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Abstract. The paper reports a numerical method for the solution of Stokes flows past a system of particles of arbitrary shape 
near a planar surface on whmh the velocity vector is zero. The method is an application of the Completed Double Layer 
Boundary Integral Method (CDL-BIEM) by Kim and Karrila [1]. It uses an iterative solver and therefore can handle a large 
number of particles with complex geometries. Particles" trajectories for a few typical problems are presented to illustrate the 
feasibility of the method. 

1 Introduction 

The Boundary Element Method (BEM) has become an efficient numerical method for solving 
boundary-value problems in engineering science, especially for exterior and linear problems (for 
example, the unbounded flow past a particle). Since its introduction to continuum mechanics by 
Fichera [2], Rizzo [3], Hess and Smith [4], the method has become popular and there are a 
number of excellent texts dealing with the subject, e.g., Banerjee and Butterfield [5] and Brebbia 
et al. [6]. The technique has been applied to Stokes problems by Youngren and Acrivos [7], Bush 
and Tanner [8], Onishi et al. [9]; a recent review of its applications in Stokes flow can be found 
in Bush and Tanner [10]. Extension of the method to deal with half-space problems has been 
considered by Telles and Brebbia [11], in the case of a traction-free half-space boundary, and in 
the case of a velocity-free boundary by Tran-Cong and Phan-Thien [12] and more recently by 
Ascoli et al. [13]. In these half-space problems, an appropriate singularity solution is used which 
satisfies the boundary conditions on the boundary on the half-space exactly (Mindlin's kernel [14], 
or the image system of the Kelvin state [35] ). These problems can also be dealt with by the standard 
BEM; however, to be efficient one must then use the so-called infinite elements, which are elements 
over large but finite surfaces--these elements are needed to model the boundary of the half-space. 

The BEM is particularly well suited to a large class of Stokes flows known as the resistance 
and mobility problems of a system of particles. In the resistance problem, one knows the velocities 
(translational and rotational) of the particles and the task is to calculate the drag forces and torques 
acting on the particles. In the mobility problem, the forces and torques acting on each particle are 
known, and one wishes to find the rigid body motions of the particles that result from the 
applications of these forces and torques. Both of these types of problems are collectively known 
as the sedimentation problem. Successful treatments of the sedimentation problem using the 
standard BEM have been reported, [16]-[20]. However, the sedimentation problem results in a 
set of Fredholm integral equations of the first kind and may be ill-conditioned. As the geometry 
is modelled more and more accurately, by using more and more elements, the condition number 
of the system matrix increases unboundedly. In the limit of an infinite dimensional space, the 
integral operator, being compact, has no bounded inverse. An alternative integral formulation for 
the Stokes equations has been reported by Power and Miranda [21], who used a distribution of 
a double layer with a surface density that satisfies a Freedholm integral equation of the second 
kind. The double layer operator is compact, and that fact has been exploited by Karrila et al. 
[23]-[24] to arrive at a fixed point iteration scheme for solving the resulting integral equations. 
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Furthermore, iterative schemes of this type are amenable to parallel computing architectures, and 
applications of the method in a parallel computing environment have been successfully carried 
out [24]-[25]. The method, being essentially a range completion of the double layer operator, is 
referred to as the Completed Double Layer Boundary Integral Equation Method (CDL-BIEM). 

Other methods dealing with Stokes flows are also available. For example, the methods 
developed by Mazur and van Saarloos [26] and Mazur [27] include hydrodynamic interactions 
among the particles by calculating approximations to the resistance matrix or the mobility tensors 
(see, Happel and Brenner [30]); but these methods require a large number of terms to be included 
if the near-field hydrodynamic interaction is to be modelled correctly. A recent development by 
Durlofsky et al. [28] and Brady and Bossis [29] includes correctly both the near-field and the 
far-field interactions. This method uses a combination of the multipole expansion and the two- 
body solutions to generate the resistance matrix to the problem. In principle the method can be 
used with compact shapes but the exact solution for the appropriate two-body problem is required. 

In this paper we report an application of the CDL-BIEM for Stokes flow problems in a 
half-space. The problems have been considered by a standard BEM previously [12], but the 
standard BEM is not well suited to deal with a complex problem that requires a large number of 
boundary elements, either due to a lack of computing resources or the ill-conditioned problems 
with the standard boundary element formulation. The method is tested against the exact solution 
for the motion of a sphere in the presence of a plane interface by Lee and Leal [31]. The trajectories 
of three and eight spheres at the vertices of an equilateral triangle and a cube are reported. The 
periodicity of these systems (Caflisch et al. [32]; Durlofsky et al. [28]) is no longer present in 
a half-space. 

2 Governing equations 

2.1 The standard boundary element method 

We consider the Stokes flow problem in a semi-infinite domain given by 9 = {(x 1, x 2, X3):X 3 ~ 0}. 
The field (Stokes) equations are 

V'~=O. V ' u = O i n g ,  (1) 

~r= - P 1  + rl(Vu + VuT), (2) 

where u is the velocity vector, o'is the stress tensor, 1 is the unit tensor, P is the hydrostatic pressure, 
~/is the fluid viscosity and the superscript T denotes the transpose operation. The bounding surface 
of 9 consists of the infinite plane So~ where x3 = 0, and the bounding surfaces of M particles in 9 ,  
collectively called S, S = ~ S j, where Sj is the bounding surface of particle j = 1,...,  M. We only 
deal with rigid particles in this paper. On So~, the velocity vector is nil, and on S, only rigid body 
motions exist. We will be concerned with the mobility problem, where, given the external forces 
and torques acting on the particles, it is desired to find the rigid body motions of every particle 
in 9 ,  and subsequently the velocity field everywhere in 9 .  

By using the reciprocal theorem (see, for examples, Banerjee and Butterfield [5]; Brebbia et al. 
[6]; Kim and Karrila [1]), the integral representation of the velocity field is given by [12], 

uj(X) + ~ Hij(x, X)ui(x)dS(x) = S Gij(x, X)ti(x)dS(x), Xe@, (3) 
s s 

where Gij(x, X) is the singularity solution (the i component of the velocity) due to a point force 
acting at X e 9  in the j direction, ti(x) = aunk is the traction vector at x, n is the normal outward 
unit vector on S, and H~j(x, X) is the associated traction vector of G~j(x, X). Note that 

Hij(x , X )  : n k ( X ) , ~ i j k ( X ,  X),  

where ~,~jk(X, X) is the associated stress obtained from the singularity solution. This singularity 
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solution was derived by Blake [33], and Hasimoto and Sano [34] for Stokes flows, and Phan-Thien 
[35] for the elasticity problems. The expressions for Gij and H~j are given in the Appendix. 

By allowing X to go to the boundary S, and taking the limiting process appropriately one 
obtains a set of boundary integral equations to solve for the unknown boundary values (velocity 
and traction vectors). The integral on the right hand side of (3) is called the single-layer potential, 
and the integral on the left hand side of (3) is called the double-layer potential, in analogy with 
potential theory. For rigid particles, it can be shown that only a single-layer potential is required 
in the integral velocity representation [12]. Solving the mobility requires the inversion of the 
compact single-layer integral operator. Since its inverse is unbounded in an infinite dimensional 
space, the more accurate the discretisation of the problem geometry, the more one experiences the 
ill-conditioning in the solution. Although this situation does not occur in simple problems (eg., 
spheres not near touching), it would be pleasing to consider a BEM that does not suffer from this 
ill-conditioning problem by a re-formulation of the integral representation of the Stokes equations. 
Furthermore, since the system matrix that results from the discretisation of the standard BEM is 
dense and non-symmetric, its solution is computationally expensive (of O(N 3) operations, where 
N x N is the size of the matrix; storing a large matrix is also taxing on computer memory, usually 
a disk-based solver is employed, but this creates large overhead due to input-output operations). 

2.2 The completed double layer boundary integral equation method 

Power and Miranda [21] show that it is possible to formulate an integral representation for Stokes 
flow which leads to a set of Fredholm integral equations of the second kind. This is done by 
dropping the single-layer term in (3), and considering an integral representation of the velocity 
field using just the double layer: 

uj(X) = [. Kij(x, X)cp,(x)dS(x), X e ~ ,  (4) 
s 

where the double-layer kernel is given by 

Kij(x, X)(x) = 2fik(X)--r ijk(X , X) 

in which tJ = - n  is the normal unit vector pointing into the fluid domain and q~ is the unknown 
surface density of the double-layer distribution. The factor 2 is included so that the eigenvalues of 
the double-layer operator lie between _+ 1 (refer to Kim and Karrila [1]). 

On the surface of the domain, the jump in the double layer can be calculated exactly for 
Liapunov-smooth surface (by noting that the image system of the singularity solution contains no 
singularity), and we have, 

uj(() = ~oj(() + ~ Kij(x, ()cpi(x)dS(x), ( e S .  (5) 
s 

The double layer cannot impart any force nor any torque on the fluid (Odqvist [36]) and 
therefore excludes most problems of interest. In fact, for M embedded particles, there are 6M null 
solutions to the double-layer kernels, each corresponds to rigid body motion of each particle. 
Therefore, solutions when they exist, are non-unique. The 6M missing pieces (the deficiency of the 
range) prevent (5) from having a solution at all, almost always. 

Power and Miranda [21] recognize this and seek to complete the double layer representation 
by using the velocity fields of point forces and point torques. This leads to a velocity representation 
of the form 

M 

uj(X) - u~j = - Z .(F! - �89 (p) x V),)Gji(X, x (p))c . + ~ K,j(x, X)cp,(x)dS(x), X e ~ ,  (6) 
p = l  S 

where u ~ is the ambient fluid velocity (any admissible Stokes solution in half-space), F ~p) and T (v) 
are the force and torque acting on particle p, respectively, and G(X, x~ v)) is the singularity solution 
that corresponds to a point force being placed _nt x (p)c , any point inside the particle p. In this paper, 
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1 Ttp) xtP)) x Ip) is chosen to be the center of mass of the particle. The solution ~ • V. G(X, generates 
C C : 

a torque T (p) acting on particle p. It is not necessary to use these point-force and point-torque 
solutions; any other solutions that generate a force and a torque on the particle p would be equally 
acceptable; indeed Pakdel and Kim [25] have considered a distribution of these point-force and 
point-torque solutions within particle p to model particles with complex geometries (e.g., spiked 
spheres). 

On the surface S,, n = 1,.. . ,  M, the velocity is a rigid body motion and the resulting boundary 
integral equation is 

M 

U(. n) + (to (n) x ( ( -  x c (")))j - u'm : -  2 (F(p) 1 (p) x . i J J 
p = l  

(7) 
where yd denotes the (surface integral) double-layer operator, and U ("), to(") are the translation and 
rotational motion of particle n, respectively. 

Since the null space of 1 + yd is non-trivial and has dimension 6M, we need to impose 6M 
linearly independent extra equations to obtain a unique solution. Power and Miranda [211 choose 
to associate the force and the torque on particle n with the null solutions on its surface (which 
represent the rigid body motions of particle n); that is, 

Fti n) = (~p("'i), r i = 1,.. . ,  3, 
Tl"l=(cp("'i+a),cp) , i =  1,. . . ,3, 

where r represent the translational motion (i = 1,...,  3) and the rotational motion (i = 4, . . . ,  6) 
of particle n, and the angular brackets denote the natural inner product 

(a, b)  = ~ a(x)" b(x)dS(x). 
S 

It is also assumed that the null solutions have been normalized with respect to this inner product, 
i.e., 

(~(.,i), (p(m, j ) )  : tSmntSij" 

For arbitrarily shaped particles, a Gram-Schmidt orthonormalization process needs to be carried 
out. This is a straightforward task since tp <"'i) takes on non-zero values only on particle n. A 
numerical implementation of Power and Miranda's completion scheme was reported by Fan and 
Yeow [371. 

Power and Miranda's [21] approach will certainly render a unique solution to the boundary 
integral equation (7). Different completion schemes for multiples particles, with or without a 
container surface are discussed in Kim and Karrila [11, and naturally, the class of boundary 
integral equations that arises from these completion schemes is collectively called the Completed 
Double Layer Boundary Integral Equation Methods. 

Since we are interested in the mobility problem (given F {") and T I"), find the rigid body motions 
of each and every particle), we will adopt a completion scheme discussed in Karrila et al. [241 (a 
more in-depth discussion of the method can be found in Kim and Karrila [11). 

In essence, we solve the following boundary integral equations 
M 

~0j(() + (Ydr + q0~")(()(cP ("''), r = - u~, + ~ .(F tp~-~ �89 Ip) x V),)Gj,((, x(f)), (~S  (8) 
p : l  

for r Note that the usual summation convention with regard to the subscripts, and superscripts 
is observed here (n = 1,.. . ,  M, l = 1,.. . ,  6). 

After the boundary solution r is obtained, the surface velocity field is, from (6), 

u (0 = - q,), 4"Es. (9) 
The rigid body motions of particles p can be extracted from (9) by taking the inner product of (9) 
and rp (p'") and using the orthonormalization conditions of these null solutions. 

Note that the integral operator in (8) is just the (surface) integral operator in (6) plus a sum of 
the first-rank operators rpr {"'~), ") that involves the null solution of 1 + Yd. This effectively 
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moves the eigenvalue - 1  of the (surface) double-layer operator to zero. This technique of 
modification of a particular eigenvalue without affecting the rests is called Wielandt's deflation 
[-38]; Kim and Karrila [1] refer to this as the physical deflation, because the motivation behind 
the technique can be purely physical. 

As it stands, (8) is not yet amenable to simple iterative solution, because of the eigenvalue + 1 
of OU. Although the corresponding eigenvectors of OU are not known, the eigenvectors for the 
adjoint operator oU t are simply the unit normals on the M particles. These M eigenvectors, ~p('), 
can be orthonormalized so that 

= 

~0, otherwise, 

where c~, = 1 / ~ ,  is the normalization factor. 
To deflate the eigenvalue + 1 we subtract from the operator in (8) a sum of the first-rank 

operators ip(")( 0 ("), .). This process also modifies the right hand side of (8) (for this reason, Kim 
and Karrila [1] refer to this deflation as the mathematical deflation). The final form of the 
CDL-BIEM is 

~0j(~') + (oU(p)j(~') + q)~.z)(~-)(~p(,.~), ~p) _ 0~)(~.)(r162 ~p) = bj(O - �89 b), ~'eS, (10) 

where 
M 

bj( 3 = -  u ~176 +  F!P) 1 (p) : . , --g(T x V)i)Gji(r ~eS. 
p=l  

Equation (10) is basic of the CDL-BIEM as described by Karrila et al. [24] and can be solved by 
a successive iteration for ~p. The boundary solution can be used to extract the rigid body motions 
of the particles, and finally, the velocity at any point in ~ can be calculated using (6). 

3 Numerical implementation 

The numerical implementation of the CDL-BIEM proceeds in several stages. First, from the 
geometries of the particles the normalized null functions r l = 1, . . . ,  6 for particle n are cons- 
tructed. The first three are simply the translational motions: 

~(n, l)  __ el x/~ , '  l = 1, 2, 3, 

where {e~} are the unit vectors along the x~ directions. The next three null functions are simply the 
rotational motions of particle n: 

1 r / = 1 , 2 , 3 ,  ~ S , ,  

where p = ( -  x(c') is the vector from the centre of mass of S, to ~', i.e., 

S pdS = O, 
Sn 

and I~ are the normalized constants: 

11= S (p2 + p2)dS, i2= ~ (pZ + p2)dS, 13= S (p2 + pZ)dS. 
S. Sn Sn 

If x (')c is not the centre of mass of the boundary then these rotational null functions must be 
normalized by a Gram-Schmid t  process. 

Next, following the discretisation of S, the main iterative equation to solve for ~p is 

q~'= b ' -  OUcp- r162 r + ipr r (11) 
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where b' is the right hand side of (10) and tp' is the next corrected solution. This step is repeated 
until the norm 

max 11 tP'(O - tp(()[[ < e, (12) 

where e is a set tolerance. Our experience indicates that a tolerance of O(10- a) is adequate. 
Since the method is intended for large scale simulations, storage of the entire system matrix in 

core is not feasible. For example, a simultation involving 20000 elements resulting in a fully- 
populated system of size 60000 x 60000 will require storage of 14.4 G Bytes in single precision 
arithmetic. For this reason, the system matrix is not stored, but rather, individual rows are 
computed when needed in the iterative strategy. Consequently, a large problem such as this can 
be attempted on a mini-computer (Titan workstation) in a reasonable amount of time (about 10 
hours CPU time). 

3.1 Boundary elements 

In the numerical scheme, the boundary S is partitioned into a number of elements over which ~0 
is considered to be constant. The geometry is modelled by linear (TRIA3:3 nodes per triangle, 
QUAD4:4  nodes per quadrilateral), quadratic (TRIA6:6 nodes per triangle, QUAD8:8  nodes 
per quadrilateral) or quadratic Lagrangian (TRIA7:7 nodes triangle, QUAD9:9  nodes per 
quadrilateral) elements. Integrals on the right hand side of (11) can be calculated by Gaussian 
quadrature. For flat elements, a 1 point integration rule is sufficient for those integrals that involve 
the null functions tp ~"'z) and ~O ~"), since these functions vary at most linearly with the coordinates. 
However, a 2 x 2 rule is necessary for curvilinear elements. The only terms that require special 
consideration are those that involve the double-layer kernel, since the kernel has a singularity at 
( =  x. For a flat element, the kernel is evaluated to zero exactly at ( = x, and there is no contribution 
to the system matrix from the element containing both (and x (the so-called on-diagonal terms). 

For curvilinear elements the on-diagonal terms are no longer zero, and we need to evaluate 
the integral 

(. Kij(x, O~oi(x)dS(x) 
A 

over the element A where (eA. Although the kernel takes the form ~'rrr/r s, where r = ( -  x, it is 
weakly-singular and is integrable. This is because on a Liapunov-smooth surface 

lira ~ ' ( ( -  x) = 0. 
( ~ x  

Its numerical evaluation by a standard Gaussian quadrature would require a high-order integra- 
tion rule to give accurate results and would prove computationally expensive. Fortunately, there 
is a simple and much more accurate method of obtai.ning these terms. Realizing that (5) must apply 
to any set of boundary conditions, we are free to choose any trivial solution for which we know 
tp exactly and then obtain the on-diagonal terms indirectly. This well known technique is the 
preferred method for many boundary value problems and is documented in standard BEM texts 
([-5], [-6]). The simplest solution to choose in our case is that due the null motion of the particles 
(with no forces and torques acting on them), that is the eigenfunctions for the double-layer 
operator. Since {e~} are the null solutions of 1 + x(, one has 

K j(x, ( )dS(x)  + , ij = O, 
Sn 

where S. contains A. Thus, the contribution from the element A is 

- K i j ( x ,  OdS(x). 
S,~- A 

Integrals involving the double-layer kernel when (CA, may be evaluated using standard 
Gaussian quadratic rules. We use first-order, 2 x 2 and 3 x 3 quadrature, as well as an adaptive 
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integration scheme (up to 64-point quadrature) on the double-layer operator. The order of the 
quadrature for the adaptive scheme depends on the relative distance from the collocation point 
to the centroid of the element containing the field point to the maximum side of the element. It is 
surprising to find out that the improvement with the higher-order quadrature is only marginal. 
We will quantify this in a later section. 

After a boundary solution q~ is obtained, the rigid-body motions of the particles are extracted 
by using (9). 

Finally, the boundary solution can also be used in (6) to find the velocity field (and stress field, 
if need be, by taking appropriate gradients) at an integral point to 9 .  The numerical implementation 
is done in Fortran, in single precision arithmetics. 

4 Numerical results 

4.1 Flow past a sphere 

The unbounded flow past a sphere is included here as a means for testing the code. The sedi- 
mentation velocity of the sphere is simply given by F/6ntla, where F is the force acting on the 
sphere and a is its radius. To model the sphere using TRIA3 elements we start with a 20-faced 
icosahedron. To obtain finer discretisations, the faces of the icosahedron may be further sub- 
divided into equilateral triangular elements, the vertices of which are projected radially onto the 
sphere's surface. For curvilinear elements, we use Fan and Yeow's method [37] albeit slightly 
modified. Firstly, the faces of cube are discretized into QUAD9 parent elements. These parent 
elements are then mapped to the surface of a sphere by projecting radially their nodes onto the 
sphere's surface. Having specified the number of divisions along each side of the cube, the nodes 
on each face may be obtained from interpolation over the parent element. This method ensures 
that the elements on the sphere's surface will be approximately equal in size. Figure 1 shows 
some typical meshes used in the calculations. 

In Fig. 2 the percentage error in the sedimentation velocity and the CPU time are plotted 
against the number of elements for a unit sphere discretized with QUAD9 elements. Two different 
quadrature schemes are compared, a 1-point and a 3 x 3 scheme. It is clear that the differences 
between quadrature schemes are slight, with the 1-point scheme surprisingly giving the best results 
and at considerable savings in CPU time. In all cases, we find that the convergence rate for the 
sedimentation velocity is at least quadratic, i.e., the error decreases as 0(1/N2), where N is the 
number of elements (note that the elements are about equal in size). In fact, a regression analysis 
gives a slope of -2.01 and - 1.71 for the error curves of the 1-point and 3 x 3 schemes respectively. 
Also, a regression analysis for the last 6 points (the linear portion) on the CPU curves shows that 
the computational cost is approximately O(N 2) with slopes of 1.91 and 1.98 for the 1-point and 
3 x 3 schemes respectively. 

The total CPU time of our program can be divided amongst a number of solutions stages 
primarily requiring of O ( N  2) o r  o f  O(N) operations. There are t w o  O ( N  2) operations which require 

Fig. 1. a 80 TRIA3 element sphere; b 24 QUAD9 element sphere; e 96 QUAD9 element sphere; d 864 QUAD9 element sphere. 
These elements are shrunk for visual clarity 
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Fig. 2. Unbounded flow past a sphere, errors and CPU 
time (for the Titan workstation), for different order quad- 
ratures and Lagrangian elements. Note that the differences 
between the first-order quadrature scheme and higher- 
order schemes are negligible 

careful coding to achieve good program performance. The first is the evaluation of the integrals 
needed to form the system of equations and the second is the iteration stage whereby we solve the 
matrix equations. The remaining operations such as input/output,  computation of particle and 
element geometric properties and various book keeping tasks are of O(N) and are therefore not 
significant contributors to the total CPU time. To determine the proportion of CPU time spent 
in the various solution stages of our program, we considered again the flow past a sphere discretized 
with a modest number of elements. In all, 1014 QUAD9 elements were used on the sphere and 
various schemes for integrating the double-layer kernel were compared. Table 1 shows the breakup 
of the CPU time for the different integration schemes. Clearly, the time spent in performing the 
integrations accounts for the majority of the program's CPU time, and a comparison of the 
different integration schemes show the adaptive and 1-point schemes to be the most efficient. These 
timings would suggest that a 1-point scheme should be used in preference to the other schemes, 
but, as will be shown later, achievement of accurate results in more complicated flow situations 
demands higher-order schemes. In all cases the number of iterations required was 4, owing to the 
efficient deflation of the extreme eigenvalues. 

The rate of convergence of the sedimentation velocity for spheres discretized with TRIA3 
elements is similar, but the errors are considerably larger for the same number of elements; for an 
80 TRIA3 element sphere, the error is about 1~o as compared to an error of 0.2~o for a 24 QUAD9 
element sphere. A problem as large as 20000 constant elements has been done on the Titan without 
difficulty. By extrapolation using standard bench-marks (e.g., LINPACK), even larger systems of 
the order 200000 elements can be solved on present day supercomputers. 

Table 1. Breakup of the CPU ttme for the various integration schemes for 
the computation of the sedimentation velocity of a sphere. The timings are 
for an IBM RS6000 model 540 workstation 

CPU time (seconds) 
Integration 
Order Integration Iteration Other 

Adaptive 195.8 6.6 6.3 
1 x 1 115.4 6.8 6.3 
2 • 2 1071.1 6.6 6.3 
3 x 3 2281.8 6.9 6.4 
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It is a pleasant surprise that the QUAD9 elements improve on the accuracy of the method 
significantly, while retaining the simplicity of the method (constant functional elements). This can 
be explained by the fact that the null functions play a central role in the method, and it is the 
geometries that determine these null funct ions--model l ing the geometries more accurately would 
then help improving the overall accuracy of the solution. 

The exact solution to the flow past a sphere near a plane interface has been provided by Lee 
and Leal [31], using a bipolar coordinate system. Here, the object is to compare the numerically 
predicted sedimentation velocity with the exact solution for a sphere translating normal and 
parallel to the plane boundary.  Figs. 3a-b  show the drag coefficients for a sphere moving normal 
and parallel to the plane interface. The drag coefficient is defined by 

F Us 
CD-- 

6n~laU U' 

where Us = F/(6ntla) is the Stokes velocity in an unbounded flow, and U is the sedimentation of 
the sphere due to a force F applied to it. The drag coefficient is a function of z/a, where z is the 
distance from the interface to the sphere's centre. Unless the sphere is very near to the plane 
interface, both the TRIA3 and QUAD9 discretisations elements give good results for the drag 
coefficients. At z/a = 1.4, the 80 TRIA3 element sphere with 1-point quadrature gives an error of 
4.5%, whereas the 24 QUAD9 element sphere yields an error of 0.41%, with 1-point integration, 
and 0.37%, with a 3 • 3 quadrature scheme. Very close to the interface, higher order integration 
schemes improve the results. At z/a = 1.1, the 96 QUAD9 element sphere with a 3 • 3 quadrature 
scheme yields an error of 16.5%; with 1-point quadrature,  an error of 20.5% was obtained. Tables 
2 and 3 show summarize our results for a range of heights above the plane. 

It is clear from these Tables that the sphere discretized with TRIA3 elements and 1-point 
quadrature would be able to predict the particles' motions well, provided that these particles are 
not too close to the plane interface (about two radii away from the plane interface). The convergence 
rate for the sedimentation velocity of the QUAD9 element discretisation is now approximately 
linear, as Fig. 4 shows. Again, the 1-point integration scheme gives the best results, if the number 
of elements is large. The computational  cost is still of O(N2). 
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Fig. 3 a and b. Drag  coefficients a for a sphere translated normal  to the plane interface; b for a sphere translated parallel to the 
plane interface. 
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Fig. 4. Convergence rate of the sedimentation velocity 
and CPU time (for the Titan workstation) for QUAD9 
elements at z/a = 1.1 

Table 2. Drag coefficient for a sphere translating normal to the plane interface for an 80 
TRIA3 element sphere with 1-point quadrature and 96 QUAD9 element sphere with 1-point 
and 3 x 3 quadrature; C* is the exact solution from Lee and Leal [303 

D 

z/a C* 80 TRIA3 96 QUAD9 96 QUAD9 
1-point 1-point 3 x 3 

1.1 11.4592 6.1533 9.1082 9.5707 
1.2 6.3409 5.1362 6.1226 6.1026 
1.4 3.7356 3.5728 3.7203 3.7216 
1.6 2.8489 2.7828 2.8428 2.8495 
1.8 2.3988 2.3643 2.3954 2.3998 
2.0 2.1255 2.1083 2.1244 2.1273 
3.0 1.5692 1.5827 1.5692 1.5700 
5.0 1.2851 1.3098 1.2853 1.2855 

10.0 1.1262 1.1548 1.1263 1.1265 

Table 3. Drag coefficient for a sphere translating parallel to the plane interface for an 80 
TRIA3 element sphere with 1-point quadrature and 96 QUAD9 element sphere with 1-point 
and 3 x 3 quadrature; C~ is the exact solution from Lee and Leal [30] 

z/a C* o 80 TRIA3 96 QUAD9 96 QUAD9 
1-point 1-point 3 x 3 

1.1 2.2643 2.1113 2.2327 2.2174 
1.2 1.9527 1.9177 1.9480 1.9403 
1.4 1.6755 1.6800 1.6748 1.6733 
1.6 1.5344 1.5479 1.5340 1.5339 
1.8 1.4452 1.4632 1.4449 1.4451 
2.0 1.3828 1.4035 1.3827 1.3830 
3.0 1.2272 1.2533 1.2272 1.2275 
5.0 1.1259 1.1544 1.1260 1.1261 

10.0 1.0595 1.0892 1.0596 1.0598 
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4.2 Trajectories calculations 

The calculations of the particles' trajectories with the standard BEM have been done by some of 
us ([16]-[-18]), Ingber [19]-[20], and Dingman et al. 1-40]. In these calculations, the particles' 
inertia is neglected and their positions are updated in time using the numerically predicted values 
of the translational and rotational velocities of each particle. In effect, each particle is moved 
through a small time step in the direction of the translational velocity and given a small, finite 
rigid rotation about the angular velocity axis. This results in a new configuration at which the 
translational and angular velocities of each particle can be re-calculated. Ingber [20] and Dingman 
et al. [40] use a high-order Runge-Kutta scheme to update the positions of the particles, while 
we find that the simpler Euler's scheme is sufficient (halving time step produces little changes in 
the position, provided that the particles move about 0.1a in each time step, [18]). This may be 
due to the fact that the particles' velocities are smooth functions of time, except when they are 
near-touching. The current time step is halved, if necessary, to prevent particles from overlapping. 
The two trajectory problems reported below have also been studied by Dingman et al. [40] using 
a standard BEM. 

Three spheres. Caflisch et al. [32] find that periodic solutions are possible in the sedimentation 
of three spheres, if the three spheres are initially located at the vertices of an isosceles triangle. This 
periodicity is certainly lost in the presence of the interface. 

Figures 5a-b show the trajectories of three spheres (of same radius a), initially locating at the 
vertices of an isosceles triangle of side 2~f3a at a distance of 50a from the plane interface and 
sedimenting toward the interface (gravity acceleration is in the negative z axis); initially, the 
coordinates of the centers of these spheres are (2, 0, 50) (sphere 1), ( -  1, f i ,  50) (sphere 2), and 
( -  1, - ,4/3, 50) (sphere 3). As they move nearer to the interface, these spheres spread out, but still 
retain the configuration of an isosceles triangle. The projections of movement onto the x-direction 
of sphere 1 is about 0.7a, and that of spheres 2 and 3 is about 0.3a. 

With the initial locations of the three spheres changed to destroy the symmetry with respect 
to the plane interface, the trajectories of the three spheres are no longer trivial. The three spheres 
are still initially at the vertices of a isosceles triangle of side 2,v/3a (a = 1), but their centers are 
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Fig. 5a and b. The trajectories of three 80 TRIA3 element spheres; a in the x z  plane, and b in the y z  plane. The three spheres 
are initially located at (2, 0, 50) (sphere 1), ( -  1, x/3, 50) (sphere 2) and ( -  1, - x / 3 ,  50) (sphere 3). The spheres have the same 
radius (a = 1); initially the centre-to-centre distance is 2a,,f3. Results from constant element scheme with time step 0.025. 
Halving the time step produces results identical to three significant figures 
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Fig. 6 a and b. The trajectories of three 80 TRIA3 element spheres; a in the x z  plane, and b in the yz plane. The three spheres 
are initially located at (2, 0, 50) (sphere 1), ( -  1, x/2, 51) (sphere 2) and ( -  1, - x / 2 ,  49) (sphere 3). The spheres have the same 
radius (a = 1); initially the centre-to-centre distance is 2a,v/3. Results from constant element scheme with time step 0.025. 
Halving the time step produces results identical to three significant figures 
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Fig. 7. The trajectories of eight 80 TRIA3 element spheres in the 
x z  plane. The y z  view cannot be visually distinguished from the 
x z  plane (due to symmetry). Initially the spheres (of radius a = 1, 
centre-to-centre distance is 4a) are located at the vertices of a cube, 
one face of which is parallel to the interface. They sediment toward 
the interface. Results from constant element scheme with time step 
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Fig. 8 a and b. The translational velocity components of a the top four spheres and b the bottom four 
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0 0.L 0.8 1.2 1.6 2.0 0 0.L 0.8 1.2 1.6 2.0 
a Time b Time 

Fig. 9 a and b. The angular velocity components of a the top four spheres and b the bottom four 
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Fig. 10. The velocity contours in three selected planes. The spheres are at ( f 2, + 2,6), (k 2, k 2,2) 

located at (2,0,50) (sphere l), (- 1, $, 51) (sphere 2) and (- 1, - ,,& 49) (sphere 3). The projections 
of movement onto the y-direction of sphere 3 is largest, about 2a (Fig. 6b). 

Eight spheres. Durlofsky et al [28], Vincent et al. [lS], and Dingman et al. [40] described the 
trajectories of eight spheres located initially at the vertices of a cube in an unbounded body fluid. 
Initially the top four spheres move inward and speed up while the bottom four spheres move 
outward and slow down. The top four eventually pass the bottom four and this results in an 
inversion of the cube. 

In the presence of the interface, the periodicity of the motion is again lost. Initially the spheres 
are located at (+ 2, f 2,52) (top four spheres), and (+ 2, + 2,48) (bottom four spheres). The center- 
to-center distance is initially 4a (a = l), and gravity is in the negative z direction. The top four 
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spheres do catch up with the bottom four, after sedimenting a vertical distance of about 30a, but 
they then slow down as the interface is approached (Fig. 7). The lateral movement of the top four 
spheres is negligible compared to that of the bottom four spheres (about 2a). 

Figures 8a-b, and 9a-b display the translational and angular velocities components as functions 
of time. Note that the numerical scheme preserves the symmetry of the motion well, despite the 
fact that the element meshes are not created symmetrically (we simply create an 80-element sphere 
and then translated this to eight locations in space). 

Finally, to illustrate that the method is also capable of yielding good results for the internal 
points to ~ ,  we plot the surface contours of a velocity component of the eight sphere sedimentation 
problem in Fig. 10 at three selected planes normal to the interface. The symmetry of these contours 
is evident, as demanded by the locations of the spheres. 

5 Conclusion 

The CDL-BIEM is a powerful method for solving the mobility problem of a large number of 
particles. Although we only report results for modest number of particles, simulations of a swarm 
of spheres (up to 126 spheres, ~ 10000 elements) have been performed without difficulty. Spatial 
methods such as the Finite Element or Finite Difference Methods cannot handle such a large 
problem due to a heavy demand on computing resources. The CDL-BIEM method can be adapted 
to different kernels, such as the half-space kernel as reported here. With a container surface, the 
null functions are somewhat more complicated, but the theoretical framework for the method is 
still very much the same [1]. Particles with complex shapes can also be accommodated, with a 
slight modification of the method [25]. With the emergence of parallel computing architectures 
(for which iterative schemes are well suited), the method should proved more powerful [41], and 
perhaps provides an analogue to the molecular simulation. 
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Appendix: Singularity solution in half-space 

The singularity solution (/-component velocity) at point x due to a unit point force in the j-direction 
acting at X ~  is given by, for the case where the Poisson's ratio is 0.5, [33], [35], 

1 1 _ R ij r3 R 3  R 3  
r + + - -  

�9 [ b 3 3 R i + b i 3 R j - 2 6 , 3 6 j 3 R 3 + x 3 ( 2 b i 3 6 j 3 - b i j + 3 ~ ( R j - 2 6 j 3 R 3 ) ) l } ,  (13) 

where r = x - X, and R = x - X* in which X* is the reflected image of point X through the plane 
x3 = 0. We note that this singularity solution consists of two Stokeslets, one at X, and the other 
at X*, plus some extra terms (inside the square brackets). 

The associated traction is given by 

Hik(X, X)  = H s -- H s* + H E ik ik ik' 

where HSk and HS*ik are the tractions due to the two Stokeslets, and H~ is the extra part. They are 
given by 

3 n,,rmrirk. T S , _  3 nmRmRiRk (14, 15) 
TSk = 4re r 5 ' ik 4~ R 5 ' 
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and 

T~ - 2~zR 5 3 X 3  { - -  C~k3RiRmn m q- R3ni(2C~k3R 3 - Rk) 

~-X3It~kiRml~m+Rink--2t~k3(t~i3Rmllm+Ritl3) d-(5RmrtmRiR 2 Hi )(26kzRa--Rk)l t .  

Note that the only singular terms are those associated with the Stokeslet solution at X. 

(16) 
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