's algorithm guarantees that the solution of the discretized problem so far discussed exists 
and can be achieved in a finite number of steps. 

It is worth noting that the boundary constraint u = 0, assumed so far in F o, is not strictly 
necessary and, therefore, problems with unconstrained "stamps" can be solved exactly as illus- 
trated before. Namely, the Z matrix coefficients and vector Wq can be evaluated for any isostatic 
stamp, where auxiliary constraints are arbitrarily introduced for eliminating rigid body motions. 
Obviously these constraints have to be placed at the nodes with zero tractions prescribed (i.e. nodes 
not belonging to Fq). The explicit enforcement of the three (6 in 3-D problems) global equilibrium 
equations between the given loads and the contact tractions guarantees that the constraint 
reactions are equal to zero. By adding these equations to relations (6.1a-c) we obtain a non 
standard L.C.P.; for such a problem it is always possible to find a complementary solution by 
Lemke's algorithm, if the convex set defined by the equilibrium equations and (5.1b) is not empty. 
However, possible rigid-body displacements remain undetermined. From the discussion of the last 
section we can now conclude that the main properties of the continuum problems (e.g. existence 
and uniqueness of the solution) are preserved also for the discrete B.E. problem. As a final remark 
we remind that iterative methods have been recently proposed in the technical literature for the 
solution of linear complementarity problems with non symmetric matrices. As an example, we 
treat a simple, unilateral, plane strain, contact problem. The obstacle is assumed to be rigid and 
frictionless. 

In the following we shall describe our experiments with regular boundary discretization, even 
though a better performance could be obtained using a self-adapting mesh refinement technique 
(see for instance Rencis and Mullen 1986). 

In Fig. 3 the discretization with constant boundary elements is shown. The same mesh has 
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Figs. 3 and 4. 3 Elastic punch on a rigid foundation. Constant  and linear B.E. discretization; 4 , 9 -  P . . . .  Wma, diagrams for 
constant and linear B.E. discretization 

been used also in the analysis with linear B.E s; obviously the nodes are located at the extremes of 
each element. However, in order to avoid the second integration, which nevertheless appears 
absolutely trivial, it is possible to evaluate the constraint on the normal displacement u ' n  < A(x) 
only at each node (Collocation method). The problem has been studied for increasing values of 
the parameter & The contact pressure at the centre point and the displacement at the edge of the 
base are depicted in Fig. 4. These analyses have been carried out by imposing explicitly the global 
equilibrium, as previously discussed, and by employing Lemke's algorithm as reported in Ravindran 
(1972). L.C.Ps have been solved with 9 sign-constrained nodal contact pressures P for the constant 
B.E. discretization and 11 for the linear B.E. discretization (an additional node has been located 
at the centre point of the base). 

In Table 1 the maximum values of displacements and contact pressures at the base are reported 
for ~9 = 3. In many problems, even for unconstrained bodies, it is possible to define "a priori" some 
actual contact nodes with prescribed zero displacements; therefore, in this case it is not necessary 
to make the equilibrium equations explicit. For the problem at the hand we chose nodes Q and 
R as actual contact nodes. 

For every type of element we report the results obtained either in the case where the equilibrium 
is explicitly imposed (columns I, V) or in the case where some contact nodes are already known 
(columns II, VI). Column III reports the results obtained by symmetrizing the Zmatrix. As a matter 
of fact, in the case of equal length elements the Z matrix turns out to be almost symmetric (the 
measure of the unsymmetry of the Z matrix, computed by means of the following expression 
(Bauer-Roy scaling) 

[ ZiJ  - -  Z j i  max 
f 

Table 1. Maximum values of displacements and contact pressures at the rigid foundation 

Constant  elements Linear elements 

~9 = 3 I II III IV V VI VII 
P,,ax (t. cm.-  ') 0.760971 0.748998 0.749032 0.748998 0.782141 0.785598 0.785598 
Wm~x (cm,) 0.003694 0.003911 0.003921 0.003911 0.003935 0.003795 0.003795 
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amounts approximately to 1% for constant B.Es and to 8% for linear B.Es, if collocation pro- 
cedures are applied; all computations were performed in double precision with an Olivetti OC3250 
Computer). 

Finally in columns IV and VII we report the bilateral solution obtained by supposing the 
contact area "a priori" known. Columns I and V appear not to be in so good agreement with 
columns IV and VII; that depends on the fact that B.E.M. results do not satisfy exactly the 
equilibrium but in an asymptotic way (Brebbia et al. 1984). For instance the B.E. solutions reported 
in column IV(II) or VII(VI) exhibit an error of 1.57% or 0.44% respectively in computing the 
equilibrium in the vertical direction. 
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