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Implementation of the transformation field analysis 
for inelastic composite materials 

G. J. Dvorak, Y. A. Bahei-EI-Din, A. M. Wafa 

1 
Introduction 
The transformation field analysis is a new method for incremental solution of thermomechanical loading 
problems in inelastic heterogeneous media and composite materials, described in recent papers by 
Dvorak (1991 ,  1992). When used with a selected micromechanical model, the analysis provides piecewise 
uniform approximations of the instantaneous local strain and stress fields in the phases, and estimates 
of the overall instantaneous thermomechanical properties of a representative volume of the heterogeneous 
solid. The method incorporates many of the currently used approaches to problems of this kind as special 
cases, this is shown for the unit cell models, the Mori-Tanaka and the self-consistent methods, as well 
as for other methods that utilize the Eshelby solution. The purpose of the present paper is to 
examine several different aspects of numerical implementation of the method in solutions of problems 
for composite materials consisting of elastic-plastic, viscoelastic, and viscoplastic phases. 

Starting with the assumption of an additive decomposition of the small total strains, the method 
regards all inelastic strains, or relaxation stresses, as eigenstrain or eigenstress fields, referred to jointly 
as transformation fields, in an otherwise elastic body. The residual fields generated by the transformation 
fields are evaluated with certain transformation influence functions, or concentration factor tensors. 
These follow from solutions of elastic problems for locally applied eigenstrains or eigenstresses, 
which can be constructed with several different micromechanical techniques, such as the self-consistent 
and Mori-Tanaka methods, or with unit cell models. Therefore, the influence functions depend only on the 
elastic moduli of the phases and on the geometry of the microstructure, and thus remain constant during 
deformation. Once determined, they are used to write a system of differential equations for evaluation 
of the local instantaneous strains or stresses. Many different constitutive relations can be easily introduced 
into the analysis. Moreover, if the influence functions are evaluated in accordance with the criteria outlined 
by Dvorak and Benveniste (1992), the results satisfy exact connections between certain volume averages 
of both the total strains or stresses, and the eigenstrains or eigenstresses. 

The first three sections of the paper introduce some preliminary concepts: Sect. 2 contains a brief 
summary of various definitions of local and overall properties; Sect. 3 outlines the concept of eigenstress 
and eigenstrain influence functions and concentration factors, while Sect. 4 discusses in detail their 
evaluation in micromechanical unit cell models by the finite element method. The essence of the 
transformation field analysis method is described in Sect. 5. This is followed by examples of applications 
to composites with elastic-plastic, viscoelastic, and viscoplastic phases. 

The notation used is fashioned after that introduced by Hill (1963); (6 • 1) vectors are denoted by 
boldface lower case Roman or Greek letters, (6 • 6) matrices by boldface uppercase Roman letters, and 
AA -1 = A 1A = I, if the inverse exists. Scalars are denoted by lightface letters. Scripts characters are 
reserved for quantities that change during deformation. Volume averages of fields in Vr, such as At(x) or 
er(X), or of a(x) in V are denoted by A,  e r or tr. 

2 
Local and overall properties 
We consider a certain representative volume V of a heterogeneous solid, such as a composite or polycrystal, 
made of many perfectly bonded phases r = 1, 2 . . . .  N, residing in volumes VrE V. The response of the 
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phases may be represented by various inviscid or time-dependent constitutive relations to be discussed 
below, providing that at any time t the total strains and stresses can be additively decomposed as 

e~(x, t) = e~(x, t) + p~(x, t) a~(x, t) = a~(x, t) + Z~(x, t), (1) 

2 0 2  

where x denotes the material coordinates in a selected cartesian system associated with V. The e~ e and 
pr in (1~) denote, respectively, the elastic strain due to certain surface tractions at the boundary of V, and 
an eignstrain in the phase r. Similarly, the ~ and ~ in (12) denote the elastic stress and eigenstress in 
phase r under certain surface displacements applied at the surface of V r. 

The eigenstrain and eigenstress fields, henceforth referred to jointly as transformation fields, may 
consist of contributions of distinct physical origin, and thus may be decomposed further. For example, if 
only thermal and inelastic effects are considered, 

in X Pr(X, t) = mr0(t) + e~ ( , t) + - . -  A~r(X , t )  = lrO(t) + O'rre(X, t)  + . . . ,  (2) 

where m r and I r a r e  the thermal strain and stress tensors. The coefficients of mr represent the linear 
thermal expansion coefficients, the e~ denotes an inelastic strain, and trrr e a relaxation stress. Contributions 
due to the other transformation effects can be added. 

With these definitions, (1) become 

gr(X, t) = Mr O's(X, t) + mrO(t) + e~n(x, t) 

or(x, t) = Lrer(x, t) + lr0(t) + ~rr~e (X, t), (3) 

together with the interrelations 

m T = _ M r l  r 
in re 

oe r (X, t )  ~-- - -  M r  O" r (X, t)  

= __ re - -  L r g  r (X, t ) ,  (4)  lr Lrmr ~'r (X, t)  = in 

where L r and M r = Lr  1 are the elastic phase stiffness and compliance tensors, assumed to be diagonally 
symmetric, positive definite, and for now, independent of temperature. 

In describing the overall response of the heterogeneous medium, we focus on a representative volume 
V, defined either as a sufficiently large sample that contains many phases and reflects typical macroscopic 
properties (Hill 1963) ,  o r  as a suitably selected unit cell of a (usually) periodic model of the actual material 
geometry. In either case, macroscopically homogeneous response and the implied existence of 
certain overall or effective properties are assumed under macroscopically uniform overall stress tr(t) 
or uniform overall strain e(t), prescribed through surface tractions or displacements specified on the 
surface S of V. In unit cell models, the uniform overall quantities must be reduced to certain periodic 
boundary conditions for the representative cell. 

With these definitions, the overall and local fields are connected by 

1! 1 
e(t)  = r  t) d v a( t )  = = S o-Ax, t) d V. (5) 

Vv 

When phase eigenstrains are present, the above definition of the representative volume needs to be 
expanded to incorporate overall response of the heterogeneous solid to local eigenstrains in phases or 
subvolumes of such phases. In particular, let p (x, t) denote an eigenstrain field defined in V such that, 
if the surface S of V is traction-free, this field causes surface displacements on S that are consistent with 
a macroscopically uniform overall strain p (t). Similarly, if the volume V is constrained such that no 
displacements are permitted on the surface S, then, ~.(x, t) denotes an eigenstress field defined in V such 
that it causes surface tractions on S that are consistent with a macroscopically uniform overall stress 
~(t). In analogy with (2), the p(t)  and 2 (0  will be referred to as the overall transformation fields. 

Recall now that the local and overall transformation fields are connected by the generalized Levin 
(1967) formula (Dvorak and Benveniste 1992, Eqs. 7 and 8) 

1 T 1 T 
Z(t) = 7. SAr (x) ~,~(x, t) d V  p( t )  = -v~Brv (x) pr(x, t) dV, (6) 

V v  

where the B r (x) and Ar (x) are the mechanical stress and strain influence functions. If the transformation 
fields in (2) are caused only by a uniform change in temperature, then the mechanical and thermal 
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influence functions define the local fields as 

o)(x, t) = Br(X ) o '( t)  + b~(x) O(t) er (x, t) = A r (x) e(t) + a r (x) 0 (t), (7) 

where the br(x) and at(x) are the thermoelastic influence functions. 
In actual solutions, the continuous fields are usually replaced by piecewise uniform approximations 

in the phases or in subvolumes ~a,  p = I, 2 . . . .  M, of a discretized unit cell. Then, (5) and (6) are reduced to 

M M 

E(t) = ~ cpep(t) o'(t) = ~ cp~rp(t) 
p = i  p = l  

M M 

Z(t) = ~ cpAT).p(t) p(t)  = ~ cpBSpp(t), 
p = l  p = l  

(8) 

(9) 

where the concentration factor tensors Bp and Aa represent the volume averages of the respective influence 
functions over ~2p. 

With regard to (5) and (6), or (8) and (9), the relation between the overall total and transformation 
stresses and strains at any time t may be written in terms of the overall elastic stiffness L, and compliance M, 

s(t) = M ~r(t) + p(t) ~r(t) = L e(t) + ,~(t), (lO) 

where M = L ~, 2(t) = -- Lp(t), p(t) = -- MS~(t). 
If the decomposition (2) is applied to the overall quantities, one recovers 

e(t) = M a(t) + m 0 (t) + e in (t) a(t) = L e(t) + 10 (t) + O "re  (t), (11) 

and the relations (6) and (7) provide the well-known connections (Hill 1963; Laws 1973) 

M M 

L = ~ cpLpAp M = ~ cpMpBp 
p = i  p = l  

(12) 

M M 

1= ~ cp(lp +Lpap) m =  ~ cp(mp+Mpbp) ,  (13) 
p = I  p = l  

where L and M = L -1 are the overall elastic stiffness and compliance tensors, and 1, m = - MI are the 
overall thermal stress and strain tensors. 

3 
Local fields 
Under purely thermoelastic deformation of the heterogeneous aggregate, the local fields are provided 
by (7), as a superposition of the contributions due to the overall mechanical stresses and strains, 
and the thermally induced local transformations in (2). In the same spirit, one can superimpose the 
effect of any other local transformation field p (x, t), or ~ (x, t) by writing the local fields in the form (Dvorak 
199o) 

gr (X, t) = A r (x) g (t) + D r (x, x')/g (x', t), 

Noting that (2) to (4) imply 

p(x' ,  t) = -- M(x') ~(x', t) 

O'r(x,t)=Br(X)~r(t)+Fr(X,X')),(x',t). (14) 

A(x', t) = - L(x') #(x' ,  t), (15) 

we observe that F r (x, x') and D r (x, x') are eigenstress and eigenstrain influence functions which evaluate 
the effect at x induced by a transformation at x' under overall uniform applied stress a(t) or strain 
s(t). For a stress-free homogeneous medium with a transformed ellipsoidal inclusion, D (x', x') = S, the 
Eshelby tensor. 

The transformation influence functions can be easily connected to the integral equations formulation 
of the problem. Indeed, Dvorak and Benveniste (1992) show that 
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where L ~ is the stiffness of a comparison homogeneous medium, and 

1 t /~o~,(x, x') = - ~ ( G j , ( x ,  x ) + G , , , ( x ,  x ' ) ) ,  (17) 

where G~k is the Green's function of the medium L ~ that satisfies 

0 ! L0klGkp,0(x,x ) + bipb(X--X') = 0, x ,x '~V,  (18) 
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where 6~p is the Kronecker symbol, and ~ (x - x') is the Dirac delta function. 
In actual evaluations of the local elastic and transformation fields, the respective influence functions 

in (14), and all components of the local fields, are sought in terms of averages, and piecewise uniform 
approximations, respectively, within phase volumes V~, or subvolumes or subelements ~p of discretized 
phases. In particular, the representative volume V, or the unit cell volume .(2, are subdivided into 
subelements p, t /=  1, 2 . . . .  M of volume s s V r, where M _-__ N, so that each subelement resides in only 
one phase r. Conversely, each phase may contain one or more subelements. The stresses and strains 
are approximated as uniform in each t2p, s and, if all local transformations (2) are superimposed, 
(14) is replaced by 

M 

ep(t) = A p s ( t )  + ~ Dp . [m ,0 ( t )  + e~(t)] (19) 
. = 1  

M 

G( t )  = Bp a(t)  + ~ Fo. [1. O(t) + rr~e(t)]. (20) 
I/=1 

This form describes the response of the elastic composite to certain uniform overall mechanical 
fields and piecewise uniform local transformation fields. The Ap and Bp are the mechanical concentration 
factor tensors. Under overall strain e(t) = 0, the Dp, gives the strain caused in ~p by a unit uniform 
eigenstrain located in s Under overall stress a(t)  = 0, the Fp, defines the stress in ~p due to a unit 
eigenstress in ,(2,. Any additional eigenstrains or eigenstresses of interest can be incorporated. In what 
follows, the Do, and Fp, will be referred to as the transformation concentration factor tensors. 

Before proceeding to some simple examples of these tensors, we note that their evaluation by the finite 
element method, which is of interest in unit cell models, is outlined in Sect. 4 below. A particularly 
simple evaluation is possible in two-phase media, with phases denoted as r = ~,/3. According to Dvorak 
(199o, Eqs. 123-125) 

Dr~ = (I -- At) (L~ -- L/3)-~ L~ D fl = -  ( I - - A , ) ( L ~ - L a ) 1 L f l  (21) 

Fr:, = (I -- B,) (M~ - M~)-~M= F,fl-- -- ( I - -  B r ) (M~- -M#) - IM~.  (22) 

In multiphase media, the expressions for the concentration factor tensors were found by Dvorak 
and Benveniste (1992) in terms of estimates derived with the self-consistent or Mori-Tanaka methods. 
For both methods, the results are 

Drs= (I -- At) (Lr- -  L ) - I  (C~rsI -- c, AT) Ls 

Frs = (I -- Br) (Mr- -  M)-~ (b~sI -- GBT) M~, 
r,s = 1 , 2 . . . N  

(23) 

(24) 

where the L and M are the respective estimates of the overall elastic stiffness and compliance tensors, 
while A r and B r are the related estimates of the elastic mechanical concentration factor tensors; L r, 
M r are the phase elastic properties. The 6~s is the Kronecker symbol, but no summation is indicated by 
repeated indices. It can be verified that in two-phase media, (23) and (24) reduce to (21) and (22). 

It should be noted that applications of the self-consistent and Mori-Tanaka methods to specific material 
systems are restricted by certain admissibility conditions which, in the present example, are satisfied 
by any two-phase materials and by those multiphase solids that contain or consist of inclusions of 
similar shape and alignment (Dvorak and Benveniste 1992). 

If the overall eigenstrain p(t) in (92) is used in (101), and the resulting total strain g(t) is then substituted 
into (19), where the ea (t) is written in terms of the local stresses in (21), (32), one finds 

M 

~rp (t) = LpApM or(t) -- rp  ~ [(c, ApB r + Dp,)M,;~,( t)]  + ;~o (t). 
. = 1  

(25) 
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When compared with (2o), this provides the connections 

ApM = MpBp 

M 

Z CpAp = I 
p = l  

Moreover, using (4), (7) and (19). (2o) one finds that 

M M 

% = ~ Doom. = _ ~ Dp.M,71~, 
r t= l  q = I  

4 
Influence functions for unit cell models 

Fp, = Lp [3phi -- c, ApB~ - -  D p,1] M~ 

M 

Z CpBp = I. 
p = l  

M M 

bp = ~ Fp.ln = -- ~ Fp~L.m.. 
q = l  r /= l  

(26) 

(27) 
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4.1 
Procedure 
The results (21) to (24) provide simple estimates of the transformation concentration factor tensors of 
individual phases, but their accuracy may prove inadequate when the transformation fields exhibit large 
variations, as they do for example, during inelastic deformation. Subdivision of the phases is then indicated, 
and is usually accomplished in the context of a unit cell model of an idealized composite material. If 
a periodic arrangement of the microstructure is selected, then the unit cell is subjected to 
appropriate periodic boundary conditions, and the local fields are evaluated by the finite element method. 
Many such models have been described in the literature; in the examples that follow, we will utilize the 
periodic hexagonal array (PHA) model of a fibrous composite (Dvorak and Teply 1985; Teply and Dvorak 
1988). 

To illustrate the finite element evaluation of the piecewise uniform approximations (19) and (2o) of 
the influence functions in (14), we subdivide the domain under consideration by constant strain 3D 
elements ~ , ,  t /=  1, 2 . . . .  M, interconnected at nodes i,j . . . .  = 1, 2 . . . .  R. The coefficients of the mechanical 
strain or stress concentration factor tensors A, or B, in (19) or (2o) are then found from solutions of 
six successive elasticity problems. In each solution, the domain, free from any eigenstrains, is 
subjected to overall strain e, or stress a ,  that have only one nonzero component of unit magnitude. 
The (6 x 1) strain or stress vector found in the element $2, is the column of the (6 x 6) matrix A, or B~, 
corresponding to the selected nonzero component, 

The transformation concentration factors can be obtained in a similar way, by applying, in turn, 
each single component of a unit eigenstrain vector/tp in the element 12p within an otherwise strain-free 
domain, and finding the local strains in all elements. Each such local strain in 12~ represents one column 
of the (6 x 6) matrix D,p for I2, in (19). An analogous sequence involving substitution of the D,p matrices 
in (262), yields the columns of F p. If the evaluation of the D p and F p matrices is made using a standard 
finite element code, the unit local eigenstrains may be produced as thermal strains, by appropriate 
selections of nonzero thermal expansion coefficients. 

A much more efficient evaluation of these matrices is possible using the stiffness matrix of the unit 
cell domain. In each constant strain element, the displacement u at any point within the element 12,~ is 
approximated by 

u , = N ~ ,  (28) 

where N, = [ N] Nj"...] represents prescribed functions of position, and ~, = [ a7 a~ . . .  ]r is a listing of 
nodal displacements for a particular element. The strains at any point within 12~ can be found as (the 

is used to distinguish FEM terms from similarly denoted but different micromechanical terms). 

:4 ~ :4- ~r ~ ~- 
g, = Su~ = SN, a ,  = B ,~ ,  B~ = [B~B~... ] = SN,, (29) 

where S is a suitable linear differential operator. Since the element strain field is required to be uniform, 
the shape functions, N ~ N n i, j . . . . .  etc., must be linear in the coordinates xl,x2,x 3, and the coefficient matrix 
B n in (29) is constant. 

With reference to (3), (4), the relationship between stress and strain in the element .c2~ that contains 
a uniform eigenstrain #7 is 

0" 7 = L~ (~'~ - -  B . ) .  (30) 
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The stress ~r, in the element and the tractions on the element surface can be reproduced by subjecting 
the element to the nodal force q, = [qTq~...if, statically equivalent to the element stresses and boundary 
tractions, found from the principle of virtual work. In the absence of body forces, the equivalent nodal 
force is given by the volume integral 

~ 'T q. = ~ Bn o'~ dl2 n. (31) 

Since only constant stress and strain fields are admitted in the elements, the B is constant, and the 
integral in (31) can be evaluated in closed form. Substituting the constitutive Eq. (3o) into (31), and 
using the strain-displacement relation given in (29), we can write the equivalent nodal forces associated 
with node i of element I2 n as 

P 

q7 = Z K}~ § (3z) 
j=l 

K} = BffL n B; O n (33) 
x- 

f~  = - -  B~T Lnlltn -(2 n, (34) 

where P is the total number of element nodes, K} is the ij  partition of the element stiffness matrix, and 
f] represents the forces at node i caused by the uniform eigenstrains p, .  

When the solution domain .(2 is not subjected to any external loads, the sum of the forces at a generic 
node i contributed by the elements connected to that node must vanish. Therefore, at each such node 

M 

~, q/n=0 i = 1 , 2  . . . .  R, 
~7=I 

(35) 

where M is the total number of elements, and R is the total number of nodes in the domain. Substituting 
(32) into (35), one finds 

M P M 

Z 2 K~j~j " =  -- Z f7 i =  1,2 . . . .  R. (36) 
~ / = 1 j = i  7=1 

These R matrix equations can be augmented and written as 

K m = f (37) 

M M 

K O= ~ K} f i = -  ~ fT, (38) 
r /= l  n = l  

where K is the overall stiffness matrix, f is  the overall load vector, and ~ = [al a2...  ~R] r lists the as yet 
unknown nodal displacements. 

The transformation factors Dp,, p ,  rl = 1, 2 . . . .  M ,  can now be evaluated from the displacement field 
found by solving (37) and (38) for the 6M independent f vectors; each corresponds to an eigenstrain 
/t, = i k, k = 1, 2 . . . .  6; t /=  1, 2 . . . .  M, where i k is the k th column of the (6 x 6) identity matrix. For example, 
if k = 3, then i 3 = [0 0 1 0 0 0] r. In any case, the load vector f] in (34) is 

f7 = - -  R n T p / O  . . . . . .  ~i lk '-n t/ = 1, 2, M, k = 1, 2, 6, (39) 

where 1~ is the k th column of the elastic stiffness matrix L,. According to (19), the overall strain must 
vanish when evaluating the strain transformation factors from the local strain field. Consequently, 
(37) must be subjected to displacement boundary conditions which are derived from a null overall strain 
vector. 

Since the overall stiffness matrix K of the unit cell depends on the cell geometry, the finite element 
type and displacement shape functions and on material elastic properties, it is a constant matrix, 
and one may write (37) using (39) as 

K [~d 1) ~(2)... ~(6M)]T = [f(1) f(2).., f(6M)]r. (40) 
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The matrix K can be evaluated for the unit cell domain 19, and then decomposed to lower and upper 
triangular factors, K L and K v, using Cholesky's method. Since K is symmetric, then K v-- K~, and the nodal 
displacements a(ll, a(2) . . . .  a(6M) follow from forward and backward solutions of the following equations 

KL [yO)y(2)... y(6M) ] T = [ f(a) f(2) . . .  f{6M} ] r (41) 

T (i) (2) [yO)y(2) KL[a  a ...a(6M)]T . . . .  y(6M)]r. (42) 

Finally, the element nodal displacements ~r q = 1, 2 . . . .  M, are extracted from the solution for or (~ 
i = 1, 2 . . . .  6M, and substituted in (290 to obtain the strains e, which represent the columns of Do,; p, 
t /=  1, 2 . . . .  M. Let the matrix Pp relate the nodal displacements of element p to the overall displacement 
vector such that zo7 

~r = Poa ,(~ p = 1,2 . . . .  M, i =  1,2 . . . .  6M. (43) 

From (zg), we find 

~- . }{- 

~p = Bp Pp ~') = Po ~0) Pp = Bp Pp. (44) 

For a specific vector f in (37) which corresponds to unit eigenstrain p ,  = i k, k = 1, 2 . . . .  6, as given by 
(39), the strain in (44) represents the k th column dkp, 7 of the factor Dp. This can be written symbolically as 

= (45) 

An efficient way of obtaining d~p, is indicated by (41), (42) and (44). 
The stress transformation factors Fp. follow from (262): Alternately, one can retrace the procedure 

leading to (41) and (42), but for fvectors corresponding to 6M unit eigenstress vectors 2, = i k, k = 1, 2 . . . .  6. 
Since/~. = - M . ) . . ,  (34) provides 

f~' =bTk~ , t / =  1,2 . . . .  M, k =  1,2 . . . .  6, (46) 

where b~ is the k th column of matrix Bff. According to (zo), the overall stress must vanish when evaluating 
the stress transformation factors from the local stress field. In this case, the solution of (42), (42), (44), 
together with (46) and (12), can be used to find the factors Fp, Symbolically, the k th column 
x- k 
fp, of the Fp, factor corresponding to .~., = i~ can be written as 

~kp, = L p Pp K-~f  + (~pn ik' (47) 

where 6p, is the Kronecker symbol, and f is assembled from the load vectors in (46) using (382) .  

4.2 
Efficiency and accuracy 
To asses the time required for evaluation of the transformation concentration factor Dp,, we recall that 
the time needed for decomposition of the stiffness matrix K is proportional to the number of 
multiplications �89 eR b 2 involved in the Cholesky decomposition procedure, where e is the number of 
degrees of freedom at a node (e = 3 for 3D solid elements), and b is the half band width of K. The number 
of multiplications, required to evaluate the overall stiffness matrix for transversely isotropic elastic 
symmetry from (33) and (38), truns out to be 2388 M. The computation time required for solving (41) 
or (42) for each f('} vector, s = 1 . . . .  6M, is proportional to eRb. Hence, the total time for evaluation of the 
nodal displacements from (40) is proportional to { eR b (�89 b + 6M) + 2388 M}. In some applications, 
where only certain (matrix) elements are allowed to develop inelastic strains, it is sufficient to find the 
eigenstrain concentration factors only for the potentially inelastic elements. If their number is T, T =< M, 
the time required for solving (40) is reduced to {eRb (~b + 6T) + 2388M}. 

For each nodal displacement vector ~(s/, s = 1 . . . .  6T, computed from (4o), the strain transformation 
concentration factors are given by the elements strains defined in (29). This operation involves 6eP 
multiplications for each element and each ~,/vector; P is the number of element nodes. Hence, the 
total time required for evaluation of the eigenstrain concentration factors is proportional to 36 ePMT. 
The eigenstress concentration factors follow in a similar way, but an additional Eq. (30) is required for 
their evaluation. The number of multiplications in this case is 36 for each element and for each ~c5), 
hence additional computer time proportional to 216 MT would be required. 
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To verify the accuracy of the numerical evaluation of the mechanical and transformation influence 
functions, one may compare the results with the general properties of these functions, derived by Dvorak 
and Benveniste (1992). We list the principal results here, and refer the reader to the above reference 
for specific proofs. There exist two exact relations for the actual transformation influence functions 
that evaluate the local fields in s n caused by uniform transformations in ~p, c.f., (14), (19), and (2o), 

M M 

~, Drip (x) = I -- A n (x) ~ F.p (x) = I -- B n (x) 
p = l  p = l  

(48) 

M M 

~,  Dnp(X)M p = 0 ~ Fnp(x)L p = O. 
p = l  p = i  

(49) 

In addition, the concentration factor tensors in (19), (20) must satisfy 

_ _  T T cnD noM p - CpMnD p, c,IFnpL o = coLnF pn (50) 

M M 

cp Dpn = 0 ~ cp Fpn = O, 
p = l  p = l  

(51) 

where t/, p = 1, 2 . . . .  M, the number of elements, and c n = ~nlV .  These connections are exact but not 
independent; note that (49) and (5o) give (51). Actual solutions then show that only (48) and (49) 
or (51) are independent. This provides (2 x M) independent relations for the (M x M) unknown 
transformation concentration factor tensors. 

4.3 
Symmetric unit cells 
Most unit cell models replace the actual materials geometry with a certain periodic approximation. 
Consequently, the unit cells themselves may posses internal symmetries that can facilitate evaluation 
of the transformation influence factors. While each sepcific unit cell geometry has to be considered 
separately, we illustrate the procedure that one may use for the periodic hexagonal array (PHA) model of 
fibrous composites that is described in greater detail in Sect. 6 below. A typical unit cell of the PHA 
model is a prism with an equilateral triangular cross section, Figs. 1-3, subjected to certain periodic 
boundary conditions described in detail by Teply and Dvorak (1988, Sect. 3). 

The PHA model geometry has a 3-fold axis of rotational symmetry, parallel to the fiber axis that 
coincides with the cartesian coordinate direction x 1, and three planes of symmetry perpendicular to 
the transverse x 2x3-plane. This provides for a subdivision of the solution domain into six similar triangular 
subdomains A, B . . . .  F, as shown in Fig. 1. The geometry of the finite element mesh in each of these 
subdomains is selected to be invariant under 12o ~ rotations about the x I - x' 1 -= x'[-axis, and under 
reflections about the x2-axis, the x'2-axis, and the x~'-axis. Obviously, such selection does not rule out 
elements that cross the symmetry axes, c.f., Figs. 2, 3. 

According to (19) and (20), the eigenstrain concentration factor Dpn is evaluated as the strain field 
E o in all subelements Y2o~t-2, p = 1, 2 . . . .  M, caused by a unit eigenstrain Pn = i~, k = 1, 2 . . . .  6, prescribed 
in any subelement g2n Esc2, t /=  1, 2 . . . .  M, while the composite material is subjected to zero overall strain. 
The eigenstress concentration factors For are found for similarly specified subelement eigenstresses 
in a composite subjected to zero overall tractions. These boundary conditions can be reproduced on 
the unit cell of the PHA model. Of course, the implication is that all unit cells comprising the fibrous 
composite material model experience identical unit eigenstrains or eigenstresses while the aggregate is 
subjected to zero overall strain or stress. 

Under such circumstances, both the mesh and the boundary conditions remain invariant under the 
above described rotations and reflections, and it is then possible to show that the Don and Fpn matrices 
for element eigenstrains or eigenstresses prescribed within only one subdomain of the unit cell can be 
used to find the concentration factor matrices for eigenstrains or eigenstresses specified in any other 
subdomain. 

While limiting attention to the Dpn matrices, where p, ~ = 1, 2 . . . .  M refers to all subelements M in 
~, we introduce the notation Dp~, Dpp, DpT, Dp~s, Doe, Dp~ o for subsets of the complete set of the 
Dpn matrices, found from unit eigenstrains introduced in the subdomains A, B . . . .  F in Fig. 1. The one 
subset that needs to be constructed, e.g., with the procedure outlined in Sect. 4.1, is selected here as the Dp~, 
for unit eigenstrains/~ = i k, c~ = 1, 2 . . . .  N, k = 1, 2 . . . .  6, in the coordinate system xj, j = 1, 2, 3; N denotes 
the number of subelements in the subdomain A. Each k th column dkp~ of the matrix Dp~ represents 
the strain vector ep due to the single component p~ = i k of the prescribed unit eigenstrain. 



G. J. Dvorak et aI.: Implementation of the transformation field analysis for inelastic composite materials 

X•• x''3 

X3 ,, ", / -  

X2 

X' 3 

1 3 

2 

1 

3 

2 4~ 

--,.- X 2 

2 

Figs. 1- 3. 1 Subdomains of a unit cell. 
2 Transverse cross sections of the PHA model 
microstructures with hexagonal and dode- 
cagonal cylindrical fibers. 3 Geometry of 
the unit cell of the PHA model 

Next, consider the subdomain  D in the local coordinates 4 '  and locate the subelement vo lume/2~eD 
that  has the same posit ion in the system x 5 as the vo lume/2~eA does in the coordinates xj. In this 
subelement  volume s introduce a uniform unit  eigenstrain vector p~ = ik, k = 1, 2 . . . .  6, defined in 
the xj coordinates,  to produce local strains Dp~ p~ in each of the subelements s p -- 1, 2 . . . .  M. Note 
that  the applied unit  eigenstrain p~ transforms into the eigenstrain p~ in the x~-coordinates as 

! 
//a = ~tg//a = ~r k = ~k, (52) 

where ~P is the t ransformat ion matrix,  and ~k k is its k th column. For the 120 ~ cw rotat ion implied in 
Fig. 1, and strain vectors defined as [ell e22 ~332s23 2s312e12] T, ~ is given by 

1 0 0 0 0 

0 1/4 3/4 --  x/3/4 0 

0 3/4 1/4 x/3/4 0 

0 x/3/2 - - x / 3 / 2  - 1/2 0 

0 0 0 0 - 1/2 

0 0 0 0 ~/3/2 

- , / 3 / 2  

- -  1/2 

The existence of the three-fold rotat ional  symmetry  axis x 1 implies that  local unit eigenstrains p~ 
and p~ in t roduced in volumes/2~ and/26  cause local strain fields in the respective xj and x' coordinate 

J 

systems that are invariant  under  the coordinate t ransformat ion from the xj system to x 5 system. Therefore, 
the strain eS' described in the x~-coordinates in any selected vo lume/2p ,  caused by the eigenstrain (52), 
can be found with the help of (141) or  (19) as 

where ~ is the subelement  volume defined as that  with the same posi t ion in the xj coordinate system 
as the selected volume ,r does in the x'.j coordinate system. Then, the k t~ column d~6 of the 
influence coefficient Do6, which relates the strain in vo lume/2p ,  p = 1, 2 . . . .  M, to the unit  eigenstrain 
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p~ prescribed in 12~ is given by the transformation of the strain vector (53) from the x~ to the x) coordinates. 
This can be written as 

d ~  = ~ 1Dr G k = 1, 2 . . . .  6, (54) 

and the transformation concentration factor matrix D~ then follows from 

D~o= ~ - ~ D ~  G 8 = 1 , 2  . . . .  N; p , ~ = l , 2  . . . .  M. (55) 

2 1 0  

As an example of the above procedure, we evaluate the matrix Dp~, where 12~ is any subelement 
volume in subdomain C, chosen to coincide with 12e. First, we identify the volumes in the xFcoordinates 
that correspond to the volumes ~ and s in the x;.-coordinates; it is easy to see that they are the ~ 
and 12~ volumes, respectively. Therefore, (55) provides the matrix Dr~ as 

D ~  = ~ -  ~ D~a ~ .  (56) 

An analogous procedure can be applied to eigenstrains introduced in the subdomain E and associated 
with the xj' coordinate system. The relevant transformation is a 120~ rotation about x~ into the xj 
coordinate system. 

To evaluate the subset Dpp for unit eigenstrains introduced in region B, one needs to utilize the 
x~x2-plane of symmetry in Fig. 1. In this case, the matrix ~ in (52) is replaced by the matrix ~W that 

r r __ r r describes reflection about the x2-axis. The nonzero elements of ~ r  are ~ .  = ~22 - ~v33 = Y/66 = 1, 
~v~4 = ~;5 = -- 1. Note that ( ~ )  -~ = YP. Apart from this difference in transformation matrices, the 
Dp~ are found by a procedure that is analogous to that leading to (55), providing that the matrix Y~ is 
replaced by ~ ' .  The result is 

Dpp= IIIrD~IIr, g, f i = l , 2  . . . .  N; p , ~ = 1 , 2  . . . .  M, (57) 

where D;~ was evaluated above in the xj system, for unit eigenstrains in the subdomain A. 
The same transformation relates the subset Dp~ for eigenstrains given in subdomain C to subset 

D~ in subdomain D, and the subset Dp~ for eigenstrains given in subdomain F to the subset D~ in 
subdomain E. 

As an example of such transformation, consider the matrix Dpp, where .(2p is any subelement volume 
in subdomain C, say 12~. Clearly, the matrix D~ can be obtained using (57) as 

Dea = ~rD~,  ~ ' .  (58) 

The eigenstress concentration factors Fpn, p, r /=  1, 2 . . . .  M, are evaluated in a similar fashion. They 
can be also calculated from the Dp~ factors found in (55) or (57), using Eq. (262). 

5 
Inelastic response 
Once the transformation concentration factors are known, one can proceed with evaluation of the inelastic 
local fields. A specific constitutive relation must be adopted in 12, to connect the current values or rates 

in t ar~ (t) of 6. ( ) or to the history of a , ( t  - z) or G ( t  - z), and O(t - z), respectively. Assuming piecewise 
uniform fields in the local volumes, one can formally write such constitutive relations in the general form 

o'~e(t) = g( G ( t  -- ~), O(t -- ~) ) e~(t) = f( a n ( t -  z), O ( t -  ~) ). (59) 

When substituted into (19) and (2o), this provides the governing equations for the total local fields, 

M 

G( t )  + ~, Dp, M , g ( e , ( t -  z), O ( t -  z)) = Ape(t)  + G 0 ( t )  
r / = l  

(60) 

M 

~rp(t) + ~ FpnLnf(a , ( t  -- z), O( t - -  z)) = Bp ~r(t) + bp0(t), 
r / = l  

( 6 1 )  

where the thermal concentration factor tensors are evaluated from (27). 
The mechanical and transformation concentration factors depend only on elastic moduli and on 

local geometry. If those remain constant, the governing equations can be differentiated and used for 
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evaluation of stress and strain increments, or their time rates. In this manner, the inelastic deformation 
problem for any heterogeneous medium is reduced to evaluation of the various concentration factor 
tensors or matrices, and to solution of one of the Eqs. (6o), (61) along the prescribed overall stress or 
deformation path. 

6 
Elastic-plastic systems 
To illustrate a class of applications of the Eqs. (60) and (6~), we examine the overall behavior and local 
fields in a heterogeneous medium with elastic-plastic phases. In particular, let the phase response under 
the locally uniform fields in V, or [2, be represented by the constitutive relations 

dar=~r(gr-flr)d,gr+~r(gr-flr)dO dgr=~r(O'r-O~r)+~ar(ar-O~r)dO. (62) 

where s  and d//r are the instantaneous stiffness and compliance tensors, and #r, ~ are the thermal 
stress and strain tensors that typically describe the consequence of a vairation of yield stress with 
temperature. The ~ and fl~ represent back stress and back strain that define the current centers of the yield 
and relaxation surfaces. All these tensors depend in some given form on the past deformation history, 
hence in an actual material the instantaneous magnitudes of their coefficients will vary within each 
local volume V~ or ~ , .  To prevent large errors in evaluation of the local response, it is advisable to 
choose material models that permit refined subdivisions of the representative volume. 

Rewriting (59) as 

211 

do "re = s + ~PrdO 

with 

L P P r = ~  - - L  ~ 

dg~ = d/fPrda , + mP~dO 

~Pr=(~r--lr) 

(63) 

~g'r p = ~(r -- Mr ~Pr = (r162162 -- mr) '  (64) 

and substituting for the eigenstrain terms into (60) and (61), one finds the following two systems of 
equations for local fields in elastic-plastic heterogeneous media: 

dgp + ~ DpqMn=5~Pdgn= Apdg q- (ap--  ~, Dp.M~EP)d0  (65) 
~/=1 t /=l  

do'p+ t /=l ~ Fp"Ln~I~d~"--Bpdtr+ bP- -~- - IFp"L"~= dO. (66) 

In actual numerical solutions, one may reduce these to the matrix forms 

{dG} = [ d i a g ( I ) +  [Dp, M , s  - [Dp,M,] {I, + ~ }  d0} (67) 

{&r~} = [diag (I)  + [Fp~L,~/~] ]-~ { [Bp] d ~ r -  [Fp~L~] {m~ + ~ }  dO}. (68) 

If one of these is solved for the local fields, then the overall response of the representative volume V follows 
from (5). (6) or (8). (9). and (m). 

Of course, for rather coarse subdivisions of the microstructure, the governing equations can be solved 
in closed form. For example, in a two-phase system r = ~. fl. or M = 2 in (65) to (68). one can find the 
solution of these equations as (Dvorak 1991) 

de r = drdg + ardO dt L = ,~rdt~ + ~dO, (69) 

where, for r = ~, 

d =  = [I + D ~ M ~  ~ -- (G/co)D=#M#~q~P#]-1 [A. -- (1/c#)D~#M# ~*a~] 

~ = [I + F~. L~ ~/~  -- (G/c#)F.#L# d//~]-1 [b~ - F~. L. r162162 -- F~#L# ~ ] .  

(70) 

(71) 

d#, .# ,  etc., follow from an exchange of subscripts. 
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Once the local fields are known, the overall instantaneous response is described in analogy with (n) 
to (13) as 

da  = ~LP de + f dO de = ../I/lda + ~ dO (72) 

M M 

~ Y :  E Cr~'~r~r E~---- E Cr(~'~r~r~-~r) (73)  
r = l  r = I  

212  

M M 

~/[: E Cr~r~/~r ~2/g: E Cr(~r~r"~/gr)" (74) 
r=l r = l  

As long as the transformation concentration factor tensors Dp, and Fp, satisfy the general relations 
(48) to (51), it can be established that (5) to (lO) and (72) to (74) provide identical magnitudes of the 
overall instantaneous strain increments under given overall incremental stress and temperature 
changes. 

The instantaneous overall properties (72) of multiphase aggregates, or unit cells subdivided into 
many elements, can be evaluated in a similar way. First, (69) are augmented for all volumes S2p, 
p = 1, 2 . . . .  M, and written in matrix form as 

{dgp} = [~4p] de + {v%} dO {d6p} = [~p] dcr + {~p} dO. (75) 

Then, comparing (751)and (67), one finds the augmented instantaneous strain concentration factors 
[alp] and the thermal strain concentration factors {ap} as 

[~r = [diag(I) + [Dp.M.~LPP~] ]-1 [Ap] (76) 

{~p} = - - [diag(I)  + [Dp.M.~P.]]-I  {[Dp.M.] {1. + EP} }, (77) 

or, using (27), 

(ap} = [ diag(I) + [DpnM.s176 1 {{ap} --[Dp.M~] {/~}}. (7 8 ) 

A substitution of (76) into (73) then provides the overall instantaneous stiffness matrix for the aggregate as 

{ ~ }  = [cp~p] [diag(I) + [Dp.Mn~P~]] I[Ap]. (79) 

The instantaneous thermal stress matrix is found by substituting (77) or (78) into (732), 

{ ~}= [ cp~LPp] [ diag(I) + [ D p.M~q~] ]-l { {ap}- [Dp.M.] { ~P~} } + { ~ c.~.}. 
~/=1 

(80) 

A similar procedure based on (68), (742) and (752) yields the overall instantaneous compliance matrix 
and the thermal strain matrix. The result is 

{ ~ }  = [cpJgp] [diag(I) + [Fp.Ln Jg~]] -1 [Bp] 

{r } {~}=[cp~o][diag(I)+[Fp.L.J/t~]]-X{{bp}-[FonLn]{~}} + = 1 c ~  �9 

(81)  

(82) 

These expressions provide the overall instantaneous moduli and compliances that may be used in analysis 
of elastic-plastic composite structures, such as laminated plates and shells. 

To illustrate the numerical results obtained from (68), we apply the above procedure to modeling 
of the elastic-plastic response of fibrous composites using the periodic hexagonal array (PHA) model 
described by Dvorak and Teply (1985) and Teply and Dvorak (1988). AS shown in Fig. 2, the fibers are 
arranged in a hexagonal array and the fiber cross section is approximated by a 6 to 12-sided polygon. Higher 
order polygons are used with refined meshes, Figs. 4b and 5- The composite volume is then 
divided into shaded and unshaded triangular prisms. It has been shown in op. cit. that under overall 
uniform strain or stress applied to the model composite, one can derive certain periodic boundary 
conditions for the prisms that guarantee that the local stress and strain fields in the shaded and unshaded 
prisms are related by a simple coordinate transformation; hence one of the prisms can be selected as 
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Figs. 4-5. 4 Examples of finite element meshes in the unit cell of the PHA model. 5 A refined finite element mesh in the unit cell 
of the PHA model 

2~3 

the representative unit cell of the fibrous composite. Figure 3 shows the geometry of the unit cell for 
a hexagonal fiber. The finite element meshes that may be selected in the cell are illustrated by the examples 
shown in Figs. 4 and 5. The calculations reported here were performed with the crude mesh of Fig. 4a. 

In preparation for the numerical solution of (68), the element concentration factor matrices Bp and the 
influence functions Fp, were evaluated according to the procedure outlined in Sect. 4.1. In fact, a slight 
modification of the procedure yields directly the matrix multiplication (Fp, L,). Indeed, if one rewrites 
(20) as 

M 

G ( t )  = Bp (r(t) -- ~ (Fp, L , )p , ( t ) ,  
~/=1 

(83) 

where t indicates the locations on the loading path a(t), then the columns of the matrix (Fp L,) can 
be identified with the local stresses caused in ~p by a uniform unit eigenstrain p ,  = - i k, k = 1, 2 . . . .  6, 
applied in E2,, while the composite aggregate is free of any overall stress a(t) = 0. These local stresses 
can be found from (3o), where the strains e, follow from a solution of (37)-(44)- 

In the present example, Eqs. (37)-(44) were formed and solved with the ABAQUS finite element 
program. In more refined meshes, the magnitude of several influence coefficients Fp,, p v a t/, may be 
found to be small in comparison with the coefficients Fpp, particularly when the element p is far removed 
from the element t/which contains the unit eigenstrain. Of course, all influence coefficients should be 
computed, but some products Fp, L~.~//~ in (8~), (82) may be discarded if the transmitted contribution 
of the eigenstrain present in element ,62~ to the strain in element ~p are small in comparison with the 
total strain in ~2p. 

The piecewise uniform local stress field was found by integration of (68) along the thermomechanical 
loading path specified by the history of overall stress (r~ and temperature O~ The Runge-Kutta 
formula of order two was used in the solution. The instantaneous plastic compliance matrix J/de,, the 
thermal strain matrix ~P,, as well as the element strains G, t /=  1, 2 . . . .  M, were evaluated for the elements 
in the elastic-plastic matrix phase, with the constitutive equations summarized in Appendix A. The 
overall strain was then found from (81). 

The solution algorithm for elastic-plastic composites may be constructed as follows. 

Step 1: 

Step 2: 

Step 3: 
Step 4: 
Step 5: 

For the given interval t 1 ~ t ~ t n+l of the prescribed histories (r ~ (t) and 0 ~ select the number 
of increments n, and compute the time increment h = (tn+ 1 - t~)/n. 
Set the initial values of the stress field (rp (t I ) = ~'p, the strain field G (t~) = ~p, of the center of 
the yield surface ~r (tl) = dcp, (Appendix A), and of the tensile yield stress Yp (t L) = l~p, in the 
elements p = 1, 2 . . . .  M. 
For k = 1,2 . . . .  n, do steps 4-6. 
Compute the yield function ~k) (aJk) - ~k), 0h) in Appendix A. 
If ~k) < 0 ~ volume ~p is elastic; go to step 6, 
i f ~  ) = 0, compute {d(rp} k from (68), with d a  replaced by da~ and dO is replaced by dO~ 

If (0gp/?ap)k.(dap) k < 0 ~ elastic unloading; go to step 6, 
If ( 3gp/~ ~rp)k. (d~rp)k > 0 ~ plastic loading; compute the instantaneous plastic compliance 
and thermal strain vectors df~ (ap (k)- ~p~k), Oh), ~ (~k) _ ~jk), Oh), Appendix A. 
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Step 6: Compute the stress field at time tk+~: 

{O'p}k+ , = {O'p} k + (h/2){d~rp + d~r;}k, 

{da;}k = (dap(tk+l, { % } k  + h { d % } k )  }, 

where da~ (t, ~rp) follow from (68) using an adjusted stress. The corresponding strain, 
ep(tk+l), p = 1,2 . . . .  M, and the center of yield surface ap(tk+l), p = 1,2 . . . .  T, are found 
from the constitutive equations given in Appendix A; T is the number of the elastic-plastic element 
volumes at time t k. 

The solution depends on the selected magnitude of the time increment h; an error of order h E 
is expected in the Runge-Kutta formula used. Our implementation of the above algorithm included 
iterations with various magnitudes of the time increment h. Specifically, the solution found at time 
t +1 for the selected number of time intervals n, was compared to the solution found when the number 
of time increments was increased to 2n. The solutions were compared in terms of the magnitude [] { ~rp } [[ 
of the stress vector. If the absolute difference ([1 { ap} [In+ 1 - [[ { ~rp } [J2~ +1) > ~, a specified tolerance, 
the process was repeated with the number of time intervals doubled again. Consequently, a series of 
solutions corresponding to time intervals n, 2n, 4n, 8n . . . .  etc., was generated until the selected convergence 
criterion was satisfied. Other solution strategies may be employed as well, for example, the time increment 
may be adjusted according to a specified tolerance (Sloan 1987). 

In the numerical example, we selected a boron/aluminum composite. The fiber is assumed to 
remain elastic during deformation, the elastic properties are chosen as E = 379.2 GPa and v = 0.21. The 
matrix elastic constants are taken as E = 68.9 GPa and v = 0.33, and its initial yield stress in simple 
tension as Y = 24 MPa. The Mises yield condition is used together with the Prager-Ziegler kinematic 
hardening rule. Linear hardening was assumed for the matrix with the plastic tangent modulus 
H = 14 GPa. 

The composite model was first subjected to mechanical tensile loading along the overall stress path 
from a22 -- 0 to a22 = 100 MPa. This was followed by unloading to a22 = 0: the selected x2-direction in 
the cartesian coordinate system is indicated in Fig. 3, Xl coincides with the fiber axis. Response of the 
unit cell to the same loading path was also evaluated directly, using the standard elastic-plastic finite 
element (FE) procedure of the ABAQUS program. Similar calculations were performed for the transverse 
shear path from ~23 = 0 to a23 = 100MPa, followed by unloading to a23 = 0. For both loading 
sequences, the overall total strains found using the transformation field analysis form (68) and the 
ABAQUS program were essentially identical; Fig. 6. All these solutions were based on the same number 
of load increments, selected as 40. Table i shows a comparison of the final magnitudes of local stresses 
a22 computed in the elements of the coarse mesh, Fig. 4a, at the end of the transverse tension path (a22 = 0). 
The local stresses a23 computed in the elements at the end of the transverse shear path (a23 = 0) are 
compared in Table z. Tables 3 and 4 show the corresponding plastic strain components ~[2 and ~[3 in 
the matrix elements. 
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Fig. 6. Overall stress-strain predictions found with the finite element and TFA methods for an elastic-plastic B/A1 composite 
under transverse tension loading and transverse shear loading 
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Table I. Element stress 022 computed at the end of an overall transverse tension cycle 
0-22 = 0 -~ 100 -~0 MPa 

Element No. FE Solution by TFA Solution (MPa) 
in Fig. 4a ABAQUS (MPa) 

% Difference* 

(fiber) 
1 1.90183214667 1.82551033611 4.01 
4 --3.81085837097 --3.82716055068 0.43 
5 11.8557301133 11.7818613295 0.62 

(matrix) 
2 --13.643539477 --13.6495023486 0.04 
3 21.2004259013 21.1675381753 0.16 
6 --13.7264248309 --13.598549014 0.93 

13 19.0704404461 19.2641299257 1.02 
14 --14.5503830631 --14.3651255519 1.27 
15 --13.0342676901 --13.0052217598 0.22 

*~ ((ABAQUS magnitude - TFA magnitude)/(ABAQUS magnitude)) x 100 
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Table 2. Element stress 0-23 computed at the end of an overall transverse shear cycle 
0-23 = 0 ~ 100 -00 MPa 

Element No. FE Solution by TFA Solution (MPa) 
in Fig. 4a ABAQUS (MPa) 

% Difference* 

(fiber) 
1 8.08962648043 8.03538699975 0.67 
4 4.38705814316 4.134745415385 0.90 
5 0.74283546995 0.741202776042 0.22 

(matrix) 
2 -1.64170439373 -1.64972131814 0.49 
3 -4.37508035553 -4.34663883063 0.65 
6 -4.94752990238 -4.91791139298 0.60 

13 0.464416136927 0.472410022578 1.72 
14 -5.18859682347 -4.94389812139 4.72 
15 -4.44559853765 -4.44358475334 0.05 

; ((ABAQUS magnitude - TFA magnitude)/(ABAQUS magnitude)) x 100 

Table 3. Matrix plastic normal strain e2P2 computed at the end of an overall transverse tension cycle 
0-22 = 0 ~ 100 ~ 0  MPa 

Element No. FE Solution by TFA Solution (10- 6) % Difference* 
in Fig. 4a ABAQUS (10 -6) 

2 537.233705579 533.306741197 0.73 
3 1153.37261718 1154.15883461 0.07 
6 1151.97490964 1152.98182129 0.09 

13 276.016801092 271.873804193 1.50 
14 --47.4017857507 --50.2394881913 5.99 
15 1158.02013150 1158.16415196 0.01 

** ((ABAQUS magnitude - TFA magnitude)/(ABAQUS magnitude)) • 100 

To compare  the  efficiency of  the  TFA m e t h o d  with tha t  of  the ABAQUS (version 4.8) finite e lement  
solution,  we recorded the respective CPU comput ing  t imes requi red  in the two load cycles us ing a VAX 

ma in f r ame  compute r  system. Under  the t ransverse  t ens ion  cycle, the ABAQUS solut ion requi red  2o4 s 
while the TFA solut ion requi red  67 s. For the t ransverse  shear  loading cycle, the CPU t imes for the ABAQUS 

solut ion and  the TFA m e t h o d  were 263 s and  67 s, respectively. Addi t ional  t ime was required to obta in  
the stress concen t ra t ion  factors Bp, p = 1,2 . . . .  M, and  the  t r ans fo rma t ion  coefficients (Fp Ln), 
p = 1, 2 . . . .  M, I / =  1, 2 . . . .  T, Eq. (83), where M is the total  n u m b e r  of subvolumes  in the uni t  cell and  
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Table 4. Matrix plastic shear strain 2e2P3 computed at the end of an overall transverse shear cycle 
a23 = 0 --+ 100 ~ 0 MPa 

Element No. FE Solution by TFA Solution % Difference ~ 
in Fig. 4a ABAQUS (10 -6) (10 -6) 

2 2591.29732547 2590.42812482 0.03 
3 1368.39041486 1363.58835703 0.35 
6 1820.69087664 1827.88019543 0.40 

13 3068.74769946 3070.46067496 0.06 
14 --708.059347361 --724.462785666 2.32 
15 824.209068909 820.199975761 0.49 

* ((ABAQUS magnitude - TFA magnitude)/(ABAQUS magnitude)) x 100 

Table 5. Element stresses cr22 and e23 computed at the end of the loading path of Fig. 7 

Element a22 (MPa) a23 (MPa) 
No.* 

ABAQUS TFA % Difference r ABAQUS TFA % Difference; 

(fiber) 
1 2 . 4 8 6 3 1 4 9 4 3  2.484838314 0.06 6.199577168 6.196482812 0.05 
4 -2.496518548 -2.495716646 0.03 2.734338180 2.732595877 0.06 

(matrix) 
2 -15.19959704 -15.19599072 0.02 -1.4786011859 1.478106587 0.03 
3 -0.237086563 -0.233915256 1.34 -4.923139542 -4.922870483 0.01 

13 3 . 6 1 1 8 5 0 4 3 2 0  3.597884176 0.39 0.508403072 0.508454116 0.01 
15 -34.97372735 -34.96793825 0.02 -5.455541995 -5.455215211 0.01 

* See Fig. 4a 
((ABAQUS magnitude - TFA magnitude)/(ABAQUS magnitude)) • 100 

Table 6. Matrix plastic strains 42 and z~3 computed at the end of the loading path of Fig. 7 

Element 42 (10-6) 2~23 (10-6) 
No.* 

ABAQUS TFA % Difference r ABAQUS TFA % Difference ~ 

2 --14.2658225 14.2675437 0.01 2612.04123 2612.15041 0.004 
3 --945.3500971 --945.4331740 0.01 1378.96867 1378.97982 0.001 

13 --7.6954323 7.5805950 1.49 3077.51206 3077.52259 0.000 
15 -1014.387728 --1014.377705 0.001 599.29864 599.43807 0.020 

* See Fig. 4a 
((ABAQUS magnitude - TFA magnitude)/(ABAQUS magnitude)) x 100 

T is the number  of matrix elements. As described in Sect. 4.1, the coefficients of the stress concentration 
factors Bp are found from solutions of six successive elasticity problems, and the coefficients of the 
t ransformation coefficients (Fo L,) are found from solutions of 6T succesive elasticity problems. 
Considering the mesh of Fig. 4a with M = 16, T = 10, a total of 66 elasticity problems were solved to 
compute the required coefficients. Each problem registered 3s of CPU time on the VAX computer  for 
a total of 198s. However, this is a one time operation for a given mesh. In any case, substantial savings in 
the computing t ime were realized by the TFA method in these examples. 

Another comparison of the elastic-plastic response computed with the TFA and FE methods was 
made for the mesh of Fig. 4a and a complex loading path in the <722<723-stress space, Fig. 7. Figures 8 and 
9 show the overall stress-strain response computed with the TFA method where the numbered symbols 
correspond to the loading points indicated in Fig. 7. The local stresses and plastic strains found with 
the TFA and the FE methods at the end of  the loading path are compared in Tables 5 and 6, respectively, 
for selected elements. 
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We recall from Sect. 4.2 that the number of operations depends on the number of elements. Therefore, 
the efficiency of the two methods must be compared with regard to the mesh refinement in the solution 
domain. 

The cost of both the TFA and the FE solutions depends on many other factors, such as the specified 
tolerance and the number of iterations required to achieve such tolerance. More exact comparisons of 
the efficiency of the two methods can be made only for actual applications. 

Note also that the TFA method can readily use any selected constitutive equation for the phases, 
whereas a separate UMAT routine would be needed for implementation of such equations into the ABAQUS 
program. 

7 
Viscoelastic systems 
It is well-known that the correspondence principle in linear viscoelasticity can be used to relate the 
effective viscoelastic properties of a composite medium to the effective elastic properties (Christensen 
1972,1979). However, the procedure often requires an analytic elasticity solution, and after this is converted 
into a transform-parameter multiplied Laplace or Fourier transform of the viscoelasticity solution, an 
inversion is needed for the transformed solution. 

The present approach avoids the difficulties involved, and is applicable not only to linear, but also 
to nonlinear viscoelastic phases. For a history of applied stress that starts from zero stress at t = 0, the phase 
constitutive equations are taken in the form 

t 

xr(t) = ~ l r ( t  --  ~) dz,  (84) 
o 

where Jr ( t -  r) is the creep compliance, with assumed symmetries J~k~ = ~k, = ]ilk = ];lgj" We also assume 
the existence of a nonvanishing compliance Jr(0) that defines the instantaneous elastic response, and 
thus provides property magnitudes needed in evaluation of the transformation influence functions. 
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Similarly, for a history of local strain starting at zero strain at t = O, the total stresses are given by 

t 

o's(t) = ~ G~(t - z) dz. (85) 
0 

where G~ (t - z) is the local relaxation function with the same symmetries that were indicated for Jr (t - ~), 
and G~ (0) 4 0 describes the elastic response. 

The corresponding rates are obtained from the above relations as 

t 

/~(t) = M~ dr~(t) + Jr(0) o-~(t) + ~Jr(t - z) ~rr(Z) dz. (86) 
0 

t 

&~(t) = L~ ~(t) + Ca~(O) e~(t) + ~ Gr(t -- z) gr(Z) dz. 
0 

(87) 

The elastic and inelastic parts of the total strain and stress, and of the respective rates, are easily 
separated, and the latter are substituted into appropriate total or rate forms of (19), (20), or (60), (61). 
For example, if the composite is loaded by a history of overall stress a~ and temperature history O~ 
the local stresses and their rates follow from 

{ ) #p(t) = Bp ~ ( t )  - ~ Fp, L, m~ 0~ + j , (0)  a ,( t)  + j J ,  ( t -  ~) a,(z) dz . 
r / = l  0 

(88) 

The terms on the right of (88) are functions of the current state and applied load. Integration of (88) 
along a specified loading path yields the local stresses in the local volumes/2p, p = 1, 2 . . . .  M. The 
corresponding strains are found by integration of (86). Again, the columns of matrix (Fp L,), p, 
~/-- 1, 2 . . . .  M, are identified with the local stresses caused in/2p by a uniform eigenstrain p -- i k , 
k -- 1, 2 . . . .  6, applied in /2 ,  while the overall stress tr(t) vanish, as suggested by Eq. (83). 

In addition to the relations (88) for the stress rates, one can also find governing equations for the 
total local stresses. The elastic strain is subtracted from the total strain in (84) and the resulting inelastic 
strain is substituted into (61). The result is 

ap(t) = Bp o'~ - Fp.L. m,O~ er , ( t )+~J~( t - z ) (da~(z ) /dz )dz .  
r / = l  0 

(89) 

Particularly simple relations for the local fields can be written in two-phase systems, subdivided into 
only two local volumes r -- ~, ft. In this case, differentiation of (60) provides 

~ ( t )  + D~M~ ~e(t)  + D~pM~ ~e(t)  = A ~ ( t )  + a~0(t) 

~p(t) + Do~M= b~(t)  + D~M~ &~(t) = A~ ~(t) + a~ 0(t). (90) 

This can be easily solved; note that according to (511) there is 

GD.~ + c~D~ = 0 ~ D ~ .  = -- (cJG)D~,  Dp~D.~ = -- (cp/c.)D~D~ = D~.Dp., 

~= c ~  + c . ~  ~ = ( ~ -  c~ , ) lq .  (91) 

Then, after some algebra one finds the following equation for the local strain rate in one phase, say r = fl, 

[D~ + (cJG)Dp.] &0(t) = (D~.D~ -- D. .D~)J~(0)Gp(0)e~( t )  

t 

+ (D~.D=B -- D.~D~)  J~(0) ~G~(t - z) ep(r) dr 
0 

--[Dp~(A~--(l/G)I)--D~Apli~~176 (92) 
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A similar procedure involving total fields rather than rates gives the total local strain in the phase/3 as 

[ D ~  + (cJG)Dp~] gp(t) = (De.D=~ - D. .Dep)  J~ (0) iG~( t  - z) (dg~(r)/dr) dz 
o 

- - [ D ~ . ( A ~ - - ( l l G ) I ) - - D ~ A e ] g ~ 1 7 6  (93) 

The total stress fields, or strain fields, can be found at a given time t by solving the system of nonlinear 
Eqs. (89) or (93). Either the Newton's method or the fixed point solution may be used. Both methods 
require repeated evaluation of the nonlinear functions Iv in (89), or G~ in (93), and of the time 
derivative of the stress or strain fields. Moreover, Newton's method requires an evaluation of a Jacobian 
matrix from the nonlinear functions in (89) and (93), and of its inverse. This complicates the numerical 
procedure for evaulation of the local fields, and thus argues against writing the governing equations in 
the total form. 

A more convenient and efficient procedure for evaluation of local fields is given by integration of 
the governing rate gqs. (88) or (92). This involves evaluation of the integrands [ J~ (t - z) G (r) d~ ] or 
[l~,(t - z) G(z) dr], t /=  1, 2 . . . .  M, from z = 0 to r = t. The local stress and strain histories are known up 
to the current time t, while derivatives of the creep compliance J and of the relaxation function G must 
be provided by the viscoelastic phase model. The local fields at time (t + A t) are then found by integration 
of the differential Eqs. (88) o r  ( 9 2 ) ,  using for example the Runge-Kutta formula of order two, for specified 
histories of the overall stress rate 6"~ or the overall strain rate g~ and the temperature 0~ The 
solution algorithm for (88) then is 

Step ~: 

Step 2: 

Step 3: 

Step 4: 

Select the number of time increments, n, and compute the time increment h = (tn+ 1 - tl)/n, 
where t l = 0 and t n +i define the time interval in which the histories cr~ and 0 ~ (t) are described. 
Set initial values of the local stress field as G(tl)  = 0, and of the local strain field G (tl) = 0,  

and of the creep compliance Jp(0), p = 1, 2 . . . .  M, using, for example, the four-parameter model 
(see Appendix B). 
For k = 1,2 . . . .  n, do steps 4, 5: 

t 

Approximate the integral ~ J,~ ( t -  r) a~ (z) dr by one of the closed Newton-Cotes formulas. For 
0 

example, if the trapezoidal rule is used for each time increment, then 

t h k  l 

y}~ ( t -  ~) o-~(~)d~ = - ~ [~, (tk - tj) o-,(t)  + J, (tk - tj+l) o-~(tj+,)J. 
0 2 j = 1  

Step 5: Compute the stress field at time tk+~: 

{ap}k+ 1 = {~rp} k § (h/2){&-p + &~}k, {b';}k = {b'p(tk+l, {Cro}k + h{&'pik)}, 

where &~(t, G)  follow from the functional on the right of (88) using adjusted stress. The 
corresponding strain G(tk+l), p = 1,2 . . . .  M, follows from (86). 

Once again, the solution depends on the selected magnitude of the increment h, and an error of 
o r d e r  h 3 is expected in the integration of step 4, and an error of order h 2 in the integration scheme of 
step 5. As in the elastic-plastic case, our implementation of the above algorithm included a convergence test 
in which the solution found at time tn+ I for a selected number of time intervals n was compared to the 
solution found when the number of time increments was increased to 2n. If the absolute 
difference (1[ {G} []n+l - 11 {o-p} lien+l) > ~, a specified tolerance, then the process was repeated with 
the number of time intervals multiplied again by a factor of two. Consequently a series of solutions 
corresponding to time intervals n, 2n, 4n, 8n . . . .  etc., was generated until the selected convergence criterion 
was satisfied. 

To provide an illustrative example, we examined the response of a glass/ED-6 resin composite with 
elastic fibers and viscoelastic matrix under both constant and cyclic stresses. Viscoelastic response of 
the matrix was determined from a four-parameter model consisting of Maxwell and Voigt elements in 
series. If the E M and ~/v denote the stiffness and viscosity parameters associated with the Maxwell element, 
and E v, tlv the parameters associated with the Voigt element, then the uniaxial creep compliance function 
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for the four-parameter model is (Findley 1976) 

1 1 1  ( E V t ~ ] + ~ .  
J A ( t ) = ~ + ~  1 - - e x p  - - - - ~ , ] d  (94) 

Derivation of a three-dimensional creep compliance function J (t) for the four-parameter model is given 
in Appendix B. When the result is substituted into (88), one finds the following differential equation 
for evaluation of the local stresses caused by the overall stress rate 6-~ and temperature rate 0~ 
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G( t )  = Bp6"~ - ~ Fp, L,{mn0~ 
t/=l 

v (95) 

where V, is a (6 x 6) symmetric matrix with nonzero coefficients VlI = V22 = V3~ = 1, V44 -- Vss = !166 = 
2(1 + vn), V12 = VI3 = V23 = - v~; where v, is the Poisson's ratio of A n, assumed to be time-independent. 

For the material constants required by the four-parameter model representing the ED-6 resin matrix, 
we adopt the values obtained by Wang and Weng (1992) from the creep data reported by Skudra and 
Auzukalns (1973): E M = 3.27 GPa, E v = 1.8 GPa, ~M = 8000 GPa.hr, t/v = 300 GPa.hr, v = 0.38. Elastic 
properties of the glass fiber were E = 68.607 GPa, v = 0.21. 

In preparation for the solution of (95), the influence coefficients for the matrix ( Fo, L,) were found using 
the computation procedure suggested by Eq. (83) for two different models of fibrous composites, the 
Mori-Tanaka model for two-phase materials, and the unit cell PHA model for the same two-phase 
material, with the subdivisions indicated in Figs. 4a (16 elements) and 4b (58 elements). For the two- 
phase materials, the Fo, factors are given by (22) in terms of the phase elastic compliance and stress 
concentration factors. The latter were evaluated with the Mori-Tanaka (1973) method, Benveniste (1987). 

The solution itself was constructed both for step-constant and variable stress histories. In the first 
case, the overall creep compliances under axial tension a H, transverse tension 0-22 , longitudinal 
shear 0-~2, transverse shear 0-23, and transverse hydrostatic stress 0-22 = 0-33 under plane strain (ex~ = 0) 
were computed from (95) with the solution algorithm described earlier. To avoid numerical difficulties, we 
replaced the overall step function by a ramp in which the overall stress was increased from 0.0 to 1.0 GPa 
in a small time interval equal 0.001 hr. 

Individual overall creep compliances found from (95) for the two meshes in Figs. 4a, b (M = 16 and 
58, respectively), and for the Mori-Tanaka approximation (M = 2) are shown in Figs. lO-14. Also shown 
in the figures are the results found from our reconstruction of the solution outlined by Wang and Weng 
(1992). These authors extended the Mori-Tanaka model to the Laplace domain, to examine the response 
of linearly viscoelastic materials under step loads. The Mori-Tanaka estimates of the overall moduli in 
the transformed domain were then inverted back into the real time domain to obtain the overall creep 
compliance functions. This inversion was carried out numerically using Legendre polynomials as suggested 
by Bellman et al. (1966). 

As seen in Fig. lO, the overall response under axial straining is dominated by the elastic fiber. All 
creep compliance curves found with the various approximations considered above coincide in this case. 
On the other hand, the predicted overall creep compliances in normal and shear straining in the transverse 
plane, as well as in shear in the longitudinal plane, depend on the chosen model. The TFA solutions 
with 16 and 58 elements are similar. On the other hand, the approximation of the transformation 
concentration factors in the TFA method with Mori-Tanaka estimates of B r in (22) provides lower 
magnitudes of the overall compliance, c.f., Figs. 11-14. 

Viscoelastic response under sinusoidally changing load magnitudes was examined using again the 
above glass/ED-6 resin system. Solutions were obtained with the TFA method for the mesh shown in Fig. 
4a (16 elements). The results appear in Figs. 15-18; they show the applied stress cycles and the variation 
of the corresponding coaxial strain components. The TFA method prediction suggests a nearly sinusoidal 
variation of the strains. 

The procedure suggested by Wang and Weng (1992) was not applied to this sinusoidal loading since 
the numerical method they used for inverting the Laplace transform, in its original form, does not produce 
a sufficient number of points to represent the expected response. As Bellman et al. (1966) pointed out, 
this numerical procedure for computing the inversion of Laplace transform provides, with the proper 
change of time scale, approximate values for e(t) at the values t~ = - logx~, i = 1, 2 . . . . .  n, where x~ are the 
n zeros of the shifted Legendre polynomial V2(x) which is defined for 0 _< x -< 1. The roots of P*~(x) are 
uniformly distributed to a higher degree of regularity as n--+ c~. However, t i -- -- logxi do not posses 
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Figs. 10-14. lo Creep compliance predictions for a glass/ED-6 resin 
composite subjected to axial tension. 11 Creep compliance predictions 
for a glass/ED-6 resin composite subjected to transverse tension. :2 
Creep compliance predictions for a glass/ED-6 resin composite 
subjected to transverse shear. 13 Creep compliance predictions for 
a glass/ED-6 resin composite subjected to longitudinal shear. 14 Creep 
compliance predictions for a glass/ED-6 resin composite subjected to 
transverse isotrepic tension under axial plane strain 
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Figs. 15-18. 15 Strain predictions for a glass/EI)-6 resin composite subjected to sinusoidal axial 
tensions. 16 Strain predictions for a glass/ED-6 resin composite subjected to sinusoidal transverse 
tension. ]7 Strain predictions for a glass/ED-6 resin composite subjected to sinusoidal transverse shear. 
18 Strain predictions for a glass/ED-6 resin composite subjected to sinusoidal longitudinal shear 

the same equidistribution property over 0 _< t _< oo. In fact, the t i values tend to congregate close to 
t = 0 and to scatter for large t. Increasing n, the order of P~*(x), does not give significant improvement. 
Therefore, the response to sinusoidal loading is found only at irregularly spaced values of t. 

In contrast, the TFA method can be applied for any selected resolution of the time scale. The method 
can also accommodate time-dependent multiaxial loads of changing magnitude and direction. 

8 

V i s c o p l a s t i c  s y s t e m s  

Another class of applications for the Eqs. (19), (20) or (6o), (61) is found in heterogeneous media with 
viscoplastic phases. In this case, the local consititutive equations may be specified with a certain unified 
theory that connects the local inelastic strain rate ~ ( t )  to the local stress history, or the local relaxation 

#re(t) to the local strain history. For example, the local inelastic strain rate may be specified stress rate ~ - .  
by a power law of an internal stress variable R,, as 

~ ( t )  = ~n(O)R~o(~ ( 9 6 )  

where ~,(0), pn(O) are material parameters for the element volume ~n, and nn specifies the direction 
of the inelastic strain rate in the local stress space. When substituted into (2o), with #r~(t] = - Ln ~ (t), t / - -  q 
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(96) provides the following differential equation for the local stresses, 

M 

6"p(t) = Bp #~ -- ~ Fp~L. {m.O~ + ~.(O)R~(~ 
r /= t  

(97) 

where cr~ is the overall stress history and O~ is the temperature history. The power law (96) leads 
to a stiff differential equation (97) which requires integration by an implicit multistep method, 
such as the Adams method, with Newton iteration to solve the resulting nonlinear system of equations, 
and backward differentiation to evaluate the functional derivatives found in the Newton's method. Our 
solution of (97) utilized the IMSL fortran library version of the GEAR ordinary differential equation 
solver (Hindmarsh 1974) which implements the solution procedure developed by Gear (1971) for stiff 
differential equations. 

To illustrate this procedure, we examined the time-dependent response of a SCS6/Ti-15-3 fibrous 
composite with 30% fiber volume concentration at 482 ~ At this temperature, the fiber is assumed to 
be elastic with E = 397.8 GPa and v = 0.25. The titanium matrix is assumed to be elastic-viscoplastic. 
A specific form of(96) was obtained from the viscoplasticitytheory of Eisenberg and Yen 0981). In this case, 
the internal variable R is an invariant of the overstress tensor (r  a *), where a is the current stress 
and a ~ is the equilibrium, quasi-static stress. The latter is defined by an equilibrium yield surface. 
Evolution of the equilibrium yield surface and the overstress was specified with the constitutive equations 
derived by Bahei-E1-Din et al. (1991) and Shah (1991). These equations allow for both kinematic and 
isotropic hardening of the yield surface under inelastic straining, and for thermal recovery. They also 
employ a two-surface plasticity theory to define the quasi-static response. A summary of the relevant 
constitutive equations is given in Appendix C. The material parameters for a titanium matrix at 482 ~ were 
found from the data given by ]ohnson et al. (1993) and are given here in Table 7. 

The PHA model; with the unit cell subdivision of Fig. 4a was used in derivation of the mechanical 
and eigenstress concentration factors Bp and Fp. Then, Eqs. (96), (97) and the evolution equations given 
in Appendix C were integrated for loading at the constant uniaxial transverse tension stress 622 = 50o MPa, 
reached at two time rates, 0.5 MPa/sec and 5.o MPa/sec. The integration was performed using the 
GEAR solver with a tolerance of o.ool. Figures 19 and 2o show the stress-strain response and the 
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Material constant ~ Units Value 

E GPa 72.2 
v 0.351 
Y MPa 142.0 
~r MPa 223.0 
H 0 MPa 83.0 
h GPa 1.6 
p 5.68 
k (MPa)-P/sec 4.53 x 10 -19 

Table 7. Elastic-thermo- 
viscoplastic constants of 
Tr15-3 matrix at 482 ~ 
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Figs. 19-2o. 19 Transverse normal stress-strain response computed with the TFA method for a viscoplastic SCS6/Ti-15-3 
composite. 20 Transverse normal strain-time response computed with the TFA method for a viscoplastic SCS6/Ti-15-3 
composite 
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Figs. 21-23. 21 Axial tension-transverse tension path 
applied to the viscoplastic SCS6/Ti-t5-3 composite. 22 Time 
history of axial and transverse stresses for the loading path 
of Fig. 21.23 Overall stress-strain histories predicted by the 
TFA method for the loading path of Figs. zl and 22 

strain-time history computed with the TFA method. No other solutions appear to be available for 
comparison. 

Another example was constructed with the TFA method for the biaxial stress path shown in Figs. 21 
and 21. The corresponding overall strain is shown in Fig. 23, together with the creep strains computed 
in the time segment 4-5, Fig. z z .  

9 

Conc lus ions  

The transformation field analysis is a general method for solving inelastic deformation and other 
incremental problems in heterogeneous media with many interacting inhomogeneities. The various 
unit cell models, or the corrected inelastic self-consistent or Mori-Tanaka fomulations, the so-called 
Eshelby method, and the Eshelby tensor itself are all seen as special cases of this more general approach. 
The method easily accommodates any uniform overall loading path, inelastic constitutive equation and 
micromechanical model. The model geometries are incorporated through the mechanical transformation 
influence functions or concentration factor tensors which are derived from elastic solutions for the 
chosen model and phase elastic moduli. Thus, there is no need to solve inelastic boundary value or 
inclusion problems, indeed such solutions are typically associated with erroneous procedures that violate 
(62); this was discussed by Dvorak (1992). In comparison with the finite element method in unit cell 
model solutions, the present method is more efficient for cruder meshes. Moreover, there is no need 
to implement inelastic constitutive equations into a finite element program. An addition to the examples 
shown herein, the method can be applied to many other problems, such as those arising in active materials 
with eigenstrains induced by components made of shape memory alloys or other actuators. 
Progress has also been made in applications to electroelastic composites, and to problems involving 
damage development in multiphase solids. Finally, there is no conceptual obstacle to extending the 
approach beyond the analysis of representative volumes of composite materials, to arbitrarily loaded 
structures. 

Appendix A 
This is a brief summary of constitutive equations for elastic-plastic homogeneous materials subjected 
to uniform stress or strain and temperature changes. Response under such thermomechanical loads is 
determined with the help of a yield surface g(a ,  0) = 0 which contains the stress states that cause purely 
elastic deformations. Assuming kinematic and isotropic.hardening, the Mises form of the yield surface 
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is given by 

g ( G O ) ~ ( s - - a ) : ( s - - a ) - - Y 2 ( O ) = O ,  (A-l) 

where s is the deviatoric stress, a is the center of the yield surface in the deviatoric stress space, Y is 
the yield stress in simple tension. In (A-l), we used the notation (a:b) to denote the inner product of 
second order tensors aij and bij. The elastic behavior is in effect i fg  < 0, or i fg  = 0 and [(Og/&r):da 
+ (Og/30)dO] < O. On the other hand, elastic-plastic deformation takes place if g = 0 and [(0g/~a)d~ 
+ (Og/O0) dO] > 0. In this case, the instantaneous plastic compliance J/P, stiffness ~qop, and the thermal 
strain and stress vectors ~P, d v in (64) are given by (Bahei-E1-Din 199o; Shah 1991) 

-////P = (3/2H) (n:n T) Go'/' = -- (2G/(1 + H/3G)) (n:n v) 

= -- ((x/3 Y'(O))/(~/2H))n 

d P = (2G/(1 + H/3G))(nTm + (Y ' (O)/x/6G))n 

(A-2) 

(A-3) 

(A-4) 

n = (1/x/(2/3) Y)[~z~w167167 T, ~ = o--- a. 

(A-5) 

(A-6) 

Here, G is the elastic shear modulus, Y' (0) = d Y/dO, e P is the plastic strain vector, and H is plastic tangent 
modulus of the stress-plastic strain curve. The product n:n ~ in (A-2) denotes the tensor product nijnk~; 
m is the elastic thermal strain tensor. 

Evolution of the center of the matrix yield surface a and the plastic tangent modulus H may be described 
in several different ways, to fit experimental observations. Specific forms of the Prager-Ziegler and Phillips 
hardening rules for thermomechanical loads can be found in (Bahei-E1-Din 199o; Dvorak 1991; Shah 
1991). Variation of the plastic tangent modulus H can be found with a two surface plasticity theory such 
as the theory given by Dafalias and Popov (1976). 

Appendix B 
Here we give expression for the creep compliance tensor J (t) of the four-parameter model consisting 
of the Maxwell and Voigt elements in series. Let the E M, tl M, E v, and ~/v, denote the linear spring 
constant and the coefficient of viscosity for the Maxwell and Voigt models, repectively. The longitudinal 
creep compliance function for the four-parameter solid is given by (Findley 1976) 

(B-I) 1 1  E ( ] A ( t ) = ~ + ~  1 - e x p  - ~ - ) j + ~ .  

Assuming that the Poisson's ratio v of the material is not a function of time, then the transverse creep 
compliance is a function only of the longitudinal creep compliance (Christensen 1971; Sternstein 
1977; Sternstein and Ho 1972): 
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Jr(t) = -- vJ A (t). (B-2) 

The shear and longitudinal creep compliances are also related by 

Js(t) = 2(1 + v)la(t  ). (B-3) 

These relations are assumed to represent uniaxial response of an isotropic homogeneous solid. A more 
general form of the creep compliance in three dimensions can be written in the form 

J(t) =]A(t)V, V =  

sym. 

- -v  - -v  0 0 0 

1 - - v  0 0 0 

1 0 0 0 

2(1 +v) o o 

2 ( l + v )  0 

2( l+v)  

(B-4) 
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Differentiating (B-4) with respect to time, we find 

J ( t ) = j A ( t ) V = [ ~ + ~ v e x p (  -Evt~v~-;_] 

~ ( t ) = ) ~ ( t ) V = [ - -  v ~ v e x p (  E V t ~ v  
�9 

Then, 

J ( t -  z) = [ -- Ev / Evt'~ EVz 

(B-5) 

(B-6) 

(B-7) 

(B-8) 

2 [ Y+ Q]2 11/2 
sir = 3 (Sk~ -- ak,) (% -- ak~) (sq -- a O) + a O. (c-2) 

The effective overstress R is a measure of the distance between the actual stress point sq and the equilibrium 
stress point s~. It vanishes if the stress point lies on, or falls inside the yield surface. In particular, z/ 

I3  71/2 
R= ~(s~j-s~7)(so-siT) J i f g ( s o - a  o) > 0 ,  (C-3) 

R = 0  ifg(sq - a~j) < 0. (C-4) 

The inelastic strain rate is then written as 

~ii~ = ( ~  k (0) R p(~ nip (C-5) 

where the functions k(O) and p(O) are material parameters and nq is a unit normal to the yield surface 
(Cq) at the current equilibrium stress point. From (Cq) one finds this as 

(siT- a~;) - ~ ( q  - a~  (c-9)  
no = [(sk, ~ _ ak~) (sk, ' _ ak,)]1/2 - x / ( J / z )  (y  + Q) . 

The evolution equation for Q which includes the effect of inelastic deformation and thermal recovery 
on the yield stress is given by 

= q (0) [ Oa (0) -- O] ~ ~ -- br(O) lO - O r ( O ) I  ( '~(~ [ O - Q ( o )  ]. (C-7) 

where s~,j is the deviatoric equilibrium stress tensor, aij denotes the center of the yield surface, Y = Y(O) 
is the initial yield stress in tension, and is independent of the loading rate, and (2 = O (0) is an isotropic 
hardening function. 

For a given stress tensor s o, which lies outside the yield surface (Cq), there exists an equilibrium 
stress si~ which satisfies (Cq) such that 

(C-l) 
3 
_ , . _  ( y + Q ) 2  0, g=2(si j - -ao)(s  q aq)-- = 

Appendix C 
Here we summarize the constitutive equations of the unified viscoplastic response given by (Bahei- 
El-Din et al. 1991; and Shah 1991). As indicated by (3i), the total strain rate is decomposed into elastic, 
thermal and inelastic parts. The inelastic strain is found as a function of the overstress measured from an 
equilibrium yield surface which contains all stress states that can be reached from the current state by 
purely elastic deformation. A Mises form of the equilibrium surface is written as 
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The functions q(0), O~(0), b~(O),Q(O), and n,(O) are material parameters, and d i~ is the effective inelastic 
strain rate; 

L3 o ~o ] =k(0)RP(~ ~k~=~ (c-8) 

Total (Q = 0), or partial (Q # 0) thermal recovery is represented by the second term in (C-7). 
In analogy with (C-7), and permitting complete thermal recovery of kinematic hardening, the evolution 

equation for the center of the yield surface % can be written as 

aij = fiv~ - v~(O)ff(~'~(~ %, ff = (ak ak,y/2 (C-9) 

where v~(O) and w~(O) are material parameters. The unit tensor vq defines the direction of translation 
of the yield surface in the deviatoric stress space, and can be specified according to the hardening 
rules applied in rate-independent plasticity theories. If the Phillips hardening rule is selected, then 

v~j = gql(gjk~) ~/2 ifgq # 0 (Cqo) 

v o = nq if g~j = 0. (C-a~) 

The factor fi in (C-9) is found from Prager's consistency condition ~ = 0, when translation of the 
yield surface is specified by the first term in (C-9). The result is 

fi = N/(213) k(O)R p(~ [H(0) -- q(O)[Q.(0) - Q] l/nk, Vk. (C-n) 

A two-surface plasticity theory (Dafalias and Popov, ~976) can be used to describe evolution of the 
instantaneous tangent modulus H: 

H(O) = Ho( O) + h(O) [ 6/(fi 0 - 6)], (C-13) 

(c-14) 

where 3o is the distance between the yield surface and the bounding surface at the onset of inelastic 
deformation. Here, gq is the deviatoric bounding stress tensor determined from equality of the normal 
to the equilibrium yield surface n~ (s;7), Eq. C-6, and the normal to the bounding surface rio (~), When 
the equilibrium stress point lies on the bounding surface, the plastic tangent modulus H(O) assumes the 
asymptotic value H 0 (0), which together with the parameter h (0) need to be determined experimentally. 
In analogy with the equilibirum yield surface, thermal recovery of isotropic as well as kinematic hardening 
of the bounding surface can be included in the model. This is omitted here for brevity. We only mention 
that the recovery terms for isotropic and kinematic hardening of the bounding surface assume a ibrm 
similar to those suggested above for the yield surface, but with new material parameters. 

The material parameters of the Ti-15-3 alloy, required by the present theory, were found from the 
data given by Johnson et al. (1993). Table 7 shows the parameters at 482 ~ where the script Latin letters 
refer to the bounding surface but have the same interpretation as their yield surface counterparts. For 
example, the Mises form of the bounding surface is written as 

3 

where % is the center of the bounding surface, ~ = y (0) is the bounding stress given by the intersection 
of the asymptotic part of the uniaxial stress-plastic strain curve and the stress axis, and ~ = ~,(0) is an 
isotropic hardening function. Material parameters not shown in Table 7 assumed to be equal to zero. 
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