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Triangular and rectangular plate elements based
on generalized compatibility conditions

Z.F.Long
Northern Jiaotong University, Beijing 100044, China

Abstract. Three generalized conforming elements for thin plate bending based on generalized compatibility conditions are
derived: a triangular element with 9 d.o.f. (LT element) and two rectangular elements with 12 d.o.f. (LR-1 and LR-2). Their
formulation is as simple as the conventional non-conforming element and they can be implemented in routine manner. By
satisfying the generalized compatibility condition under constant moments, these new elements can always pass the patch test.
Numerical examples show that high accurate result is obtained with fewer degrees of freedom by using these new elements of

thin plate.

1 Introduction

To formulate a non-conforming element or a hybrid-displacement element of thin plates, the
modified potential energy principle (Pian and Tong 1987) should be used:

T =T, — 2 H = stationary, (1)

where

H= §[ ( —W)—M<@—$>—M (@—Jﬂds )
—aAe an n 6” n ns 6s s .

n, and w,, are functionals of minimum and modified potential energy theorems, w is interior
deflection, W, ¥, ¥, are interelement displacements, Q,, M,, M,,, are boundary tractions on 0A,.

Based on the functional ,,,, of Eq (1), Tong (1970) formulated the hybrid-displacement element
which has been used successfully in plate bending and other problems. Since the functional x,,), i
a multifield variational functional which contains three kinds of independent variables (i.e. element
displacements, boundary displacements and boundary tractions), the formulation of the hybrid-
displacement element is rather complicated.

Long (1988, 1989) developed the generalized conforming element which can be formulated by
using the degenerated form of =, ,. The procedure consists of the following steps. Firstly, the
interelement displacement compatibility conditions are relaxed and thus the variational principle
initially used is the modified potential energy principle. Secondly, the following generalized
compatibility condition

H=§ [Qn(W*W)—Mn<a—W—lpn>— <——!P )}ds— 3)
Ao on 0

is assumed to be satisfied, then the multifield functional =,, degenerates to the single-field
functional =,. Finally, based on the simple form of 7, the element stiffness matrix can be easily
obtained by the conventional procedure.

In this paper, three generalized conforming elements of thin plates are derived: a triangular
element with 9 d.o.f. (LT) and two rectangular elements with 12 d.o.f. (LR-1 and LR-2). The stiffness
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matrices of these elements are rank sufficient and pass Irons’ patch test. The performance is
demonstrated to assess these elements.

2 Generalized conforming triangular element LT

The nodal displacement vector of a triangular element of thin plate with 9 d.o.f. (Fig. 1) is

{q}e = [wl le lpyl W; wxz !PyZ W ‘//x3 l//y3]T (4)

where dy,d,,d; denote the side lengths of the triangle, w denotes deflection, and ¥, = dw/éx and
i, = Ow/0y denote rotations. Along each side of the element the deflection w is assumed to be cubic
and the normal slope v, linearly distributed. The deflection field w of the element is expressed in
terms of area coordinates L, L,, L:

where
{)“}=[/11 12 /13 )~4 }“5 /16 '17 /18 }v9 /110 /111 112]T
[F,]=[L, L, Ly L,L, L,Ly LyL; LiL, L3Ly L3L, LiL,L; L3L,L, LZL,L,]. (6)

In order to solve {4} in terms of {g}¢, it is necessary to establish 12 compatibility conditions. First,
three compatibility conditions for w at each node are used:

w(x, y)—w; =0 (i=1,2,3) ™
from which 4,, 4, and A, are solved:
A=wy, Ap=wy Az=Wws. (8)

Further, in order to solve A4, Zs,..., 4, ,, nine generalized compatibility conditions are established
according to Eq. (3). The assumed element moments are linear:

M, L1L2L3000000£1
M,{=|0 0 0 L L, Ly 0 0 0| [ 7], )
M, 0 0 0 0 0 0 L, L, Ly |

Bo

where B,,..., B are nine arbitrary parameters. Substituting Egs. (5) and (9) into (3), the following
nine generalized compatibility conditions are obtained:

$ ﬂ(w w)—le(%——!ﬁ>+L,—lm<(;—v:—lﬁs>:|ds=0

0del

[ ¢.m W - ow  —
Moy — ) — L2 ( 2~ F V= Lim( 2~ . ) |ds=0
afe_ZA " <6n ll/") 'm< 0s l//ﬂ ’

¢l + bm L w =\ o 2 __— _ .

where / and m are directional cosines of the outer normal on 0A4,, A is the area of the element and

by=y,=ys by=y3—yi, by=y —
CL=X3— Xy, Cp=X;—X3, C3=X;—Xy. (11)

From Eq.(10), A,,..., A, can be solved in terms of {q }*. Combining this result and Eq. (8), we have
{4} =[4Ha}", (12)
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in which
[A]=[[4:]1 [4,] [A5]]
I 1 0
0 0
0 0
(—3+7,)/2 (=3r,cy+ 3¢, +2¢,)/12
—(ry+1r3)/2  (3rye, —3rye; —cyq)/12
[4,]= (3+73)/2  (3rscy+ 15¢5 + 14c,)/12

3—1’2 (31‘262—962—861)/6
r2+r3 (_37202+3F3C3+Cl)/6

—(3+r3) (—3r3¢3 —9c; —8¢y)/6
—r,+r; (rycp+ 7303 —cq)/2
—ry+7s (rycy +r3c3—cy)/2
—ry+7;3 (racy +r3c3—cy)/2
I 0 0
1 0
0 0
B+r)2  (Bricy+ 15¢; + 14¢,)/12
(—=3+r3)/2 (—3riyes+ 3¢y + 2¢,)/12
[4,]= —(r3+ry)/2  (Brsc3—3ricq —cy)/12
-3+ —@3rycq +9c; +8¢,)/6
3—r, (3ry3c3 —9¢c3 —8¢,)/6
P+ 7s (—3r3c3+3ric, +¢,)/6
ry—7F; (r3cs+ric; —c,)/2
Fi—"rs (rscs+ric; —cy)/2
L T1—73 (r3cs +rie;—cy)/2
) 0
0 0
1 0

—(ry +13)/2  (3ricy —3ryc, —cy)/12
(B3+r3)/2  (Bryc, + 15¢, + 14¢5)/12
[4,]= (=3+r)2 (—3ricq+ 3¢, +2¢3)/12
(ry+r3) (=3rycy +3ryc5 +¢3)/6
—(3+ry) —(3r,c, +9¢, + 8¢3)/6
3—r, (3rycy —9¢; —8¢y)/6

——7‘1 +7'2 (1"1(31 +r262‘_63)/2
—r+r, (ricy +rycy —c3)/2
_rl +I"2 (7‘161 +7‘202—C3)/2

0

0

0

—(—3r,b, + 3b, + 2b,)/12

—@3r,by, — 3r3b; — b )/12

—(3r3bs3 + 15b5 + 14b,)/12

—(3ryb, —9b, —8b,)/6

—(—3r,b, +3r3b; + b,)/6

—(—3r3b; —9b; —8b,)/6
—(rby +r3b3—by)/2
—(raby +1r3b3—by)/2
—(ryby +13b3—by)/2

0
0
0
—(3ryby + 15b, + 14b,)/12
—(—3r3b3 + 3b3 + 2b,)/12
—(3r3by —3r;by —b,)/12
+(3r.by +9b, + 8b,)/6
—(3r3b; —9b, — 8b,)/6
—(—=3r3bs3 4+ 3r1by +b,)/6
—(r3bs +riby —by)/2
—(rsby +r1by —b,)/2
—(rsbs +r,b; —b,)/2

0
0
0
—(@3ryby —3r,b, — b3)/12
—(3r,b, + 15b, + 14b,)/12
—(—3riby +3b, + 2b5)/12
—(—3ryby + 3ryb, + by)/6
(3ryb, + 9b, + 8b5)/6
—(3rby —9b, — 8b,)/6
—(r1by + 130, —b3)/2
—(riby +7r3b, —b3)/2

—(riby +r3b, —b3)/2

283

(13)
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3 {X3,¥3)
da dy
{x, 1 a3 21x2.y2) Fig. 1. A triangular element
and
" _di—zdij szi—zdf, 3=df‘;d§
dy d d5
Substituting Eq. (12) into Eq. (5), we obtain
w=[F,1[4]1{q}" (14)

The element stiffness matrix [k]° may be derived by the conventional procedure. This element is
called LT element.

3 Generalized conforming rectangular elements LR-1 and LR-2

The nodal displacement vector {g}° of a 12-d.o.f. rectangular element 2a x 2b (Fig. 2) is

{Q}e:[wl /9 lPy1 Wy Yy '1by2 w3 Yy l//ys Wy Yo lpy‘t]T' (15)
The deflection field w of an element is described by

w=[F,]{4} (16)
in which

{l}T=[/11 dy Ay Aa ks ke A7 Ag A Ao A1 A2l

[Fl=[ ¢ n & & v* & &n &' n* En '] 17)

and & = x/a, § = y/b denote dimensionless coordinates. First, three compatibility conditions for
nodal deflections w; (i = 1, 2, 3,4) can be established:

4 4 4

Y owi=4( + A+ e Y wili=4(hy + Ay + Ao), Y wil, = 4(A3 + Ag + Z10)- (18)
i=1 i=1 i=1
Further, nine generalized compatibility conditions are established according to Eq. (3) in which
two sets of element moments are assumed:

M, 1511@7000002‘
M, =000 0 1 ¢q & off (19a)
M, 0000 000 0 1]]°
Bs
Y
4 j‘?‘[
X
1 2

L»L—l——a——l Fig. 2. A rectangular element
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(19b)

Thus for the first set of element moment (19a), the relation between {4} and {g}¢ can be written

as follows:

[ 2 i [ 30
2y —45
A —45
Aa 0
s 66
Ae 1 0
4, | T120] 15
g 0
Ay 0
410 15
11 —18

| 412 | | —18

A similar result is obtained for the second set of element moment (19b) as follows:

A 6
A ~9
A —9
Aa 0

15a
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0
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0
Sa
—15a
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1)

Based on the two sets of solutions of {4}, Egs. (20) and (21), the corresponding stiffness matrices

of two new rectangular elements, LR-1 and LR-2, can be established.

4 Numerical examples

Example 1. Simply supported and clamped square plate under uniform load
Numerical results for central deflection obtained with the triangular element LT are given in
Table 1 along with those obtained with the CT element (Fricker 1985)—one of the most accurate
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Table 1. Central deflection—triangular element

Mesh Simply-supported Clamped
(4 plate)
Element LT Element CT LT CT
A B A B A B A B
2x2 04014 0.4024 0.39930 0.35118 0.12288 0.10768 0.14750 0.10732
(=1.2%) (—0.9%) (=1.7%) (—13.6%) (=2.9%) (—149%) (16.6%) (—15.2%)
4x4 0.4051 0.4058 0.40439 0.39280 0.12544 0.12203 0.13221 0.12232
(—0.3%) (—=0.1%) (—0.5%) (=3.3%) (—0.8%) (—3.6%) (4.5%) (—3.3%)
6x6 0.40574 0.40609 0.40540 0.40028 0.12611 0.12452 0.12912 0.12468
(—=0.1%) (—0.03%) (—=0.2%) (—1.5%) (—=0.3%) (—1.6%) (2.0%) (—1.5%)
Analytic 0.406235 g1*/(100D) 0.12653 q1*/(100D)
solution

Table 2. Central deflection—rectangular element

Mesh Simply-supported Clamped
(; plate)
LR-1 LR-2 ACM LR-1 LR-2 ACM
2x2 0.4051 0.4052 0.3939 0.1238 0.1243 0.1403
(—-0.3%) (—0.3%) (—=3.0%) (—=2.0%) (—1.7%) (11.0%)
4x4 0.40616 0.40617 0.4033 0.1260 0.1261 0.1304
(—0.02%) (—0.02%) (—0.7%) (—04%) (—04%) (4.0%)
8x8 0.40623 0.40623 0.4056 0.12645 0.12646 0.1275
(—0.001%) (—0.001%) (—0.2%) (—0.06%) (—0.05%) 0.8%)
Analytic solution 0.406235(ql*/100D) 0.12653(ql*/100D)

Table 3. Central moment—triangular element

Mesh SS pl.—uniform load Clamped pl.—uniform load
( plate)
LT CT LT CT
A B A B A B A B
2x2 0.5022 0.5161 0.49988 0.43958 0.2909 0.2380 0.29510 0.20527
4.9%) (7.8%) 4.4%) (—82%) (27%) (3.9%) (28.8%) (—10.4%)
4x4 0.4798 0.4917 0.48347 0.47005 0.2386 0.2343 0.24671 0.22389
0.2%) @7%) (1.0%) (—1.8%) 4.2%) (2.3%) (7.7%) (—2.3%)
6x6 0.47821 0.48551 0.48090 0.47493 0.23277 0.23155 0.23751 0.22605

(—=0.1%) (1.4%) 0.4%) (—0.8%) (1.6%) (1.1%) (3.7%) (—1.3%)

Analytic 0.47886 (q1%/10) 0.22905 (q1%/10)
solution
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Table 4. Central moment—rectangular element

Mesh SS pl.—uniform load Clamped pl.—uniform load
(£ plate)
LR-1 LR-2 ACM LR-1 LR-2 ACM
2x2 0.51245 0.51233 0.52169 0.25523 0.25323 0.27783
(7.0%) (7.0%) 8.9%) (11.4%) (10.5%) (11.3%)
4x4 0.48730 0.48732 0.48920 0.23689 0.23696 0.24050
(1.8%) (1.8%) 2.2%) (34%) (3.4%) (5.0%)
8x8 0.48098 0.48098 0.48166 0.23109 0.23110 0.23191
0.4%) 0.4%) (0.6%) 0.8%) 0.8%) (1.2%)
Analytic solution 0.47886 (q1%/10) 0.22905 (q1/10)

nine—d.o.f. triangular elements currently available. Two mesh orientations, A and B, are used
(Fig. 3). Central deflection coefficients obtained with the rectangular elements LR-1 and LR-2 are
given in Table 2 along with those obtained with the well-known ACM element. Moment coeffi-
cients obtained with the triangular element and rectangular elements LT, LR-1 and LR-2 are given
in Table 3 and 4 respectively. These new elements exhibit excellent performance.

In order to test whether the LT element can pass the patch test, two examples, pure twisting
and pure bending of plates, are analyzed with the LT element.

Example 2. Pure twisting patch test

A square plate is supported on three nodes A, B, C, and a load p = 5KN is applied at node D
(Fig. 4a). An arbitrary grid subdivision is shown in Fig. 4b. Correct results are obtained everywhere
with the LT element.

Example 3. Pure bending patch test
A 2-element mesh (with node 1 fixed) is under pure bending, M, = 1.0 KN-m/m (Fig. 5). The LT
element reproduces the exact solution and passes the patch test.

Mesh A ; Mesh B

I ) W2 L7000 ) Fig. 3. Two mesh orientations

9

D P

6.2
10

Figs. 4 and 5. 4 Twisting patch test. 5 Bending patch test
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