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Abstract. This paper presents general variational formulations for dynamical problems, which are easily implemented 
numerically. The development presents the relationship between the very general weak formulation arismg from linear and 
angular momentum balance considerations, and well known variational priciples. Two and three field mixed forms are 
developed from the general weak form. The variational princxples governing large rotational motions are linearized and 
implemented in a time finite element framework, with appropriate expressions for the relevant "tangent" operators being 
derived. In order to demonstrate the validlty of the various formulations, the special case of free rigid body motion is considered. 
The primal formulation is shown to have unstable numerical behavior, while the mixed formulation exhibits physically stable 
behavior. The formulations presented in this paper form the basis for continuing investigations into constrained dynamical 
systems and multi-rigid-body systems, which will be reported in subsequent papers. 

1 Introduction 

Recently there has been a renewed interest in the study of multibody dynamics and its application 
to a wide variety of engineering problem. Research is very active in the areas of vehicle dynamics 
(Agrawal and Shabana 1986; Kim and Shabana 1984; McCullough and Haug 1986), spacecraft 
dynamics and attitude control (Hughes 1986; Kane and Levinson 1980; Kane et al. 1983), large 
space structures (Meirovitch and Quinn 1987; Modi and Ibrahim 1987; Shi 1988; Amos and Atluri 
1987) and machine dynamics (Haug et al. 1986; Haug and McCullough 1986; Khulief and Shabana 
1986). One common interest in all these fields is the automated development and solution of the 
equations of motion. As discussed in Wittenburg (1985), symbolic manipulation programs are 
being applied to this task. The nonlinear equations of motion, in explicit form are quite complex 
due to the expression for the absolute acceleration. These complexities are avoided if a weak form 
of the dynamical equations is employed. The principle of virtual work, or Hamilton's principle is 
one such weak form (Borri et al. 1985). There has been a great deal of discussion in the literature 
concerning the equivalence of different formulations (Desloge 1987; Banerjee 1987) and the use 
of Hamilton's principle as a starting point for the numerical solution of dynamics problems 
(Bailey 1975; Baruch and Riff 1982). Some of this discussion involves the conditions under which 
Hamilton's principle may be stated as the stationarity condition of a scalar functional (Smith and 
Smith 1974). Due to the unsymmetric character of initial value problems, the governing equations 
are not expressible as such a condition. This fact in no way diminishes the usefulness of variational 
approaches for initial value problems. In fact, drawing on the mature literature concerning 
variational methods in the mechanics of deformable bodies, very general weak forms can be 
developed for dynamical systems, the most general being analogous to a Hu-Washizu type 
formulation. The principle of virtual work is obtainable from the general weak form by satisfying 
displacement compatibility (the definition of velocity) and the displacement boundary conditions 
a priori .  A Hamiltonian or complementary energy approach is obtained by satisfying the con- 
stitutive relations between momentum and velocity a priori .  

In order to establish the methodology and assess the performance of the different weak 
formulations, the dynamics of a single rigid body is considered. Even in its simplicity, from a 
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theoretical viewpoint, the dynamics of a single rigid body, with its high degree of nonlinearity, 
consitutes a significant test for numerical procedures. 

When dealing with rigid body dynamics, the choice of coordinates for finite rotation greatly 
influences the character of the resulting numerical procedures. As a result, many representations 
of finite rotation have been adopted in the literature, including: Euler angles, quaternions, 
Rodigues' parameters, and various rotation vectors (Geradin and Cardona 1989; Iura and Atluri 
1989; Pietraszkiewicz and Badur 1983). It is difficult to establish one set of coordinates as the best 
choice for all problems. For the purposes of the present development, the finite rotation vector is 
chosen as the Lagrangian coordinate for the angular motion. This coordinate choice preserves the 
vectorial character of the formulae and results in a minimum number of independent variables. 
However, since any three parameter representation of rotation cannot be both global and non- 
singular, an incremental approach is required to obtain a solution. The incremental displacement 
and rotation are measured from a reference configuration, which in general depends on time. For 
different choices of the reference configuration, different incremental approaches are obtained. 

Moreover, depending on the form chosen for the virtual rotations (or test functions for 
rotational variables), different but equivalent forms of the linear and angular momentum balance 
conditions arise. One choice leads to a symmetric variational statement, while the other does not. 

In this paper, several formulations for the dynamics of a rigid body are discussed, with the 
objective of developing a system of equations which may be directly implemented in the framework 
of time finite elements. This approach leads to a set of nonlinear equations, which are solved using 
Newton's method. The merits of this strategy, as related to the dynamics of constrained rigid body 
systems, will be discussed in a subsequent paper. 

The simple example of a free tumbling rigid body is presented, and the accuracy and numerical 
stability of the various approaches are discussed. 

The remainder of this paper is organized as follows; Sect. 2 deals with geometry and coordinate 
selection; Sect. 3 with the formulation of the variational principles; Sect. 4, the linearization of the 
resulting equations; Sect. 5, with finite element approximation; Sect. 6 deals with linearized stability 
analysis; Sect. 7, with numerical stability; and Sect. 8, with numerical results and Sect. 9 lists the 
cited references. Appendix A contains relevant formulas for rotation while the full expressions for 
the tangent matrices and residual vectors are presented in Appendix B. 

Throughout this paper, lowercase bold roman characters will indicate a vector, while uppercase 
bold roman characters will indicate a tensor. 

2 Coordinate selection and kinematics of a rigid body 

In order to avoid redundant degrees of freedom, the finite rotation vector is chosen as rotational 
coordinates, which is a three parameter representation. Finite rotation vectors have also been 
used by Iura and Atluti (1989), Kane et al. (1983) and others. As pointed out by Struelpnagel (1964), 
a three parameter representation can not be both global and nonsingular. In order to overcome 
this, many investigators have adopted Euler parameters to uniquely describe finite rotations. 
However, this results in five degrees of freedom being associated with the rotation, if the constraint 
of unit magnitude for the Euler parameters is included through a Lagrange multiplier. Geradin 
and Cardona (1989) use the conformal rotation vector as a set of three rotation parameters in a 
global algorithm, which avoids the singularities as the rotation crosses integer multiples of re. 
Similarly, it is shown in Appendix A, that the finite rotation vector may be used in a similar 
approach if the rotation is rescaled as it passes through multiples of 2re. However, for this 
numerical implementation, an incremental approach is adopted, to avoid the singularities. 

In order to specify the configuration of a rigid body, two orthogonal frames of reference are 
defined, namely (O, e~) and (O', e'~). The first frame is fixed, while the second is embedded in the 
body. At aiay given time t the embedded frame is completely identified by the position vector 
x(t) = O' - O, and by the rotation vector r(t), such that e'i = R(r).e�87 where R(r) denotes the rotation 
tensor corresponding to r. The spin of the embedded fame relative to the fixed frame may be 
expressed by the angular velocity vector to, such that to • ! =/~. R t which depends linearly on l:. 
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One common representation of the rotation vector is r = the, where th is the magnitude of 
rotation and e is the rotation axis, i.e. R'e = e, In terms of r, the rotation tensor R may be 
conveniently expressed through the exponential map, which is the form that will be adopted here, 
as; 

R(r) = exp (r(t) •  (2.1) 

In Appendix A, several common rotation vectors are shown to be easily expressed in this form. 
The reference configuration and incremental coordinates are now defined in the following.way. 

Assuming that the state of the rigid body is known at some initial time tl, the reference trajectory 
for the body can be defined. This reference configuration can be specified in many ways. For 
example, the reference could be a time varying configuration, compatible with some specified 
external forces and moment  resultant, or the configuration corresponding to a constant linear and 
angular velocity, or simply held constant. Since Newton's method is used to iteratively solve the 
nonlinear system of equations, the reference configuration must be a reasonably good estimate of 
the true configuration, in order for the method to converge rapidly. At any point in time, the 
reference configuration is described by a position vector Xo(t), and a rotation Ro(t). The true 
solution will in general flow another path, with any point on the true configuration being described 
by a position vector x(t) and the rotation R(t). Since the reference configuration is prescribed, the 
true path may also be represented by the position vector x,(t), given by x , ( t )= x ( t ) -  Xo(t), and 
the rotation R,(t), where R,(t)=R(t)'R¦ The incremental coordinates are now defined as 
(x,, r,), where r ,  is the rotation vector such that R ,  = R(r,) = exp (r, •  

Henceforth, all quantities associated with the reference configuration will be designated by a 
subscript o and a subscript * will indicate a quantity associated with the current configuration, 
but referred to the reference configuration. For example, Vo and too represent the linear and angular 
velocity of the reference configuration, and are defined as: 

= " . ' (2.2,2.3) Vo YCo, too X l =  R o R o. 
Similarly, v. and to. are the linear and angular velocity of the true configuration with respect to 
the reference, and are defined in a consistent way: 

�9 , (2.4. 2.5)  v ,  = ~ .  to. x I =  R , ' R , .  

The linear and angular velocities of the true configuration with respect to the fixed frame can now 
be expressed as: 

v = v. + Vo, to = to, + R..too. (2.6, 2.7) 

Clearly, the angular velocity of the incremental motion, to. is not the same as the relative velocity 
from the reference configuration, t o -  too. Having defined the angular velocity to., and the rota- 
tion coordinates v., the relationship between to. and r .  may be established. Substitution of 
R ,  = exp (y x I) into the definition for to. yields: 

to, = F(r , ) '~ ,  (2.8) 

where: 

F ( r , ) = l + l - c ~  -~2,( ) 4, 2 x l ) +  1 sinth, th, (r, x 1) 2, (2.9) 

and th, is the magnitude of r , .  The details of this derivation are presented in Appendix A. Clearly, 
the operator F also relates to and to~ to ~ and i" o respectively, i.e. to = F(r)'i" and too = F(ro)'i'o. 

This section concludes with some comments on the virtual displacement and rotation fields. 
The virtual displacement of the point O' can be defined as the variation of its position fix (t) = 6x,(t). 
However, the virtual change in the orientation of the rigid body can be represented either by the 
variation of the rotation vector 6r, or by means of a virtual rotation 0,~ defined by: 

�9 (2 .10)  O,¦ x I =  6R,  R , .  

Due to the orthogonality of the rotation tensor, 6R, .R~ is skew symmetric and its correspondence 
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with O,¦ x I is always possible. Substituting for R ,  in terms of R and Ro, demonstrates that the 
total virtual rotation 0~ coincides with the incremental virtual rotation 0,a, since the reference 
configuration is prescribed, i.e. JRo = 0. In fact: 

0,~ x I =  3 R , .  R ,  = ~(R" R¦ R¦ 
= J R . R  t =  O~ = I. (2.11) 

The notation of subscript 6 indicates that 0�87 and 0,¦ are not variations of true coordinates. 
Consequently 0 are commonly referred to as quasicoordinates. Since 0 does not exist, solution 
procedures cannot involve quasicoordinates exclusively. 

Moreover, the virtual rotation O¦ is related to the virtual change of the incremental rotation 
vector through the same relationship that exists between the angular velocity to and i i.e.: 

O~ = r ( r , ) . ~ r , .  (2.12) 

3 Weak forms for rigid body dynamics 

Let b and m denote respectively the external force and moment resultants and let I and h be the 
linear and angular momenta, respectively, of the rigid body, with respect to the point O'. Since the 
body is rigid, the velocity of any point ~, may be expressed in terms of the linear velocity of the 
point O' and the angular velocity of the body about point O'. Thus, 

= v - y  x to, (3.1) 

where y is the position of the point relative to O'. The linear and angutar momenta with respect 
to O' are, respectively, 

! = ~ p ~d~ 

= v ~ pd~3 -- to ~ py  x ld@, (3.2) 

h = v ~ py  x I d ~  - to ~ I)3' x y x l d N .  

The dynamical equations, viz., the equations of linear and angular momentum balance, are 
written as: 

l = b ,  [ ~ + v x l = m .  (3.3) 

The weak forms of these equations along with the weak forms of the natural boundary conditions 
can be written as: 
t2 

E d l ( t ) ' ( i -  b) + d2( t ) ' (h  + v x I -  m ) ] d t  = O, (3.4) 
t l  

bl( ty187171 - l(ty = O, b2(tk) ' (hby --  h(tk))  = 0 (k = 1, 2), (3.5) 

where dl, da  bi, b2 are  respectively, domain and boundary test functions. The subscript b indicates 
boundary quantities. 

Since the expressions for I and h contain v and to, which in turn depend on the time derivatives 
of the generalized coordinates x, ,  r , ,  the implementation of this weak form would require trial 
functions which are at least twice differentiable on (t 1, t2), while the test functions dl and d 2 have 
no continuity restrictions. In order to avoid higher order trial functions, the terms in Eq. (3.4) 
containing time derivatives are integrated by parts and combined with the boundary terms, 
Eq. (3.5), obtaining: 
t2 

[(d I + v  x d2).t+d2.h+d~'�8 Dl"l�87 + (d~ -bO'l+b2"h�87 (3.6) 
t l  

For simplicity, let the boundary test functions (b~, b2) be chosen such that they are equal to the 



M. Borri et al.: Variational approaches for dynamics and time-finite-elements 53 

domain  test functions (dl, d2) evaluated at the boundary,  thus eliminating the terms in (dl - bi) 
and (d a - b2). Moreover,  for particular choices of test functions, some of the terms in Eq. (3.6) can 
be made  to correspond to the variation of kinetic energy (or the variation of the Lagrangian, if the 
conservative part  of the applied loads is grouped with the kinetic energy). 

In fact the kinetic energy of the rigid body may  be expressed as: 

T = �89  �89 (3.7) 

where the linear and angular  m o m e n t a  are related to the linear and angular  velocities through the 
' constitutive" equations: 

! =  M . v  + S t ' t o ,  h = S ' v  + J.r (3.8) 

Here, M is the mass, and S and J are the first and second moments  of inertia, respectively, about  
point  O'. The definitions of S a n d  Ja r e  clear by compar ison to Eq. (3.2). In the following discussion, 
use will be made  of the fact that  the moments  of inertia in the embedded frame are constant.  That  
is to say: 

R t" M" R = AI = constant,  

R t ' S ' R  = S = constant,  

R t . J . R =  J =  constant.  (3.9) 

We define the corotat ional  variations of v and o to be: 

~~ ~ R .6 (R t ' v )  = ~v + v x Oe = 6SC + Sc x 0,~, 

6~ ~ R '3(Rt ' to)  = 3 to+ to x 0 e = 0~. (3.10) 

These are discussed further in Appendix A. With this notafion in place, the variation of kinetic 
energy is carried out as follows: 

3 T = 1(1.6v + 31. v) + l(h" ¦ + bh.to). (3.11) 

Considering the constitutive equations, and retaining the terms involving the variation of the mass 
(which of course is zero), 61 and 6h may be expressed as: 

31= ( 6 R . f t . R  t + R . M . 6 R t ) . v  + M ' 3 v  + ( 3 R ' S r ' R  t + R ' S r ' 6 R t ) ' t o +  Sr '6 to ,  

3h = ( 6 R . S . R t  + R . S . 6 R t ) . v  + S . ¦  + (3R . ] .R t  + R . ] . ~ R ' ) . t o +  J.3to. (3.12) 

F rom the definition of 0 ¦ it is known that  ¦  = (0 e x I ) . R  and f R  t =  Rt'(Oe x I). Using these 
relations in Eq. (3.12) leads to: 

3 T  = I . ( f r  + v x 0e) + h-(3to + to x O¦ (3.13.) 

In terms of the corotat ional  variations of v and w, as defined above, the variation of kinetic energy 
may be written concisely as: 

~ T  = 6 % ' I +  3~ (3.i4) 

This result is useful in selecting meaningful test functions for the linear and angular  m o m e n t u m  
balance conditions. If the test functions (dl, d2) in Eq. (3.6) are taken to be 3x and Oe respectively, 
the first two terms in the integrand correspond exactly with the variation of kinetic energy. Then 
denoting the virtual work of the external force and momen t  results by L e = 6x .b  + Oe'm, Eq. (3.6) 
can be rewritten as: 
t2 

(3T  + Le)dt = 3x.l�87 + Oe.h¦ (3.15) 
t l  

This combined weak form requires trial functions which are only once differentiable, at the expense 
of requiring differentiability of the test functions. The kinematic relations between x , ,  r ,  and v, to 
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as well as the boundary conditions on x, ,  r ,  are satisfied a priori. If the test functions in Eq. (3.15) 
are chosen so as to vanish the boundaries, then this reduces to the classical Hamilton's principle. 
Equation (3.15) will be used, in its complete form, as the basis for the numerical methods presented 
in the following sections. 

In the interest of brevity, the following notation is introduced: 

q = ( x , ,  r , )  

dl = (~,, ~,) w = (~, �9 
¦ = ( f x , ,  g)r,) fgl = (3x, ,  06) 

= ( t , r ' ( r , ) .  h) ~ = (t, h) 

f =  (O, Ft(r , ) 'm) f =  (b, m). 

It may be seen that the following relations hold: 

f q = X - l . f 0 ,  p=xT'~,  f = X r - f  

where: [¦ 0] 
X = F ( r ,  

The constitutive equation is then rewritten as: 

(3.16) 

(3.17) 

(3.18) 

B -~ M6"w, (3.19) 

where M 6 [_ S J ] is the generalized mass tensor. Similarly, the virtual work of the external 

force is rewritten as L~ = 60"f= fq . f .  
The kinematical equations then become: 

w = X'q + w~, (3.20) 

where: 

w�9 = (v o, R,.tOo). (3.21) 

Finally the corotational virtual change of the generalized velocity is written as: 

d . ~  S l (W)=[  0 ¦  (3.22) (5~ 6 q -  Stl(w)'60' v x I ' 

where f~ = (f~ f~ Equation (3.15) may now be written as: 
t2 

S (f~ + f O ' f ) d t  = fO-/~bl',~, (3.23) 
tl 

where Eq. (3.19) and (Eq. (3.22) are understood. 
From this variational form, two numerical approaches can be developed using the finite 

element method in the time domain. In the first, 30 is treated as an independent variation. Since 
the linearization process taust be performed in terms of the true coordinates q, the resulting tangent 
matrix is unsymmetric. The second approach makes use of Eq. (3.20) to express 60 in terms of the 
coordinates q, and a symmetric tangent matrix results. The latter approach requires that the 
variation ofkinetic energy by expressed in terms ofq and q, and that the external force and moment 
resultant be expressed in a form conjugate to fq.  
t2 

i (fiT(dl, q, t) + f q . f ) d r  = cSq'Pbll~, (3.24) 
t t  

where Pb denotes the generalized momentum at the boundary of the time interval. Equations (3.23) 
and (3.24) are the primal or kinematic forms of Hamilton's law for rigid body dynamics. 
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In general, the primal forms are conditionally stable and may require a small step size for 
accurate results. Again, this behavior is the dynamical counterpart to the locking phenomenon, 
which is weil known in elasto-statics. As with locking, the restriction on the step size can be avoided, 
either through selective reduced integration or by utilizing a mixed formulation [e.g. Belytschko 
and Hughes (1981); Kardestuncer (1987); Malkus and Hughes (1978); Zienkiewicz et al. (1971)]. 

By means of a Legendre transformation, the mixed form of Hamilton's law for rigid body 
dynamics is obtained in the following way. Let T = T(w, q, t) be the kinetic energy expressed as a 
function of w and q. The complementary Hamittonian is defined as: 

t l (p ,  q, t) = p" w(p, q, t) - 7"(w(p, q, t), q, t) = � 89  6 ~.p. (3.25) 

Then, the variational statement Eq. (3.15) may be expressed as: 
t2 

S (6(p'w - I~) + 6 ~ . f ) d t  = ~#'Pb 1~~- (3.26) 
t l  

Moreover, letting 6*p = xT.(6/, ~~ and enforcing the displacement continuity a posteriori, 
Eq. (3.26) may be expressed as: 

�9 d A A 
}1 -~  6q'p + 6*p" [dl + X - l'(w�9 - ff)] + 6#-(f+ Sl(p)" ~)dt -- [6#'/J b -- 6*p(qb -- q)] I[~- (3.27) 

where: ~ ~ M 6 1.p and q�87 denotes the coordinates at the boundary of the time domain. Finalty, 
integrating the term in q by parts, leads to the following: 

t~. d ~ A d , 6 " , "  ~1t2 (3.28) }j d t  ~Sq.p - ~ 6 p .q  - 6 * p ' X -  ~.(~ - w�9 + 6O ' ( f  + S~(/))" th)dt = (fite.p�87 - e -b,,1- 

A similar procedure applied to Eq. (3.24), using the transformation: 

H(p, q, t) =P';I(P, q, t) - T(p, q, t) (3.29) 

yields: 
t2 

S ( 3 q P  - 6p.q - 6 H  + f iq . f )d t  = (6q'pb -- 6p'q�87 (3.30) 
tl 

Equations (3.28) and (3.30) are "two-field" forms, wherein the trial functions may be 
discontinuous. 

Relaxing the kinematic relations and considering the velocity w as an independent variable, 
Eq. (3.20) may be enforced in a weak sense. This leads to the most general three field form. 

Modifying the Lagrangian by the weak form of the kinematic relations weighted with the 
momentum p, a three field variational statement can be formulated in the following way: 
t2 

(6ffg + 6q . f )d t  = 6gl'p. (3.31) 
f'l 

where: 

2 = la(w, q) - p ' ( w  - w�9 - X'q). (3.32) 

It is clear that the momentum/J plays the role of Lagrange multiplier. In carrying out the variation 
of 2 ,  note that: 

6w + 0~" v x 6v x 6w J (3.33) 

and, cSto�9 = 0�87 x to�9 Then using the fundamental relation, ~0 d - d0¦ = O¦ x 0y which is established 
in Appendix A, and defining 6*w = (6v, 6~ Eq. (3.33) may be rearranged in the following way: 

+ d  ^ d . 
! I ~ ) y  - S l ( W ) ' ~ w  ) - ' * w ' ( ' - ~ w  ) - ~ 5 * " X - l " ( w - w ~ )  -~(6q) ' , - -~ t t (6  P ) ' q l d t  

= (6q'pb -- 6*p'q�87 (3.34) 
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This form is very suitable for numerical implementation, since the field variables do not need to 
be differentiable over the time element, and the three fields, q, w,1O are completely independent. 
Therefore, very simple trial functions may be chose_,. This feature arises from the particular choice 
of the virtual velocity 8*w and the virtual momentum fi*p. The Euler-Lagrange equations and the 
weak forms of the boundary conditions, corresponding to Eq. (3.34) are easily obtained, by means 
of integrating by parts the terms envolving time derivative of 8*p and ¦ In this way, the following 
expression is obtained: 

80. -S,(w).  - ~  -8*w.  � 8 7  
tl  

= 84(�87246 - P ) -  ~*P(~tb A ,2 - q)[,~. (3.35) 

Due to the arbitrariness of the virtual displacements 8~, the virtual velocity 8*w, and the virtual 
momentum 8*p, Eq. (3.35) constitutes the weak form of the linear and angular momentum balance 
equations, the constitutive equations, the compatibility conditions and the boundary conditions. 
Equation (3.35) is analogous to the Hu-Washizu three field form (Washizu 1980), for rigid body 
dynamics. Each of the previous formulations, primal and mixed, may be obtained from this form. 
The primal formulation, can be obtained if the displacement field compatibility and the dis- 
placement boundary conditions are satisfied a priori. The mixed form arrises when the constitutive 
relations are satisfied a priori. 

The drawback of this approach is that there are eighteen degrees of freedom associated with 
a single unconstrained rigid body. In the next section the linearization of the primal and mixed 
variational statements is presented. 

4 Linearization 

Since the variational forms developed in the previous section are nonlinear in the coordinates q, 
a solution scheme such as a Newton or Quasi-Newton method is needed. In order to take 
advantage of the quadratic convergence property of the Newton method, consistent linearized 
expressions for the various weak forms are required. These linearizations are also useful in 
evaluating the stability of the system. 

To illustrate the linearization, consider Eq. (3.23), written as: 

~ .  x it2 j 6gl, 8~ .(~, [ f - -  Sl(w).~])dt = 6q P¦ (4.1) 
t l  

Then, at a given state (qo, qo), the linearized form of Eq. (4.1) is: 

j -d[8y .5'�9 = .~pdt. (4.2) t~ ~ d q ,  dq dt 8q'pb]tt~ - )1 ~~6q,  60 

Where J- and ~,  are the tangent matrix and residual vector, respectively. The subscript ( )p 
indicates a primal formulation and the hat indicates that 80 is the variation used in the weak form. 
The residual vector and tangent matrix are formally defined as: 

~p = (/9, [ f - -  S~(w)-p])q=qq (4.3) 
q=qg 

8i I 8q 
J~"= �8 Sl(W)./~) 8 ( f -  S~(w).p) (4.4) 

q=qo 

The complete expression for 3-p is given in Appendix B. As mentioned previously, this matrix is 
not symmetric, since the weak form is not expressed in terms of the variation of the rotation 
coordinates. 
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However, if the variation of kinetic energy is expressed in terms of 64 and 6q, Eq. (3.24) may 
be written as: 

tl ' 8q t- dt = dq'PblI~. (4.5) 

The linearization of Eq. (4.5) about the given state is then; ~!(d )~ ( d )  ~~(~ ) 
fiq'Pb It1 - -  ~ ~Sq, 6q ~t~q,6q .¦ -~tdq, dq d t =  t2 -~pdt. (4.6) 

t l  

Here, 6q is the variation used in the weak form, and consequently the part of the tangent matrix 
associated with the kinetic energy is symmetric. The residual vector and tangent matrix are given 
by; 

Bp:(8~8Tsq + f ) :  -qy (4.7) 

F o~~ J ~ l  
I ~i12 8qSq t 

~-P = /  82T 8f 8 2 7  , s f /  (4.8) 

L ~  +8o ~ +FqqJo~~,, 
q=qy 

Following the same procedure, the tangent matrices for the other principles are developed in 
Appendix B. The results for the mixed (two field) form are sketched out briefly here. Equation (3.30) 
may be written as: 

~ -dt "Is'(P'q)+((~P'(~q)" Bp' 8q t- dt=(@,g~q)'Is'(pb, q�87 (4.9) 

I P  O16] and I6 is the six dimensional identity. The linearization of Eq. (4.9) leads to: where I s -- /6 

i![(d<~p, d¦ dq)+(~P, 6q)'J,�9 dq))dt 

~[(d d) 1 =(~p,~Sq)'Is'(pb, qb)[t~~ - -d~(>p,~~q "Is'(p.q, qo)+(~p, 6q)'~t m dt. (4.10) 
t l  

Here: 

( 0H 8H f ]  
~m= Bp' 8q t- p=�87249 

q = qg 

= 8P 2 

y (--  Jm 82H ~@ 
?q@ 

�8228 I 
�8 . Of'~| 

+~,)J;::: 
are respectively, the residual vector and tangent matrix evaluated at the given state (Po, qo)" 

(4.11) 

(4.12) 

5 Finite element approximation 

In the time finite element approximation employed in this paper, the time interval It1, tEl is 
subdivided by a number of equispaced time nodal points. The time interval It 1, t2]  may then be 
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covered by m < n consecutive non-overlapping time elements each containing two or more nodes. 
The shape functions used over the elements are of the piecewise Lagrange type. Once the time 
interval is discretized, the weak forms are applied over each element. Here only one element is 
considered for the primal form given in Eq. (4.1) and the mixed form given in Eq. (4.9). 

5.1 Primal form 

Considering the variational form Eq. (4.1) and an n noded time element, let U = (ql, qz,.-.,  q�9 and 
V= (6il1,5q2 . . . . .  fiil�9 be vectors of nodal values of the trial and test functions respectively. The 
parametric approximations for q and 6il are then: 

q= ~ Skqk=S'U 6il: ~ sy (5.1a) 
k = l  k = l  

il=k ~=l"~kqk= ~'U ~(6q)d ^ __k ~': ,sk3ily s" V" (5.1b) 

Moreover, the increment 6q is approximated as: 

Bq = ~ SkŒ : s'AU (5.2) 
k = l  

where Sk are shape functions with the property Sk(tj) : 6kj and AU is the increment in the nodal 
vah/es of the generalized coordinates. The nonlinear solution of Eq. (4.1) is performed using the 
linearized form Eq. (4.2) in an iterative procedure. The solution U is then the limit of the sequence 
U1, U 2 , . . ,  Um as the difference between successive solutions, Um- 1 -- Um approaches zero. Per- 
forming the integrations in Eq. (4.2) using standard Gauss quadrature and considering ¦ as an 
arbitrary variation the following is obtained, for the i th solution step: 

K i ' A U  i = B ' ( / ~ 1 , / ~ 2 )  - F i (no sum o n  i) (5.3) 

where: 
t2 t2 

~r = ~ (/, y249 s)dt, F i =  j" (~, s) ' .~,(U,)dt (5.4,5.5) 
t l  t l  

(/)~,~0z) are boundary values of/~ at the times t~, t 2 respectively, and the matrix B is give by: 

[ - 1 6 ' 0 ' 0 ' " "  0 ]  t (5.6) 
B = L 0 , 0 , 0 , . . ,  1 6  " 

Further, the matrix K~ is the integrated tangent matrix at the i th solution step and F~ is the integrated 
residual vector. 

In the case of an initial value problem, q~ and/~~ are prescribed so that the components of A U 
associated with the first node are always zero. Since the equations for/~~ and P2 are decoupled, the 
iteration scheme may be carried out considering a reduced problem. The final momentum P2 need 
only be calculated after the iterations have converged. This is a simple matter, since at the 
converged solution AU is zero, to within some prescribed tolerance. The final momentum is then 
obtained by computing the residual vector at the converged solution. 

5.2 Mixed form 

For the mixed form Eq. (4.9), a different approach is required. Continuity of the coordinates (p, q) 
is not satisfied "a priori" over the time element, while at the boundary, continuity of (6p,6q) is 
required. It is therefore important to understand (6p, 6q) to be a virtual state vector rather than a 
mere variation of (p, q). Since the trial and test functions may be chosen independently, they may 
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be approximated as: 

(p, q) = ~ s k U k = s:'/.7, (3p, 6q) = Sc Vk = Sb" V (5.7) 
k = l  k = l  

where Uk = (Pk, qk) and V k = (3pk, 3qk ) are vectors of nodal values. The expression for (6p, 6q) 
contains one more term than that for (p, q). Further, the values (p, q) evaluated at the boundary 
are not required to be equal to (P¦ q¦ The linearized form Eq. (4.10) is then: 

K~. A U  i = B'(p~, ql ,P2,  q2) - F�87 (5.8) 

where K~ and F~ are given by: 
t2 t2 

Ki = ~ (~~'Is's�9 + s~'~ ' , �9249 F i = ~ (~~b'Is's~'U i + s~b'N�9249 (5.9a, b) 
t l  t l  

In this case the matrix B is defined as: 

t~Is' 0 ' 0 ' " "  0 1' I s =  [ 0 - - 0 1 6  1. (5.10) 
B=t_0,  0 ,0 , . . ,  - I s  I6 

For the initial value problem (p~,q~) is prescribed and we can solve for AU~ and (Pc,q2). In this 
case the increments in the variables p and q are not zero at the first time hode. 

6 Linearized stability analysis 

In dynamical problems, a stability analysis, even in linearized form, is useful in evaluating the 
behavior of the system. Further, a stability analysis, for a problem where the solution is known 
in advance, is valuable in assessing the performance of the numerical approximation scheme. 
Rearranging Eq. (5.3) so that the boundary nodes and interior nodes are grouped together i.e. 
U =  (U~, U~) and performing the same partitioning on K, F and B, Eq. (5.3) becomes: 

KB�87 �87 + K~,-AU, = BB~'(/~I,/~2) -- VB, 

KtB'AU B + K,r'AU, = B,�9 ) - F,. (6.1) 

Since, by definition B~B = 0, this is equivalent to: 

KBn'AUn = B B B ' ( P l , P 2 ) -  Fs ,  (6.2) 

where: 

KBa = K�87 - K8I" K~) 1. K~s, Fn = F�87 - K�87 K~  1. F/ .  (6.3, 6.4) 

In the case of a two noded time element there are no interior nodes, so that ~'BB and Fs reduce to 
K�87 and Fs respectively. 

Equation (6.2) is also useful in a perturbation analysis. If we consider a perturbation of a 
dynamical solution, we have the following equations: 

Fs - BB�9 = 0, KsB'dUs - Bss'(d/91, d/~2) = 0. (6.5) 

Since B•B = [ -I60 160J the sec~ ~ Eq" (6"5) bec~ 

Kll"dql + I~12"dq2 + d/~x = 0, K21dql + K22-dq2 - d#2 = 0, (6.6) 

where the subscripts 1 and 2 refer to nodes at times t~ and t 2 and the subscript ( )s�87 is dropped 
for simplicity of notation. Equation (6.6) can be put in the form of a transition matrix, which maps 
the perturbation of the initial state vector (d/~~, dqx) into the perturbation of the final stare vector 
(dlO2, dq2 ) i,e.: 

(dP2, dq2) = T'(dPl, dql). (6.7) 



60 Computational Mechanics 7 (1990) 

The transition matrix T has the following expression: 

T = [ -  K22"Ki-21_K1_2 t K21- R22"Rl l"KI11_ K~_21.K11 . (6.8) 

It may be seen that the above transition matrix is a function of the time step t 2 -- t 1 and is 
problem dependent. Here the eigenvalues of T are denoted by 2. If any of the eigenvalues have 
moduli greater than 1, the eorresponding eigensolution will increase exponentially, and the 
solution step is not stable. If the eigenvalues of the true transition matrix are known, comparison 
with those of the approximated matrix will provide a measure of the accuracy of the numerical 
method. Some examples of this are given in the next section. 

Proceeding in a similar fashion for the mixed form, the linearized expression Eq. (5.8) may be 
partitioned such that V = ( Vi, V,�9 V/) where the subscripts i, m, f refer to initial, middle, and final 
nodes. Equation (5.8) then take the form: 

K i . A U = - I s ' ( p ~ , q ~ ) - F i ,  K m ' A U = - F , � 9  K f ' A U = I s ' ( p 2 , q 2 ) - F f .  (6.9) 

Solving the frst two expressions for AU, and substituting into the last expression, the transition 
matrix for the mixed form is calculated. In the case of a two noded element, there are no middle 
nodes, leading to: 

AU = - K~- ~.(Is.(p~, ql) + F~). (6.10) 

Recalling that Is  x = _ Is, the final state (P2, q2) is: 

(p2, q2) = T. (p �9  qx) - P � 8 7  (6.11) 

where: 

T = Is 'Ky'K 7 1"I s, Ff = I s ' ( F / +  Kf'K/- I"FI). 

The perturbed state equation is then 

(dp�87 dq2 ) = T'(dp~, dq~). 

(6.12) 

(6.13) 

7 Numerical stability considerations 

In order to understand the behavior of the various approaches, the stability of a vertical spinning 
top is evaluated. Even though it is quite simple, this example will show the different behavior of 
the primal and mixed forms. For simplicity, the development presented is for the two noded 
element only and the time step t 2 - t 1 is denoted by At. Numerical comparisons are given for the 
three and four node elements. 

Let us consider the vertical spinning top rotating about the vertical axis e 3 at a constant rate 
sQ and acted upon by gravity. Let d be the distance from the center of gravity to the suspension 
point. The steady rotation about the vertical axis is taken as a reference configuration. 

Ro = R(s (7.1) 

First consider the primal form. Eliminating the translational degrees of freedom, it is easily 
seen that the tangent matrices ~-  and ~-, become: 

~:I¦ ~~, '1 ~ I  ~~~~, -~~, ~'1 (7~, 
where: 

J =  jae3.et3 + J z ( l -  e 3"et3), h = Jas L = ( I -  e 3"e~3)mgd. (7.3) 

Ja  and J ,  are respectively the axial and transverse moments of inertia referred to the suspension 
point, and d and gare the moduli of d and g. The vertical component of rotation is decoupled from 
the others. Therefore, the transverse rotation is denoted by ~ and the stability of transverse motion 
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only is analysed. Representing @ = ~,�9 + i~b ¦ where i =  ~ 1, the reduced tangent matrices in 
terms of @ and ~b, are: 

J-" = m9d J ~-" = L-~ir2Jo m9d _]" (7.4) 

Assuming linear shape functions for the virtual rotation, and the rotation itself, leads to: 

[ A -B+iC 1 K ~ ~ : [  A+iC -B+iC~, 
[('�87 = - B -  iC A L - B - i C  A--iCJ (7.5) 

where: 

n ~  B amgd J, bmgdAt, C -  (7.6) 
A = ~ + ~ A t ,  B=At 2 2 

a_2__ An exact integration of the tangent matrices leads to - 3, b = �89 Reduced order integration 
using only one Gauss point yields a = b = �89 The transition matrices for quasi coordinates and full 
Lagrange coordinates are then: 

B+iC FA- iy  A2-B2~ B+iy [l lA2-(B2+y ] (7.7) 
t-B2+C2k---1-l �96 T - B 2 + C 2 - -  A " 

B+iC 
Both of these matrices have the same eigenvalues, 2. Letting 2 = (B 2 + C2),/2 I~ the characteristic 
equation will be: 

2A 
f12 ( B2 + C2)1/~- ~ + 1 = 0. (7.8) 

Since 2 and/~ differ by a unit complex factor, they gain the same stability limits. It is interesting to 
note that when using a reduced order integration, the stability boundary is indepentent of the time 
step At, and coincides with the physical stability boundary. In fact, solving Eq. (7.8) results in: 

1 
# -- (3 2 + C2)1/2 (A ~___ Dl/2), (7.9) 

where: 

D = A 2 - 3 2 -- C 2 

= --~E(ja~Q) 2 -- (2jtO~)2(1 a2--b2 ~ ~ 2 A t 2 ) l  , (7.10) 

and: 

(mgd~ 1/2 (7.11) 

o=\#,1 . 

For reduced order integration, D becomes negative when ~2 = ~Qy - 2J tw which is also the physical 
Ja 

stability limit. On the other hand with exact integration, D becomes negative when 
~ /  (c~ 

~2 = .Q~ 1 + 1 ~ "  In this case, the stability limit is dependent on the step size and approaches 

the physical limit only as At ~ 0. 

8 Numerical examples 

In order to demonstrate numerical stability and to show how reduced order integration affects 
this behavior, the vertical spinning top is solved numerically. The problem is solved using two, 
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Table 1. Eigenvalues for vertical top-exact integration 

Eigenvalues for exact integration 

Two nodes Three nodes Four nodes 

At Real Imag Real Imag Real Imag 

0.02 1.6031E-02 1 .6663  2.7599E-04 1 .6666  1.7240E-05 1.6666 
0.04 3.2027E-02 1 .6654  1.1032E-03 1 .6666  4.1751E-05 1.6666 
0.06 4.7952E-02 1 .6638  2.4795E-03 1 .6666  1.4113E-04 1.6666 
0.08 6.3772E-02 1 .6617  4.4010E-03 1 .6666  3.3443E-04 1.6666 
0.10 7.9453E-02 1 .6590  6.8623E-03 1 .6665  6.5150E-04 1.6666 
0.12 9.4963E-02 1 .6557  9.8564E-03 1 .6664  1.t222E-03 1.6666 
0.14 0.1102 1.6518 1.3374E-02 1 .6663  1.7753E-03 1.6666 
0.16 0.1253 1.6474 1.741ME-02 1 .6661 2.6385E-03 1.6666 
0.18 0.1401 1.6424 2.1934E-02 1 .6658  3.7381E-03 1.6666 
0.20 0.1546 1.6370 2.6949E-02 1 .6653  5.0991E-03 1.6666 

Computational Mechanics 7 (1990) 

Table 2. Eigenvalues for vertical top-under integration 

Eigenvalues for reduced integration 

Two nodes Three nodes Four nodes 

At Real Imag Real Imag Real Imag 

0.02 2.3881E-05 1 .6665  2.3261E-05 1 .6666  1.6713E-05 1.6666 
0.04 2.3211E-05 1 .6660  1.0527E-05 1 .6666  1.3681E-05 1.6666 
0.06 1.6634E-05 1 .6652  1.3681E-05 1 .6666  7.9443E-06 1.6666 
0.08 1.0443E-05 1 .6642  7.7153E-06 1 .6666  8.0284E-06 1.6666 
0 .10  1.2153E-05 1 .6628  8.0605E-06 1 .6666  7.6044E-06 1.6666 
0.12 1.3460E-05 1 .6611 8.0266E-06 1 .6666  7.4198E-06 1.6666 
0.14 7.2016E-06 1 .6591 7.7597E-06 1 .6665  8.3770E-06 1.6666 
0.16 7.5157E-06 1 .6568  7.4664E-06 1 .6664  6.2104E-06 1.6666 
0.18 7.6967E-06 1 .6543  7.4116E-06 1 .6663 6.1258E-06 1.6666 
0.20 7.7657E-06 1 .6514  7.8648E-06 1 .6662  6.0095E-06 1.6666 

three and four noded time elements. For a top spinning at its critical speed, the eigenvalues of the 
system are purely imaginary. The exact eigenvalues of the system considered are + i~. Table 1 
summarizes the numerical results obtained at the critical speed for exact integration. The influence 
of time step O n the real part of the eigenvalues is clear. While the effect is not as strong in the higher 
order elements, the trend is the same. 

The results for reduced order integration are presented in Table 2. It should be noted that the 
real parts of the eigenvalues are essentially zero, and are insensitive to the time step. For the case 
of a vertical spinning top or other simple system, it is straightforward to choose the degree of 
reduced integration required to follow the physics of the problem. However this is not the case in 
general. 

For the mixed form, the stability boundary obtained numerically coincides with the physical 
boundary, without resorting to reduced order integration. 

8.1 "Torque-free" body 

In this section, the numerical resuts for a "torque-free" rigid body having one axis of symmetry 
are compared with the exact solution. Numerical studies of the accuracy, when using two, three 
and four noded elements, are summarized. 
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In order to compare the different formulations and check their accuracy, the very simple 
problem of a torque free rigid body with an axis of material symmetry is studied. This is a 
convenient problem for checking the methods since the closed form solution is weil known. If we 
choose the reference point to coincide with the center of mass, the linear and angular degrees of 
freedom are coupled only by the external force, which in this case is zero. The exact solution of 
this problem is briefly summarized here. 

If a denotes the axis of symmetry, the moment  of inertia has the form: 

J =  j o a |  + f r ( I -  a| (8.1) 

One of the peculiarities of the symmetrical inertia is that the vectors h, 09, and a are coplanar, i.e. 
o�87 a • h = 0. In fact o~. a • h = o9-a • J- ~ which is zero due to the skew symmetry of a • J = i t a  • L 

The angular momentum balance equation, referred to the center of gravity, is simply that h = 0. 
This leads to: 

d a , 
( h . a ) = h ' 0 9 x a - O ,  ~ - t ( h x a ) = h x � 8  (8.2a, b) 

h h 
where the fact that �8 = 09 x a and 09 x a = ~ x a are used. The ratio ~ = 09p, called the precession 

angular velocity, represents the angular velocity of the plane containing a, h, and 09. If n is the 
normal to this plane, then: 

ti = oJ~ x n. (8.3) 

The corotational time derivative of n is: 

d ~ 
n = - 09 ,  x n ,  ( 8 . 4 )  

where: 

09, = 09-  09p - J '  - J~ (h.a)a (8.5) 
J,J�9 

which is called the relative spin. The vector 09p is constant while 09, is time-variant, with: 

J , - j o  ( o , -  j t ~ - ~ ( h ' a ) � 8  09p • oJ,. (8.6) 

Denoting the value of o~ r at time t o by 09ro results in: 

09, = exp ((t - to)09p • I). 09,o. (8.7) 

If R(to) is the rotation from some fixed reference to the orientation at time to, then the rotation at 
any later time is: 

R(t) = exp ( ( t -  to)09p x l ) - e x p ( ( t -  to)09,(to) • l)'R(to). (8.8) 

Since 09 : 09p + 09, Eq. (8.7) and Eq. (8.8) constitute the integral of the motion. 
The numerical solution has been computed using two, three, and four noded time finite 

elements, for both primal and mixed forms. Several nodal spacings are investigated, for a body 
with a ratio of transverse to axial inertia of 1.875. The initial conditions are, angular velocity of 
15 rad/s about the axis of symmetry and 1 0 rad/s about one transverse axis. The results are shown 
in Figs. la -e .  The total rotation of the body after 6 s is roughly 100 radians. The errors plotted in 
figures are absolute errors. That  is to say, the error is the magnitude, in radians, of the difference 
in rotation between the calculated solution and the exact solution. Figure la compares the error 
of the two noded primal and mixed elements. The time between nodes is 0.01 5 s. Figure lb shows 
the three noded elements with the same time between the nodes, which means that the time 
elements in this case are 0.030 s long. Figure lc compares results for the four noded elements. Again, 
the same time (0.015 s) between nodes is used, so the four noded element is 0.045 s in length. 
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Figure ld  and e compare the four noded elements at different time steps. Figure ld  contains plots 
of the error for a time between nodes of 0.030 s, while Fig. le shows the results for a time of 0.045 s 
between nodes. Therefore, the elements for Fig. l d - e  are, 0.090 s long and 0.135 s long, respectively. 
The behavior of the error in the mixed form is clearly more stable than the primal form. Comparing 
the primal curves in Figs. la  and le, shows that the use o fa  four noded element with a total length 
of 0.135 s results in about the same error as the two noded element of length 0.015 s. However the 
mixed four noded element has an order of magnitude improvement in error. It is interesting to 
note that the maximum error in all of the test cases is less that 0.2 radians out of about I00 radians 
total rotation. It is difficult to genealize based on this simple, yet numerically significant, test case; 
but the behavior of the mixed formulation is very encouraging. 
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Appendix A - relevant formulas for rotation 

This appendix reports some fundamental formulas related to the three dimensional parametrization 
of the finite rotation tensor. 

A.1 Exponentiai representation and its tangent map 

Let a be an arbitrary vector undergoing a rotation to a new orientation �8 This proper rotation 
may be expressed as r = be, where b is the magnitude of ratation and e defines the ratation axis. 
This constitutes a three dimensional parametrization of the rotation and is therefore not unique. 
Expressing �8 in terms ofits components  in the basis e, t, s, respectively defined as e, e x a, e • (e x a), 
leads to: 

�8 = [Icos  b + (e x I) sin b + (1 - cos b)e 'e ' ]  'a. (A.1) 

The term in brackets is the familiar form of the rotation tensor R. Making use of the fact that 
e.e' = e x (e x I) + / ,  the rotation tensor may be written as: 

R = I +  sin b(e x I ) +  (1 - c o s  b)e x (e x I) (A.2) 

or in terms of r as: 

sin b r (1 - •os b) 
R = I + - - ~ - - (  x l ) +  b2 r x ( r x l ) .  (A.3) 

Expanding sin b and cos b in power series and substituting in the above expression, leads to: 

R = I +  b - ~ . + 5 t  7! + " "  ( e x / ) +  ~.  4! t 6! 8! e x ( e x I ) .  (A.4) 

Making use of the fact that e x e x e x I =  - e x I and r = be we may rewrite this expression in 
the following form: 

1 1 
R = I + ( r  x l )+~ . r  x (r x l )+~ .r  x [r x (r x I)]  + ...h.o.t. (A.5) 

This has the form of an exponential in r x I, so the rotation tensor may be written concisely as: 

R = exp (r x I). (A.6) 

Other common rotation vectors such as r~--sin be and r t - -2  tan (b/2)e give rise to completely 
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equivalent representations for R. In the former case, substituting r~ = sin tpe into Eq. (A.3) and using 
the trigonometric half angle relations results in an expression for R of the form: 

1 
R = I + G  x l + - - - - - - - T r  ~ x G x L (A.7) 

' e  2 cos~- 

Substitution of r, = 2 tan (~b/2)e into Eq. (A.3) and again using the half angle relations yield an 
expression for R which is: 

1 
R = I +  1 + �88 r' x ( l+�89 t x I). (A.8) 

These two forms and the form of Eq. (A.3) are the most common finite rotation vectors. The 
following properties of the rotation tensor are well known and easily verified. 

R t . R = R - R ' = L  d e t R = l ,  d e r ( R - l ) = 0 .  (A.9) 

The last of these properties shows that the rotation tensor has one real unit eigenvalue, where the 
corresponding eigenvector is the axis of rotation. Differentiation of Eq. (A.9) with respect to time 
yields: 

R - R ' =  - R'/~' .  (A.IO) 

This skew symmetrie tensor may be represented by a spin vector to defined by: 

to x I =  [I.R' .  (A~I 1) 

The spin, or angular velocity, vector to is not the rate of the rotation vector ~, but is related to 
through the tensor F, which itself depends on r, i.e. to = F(r)~. Since this relationship is essential 
for constructing the tangent matrices in Appendix B, its derivation is briefly sketched out here. 
From Eq. (A.2) it is clear that R' is: 

R' = I -  sin q~(e x l) + (1 - cos ~)e x e x I (A.12) 

and that R may be written as: 

[ r 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5  (A.13) 

Substituting Eq. (A.12) and Eq. (A.13) into Eq. (A.1 1) and making use of the fact that ~'e = 0, and 
e x ~ x e x I = 0, results in: 

to x I =  q~(e x I) + sinO(~ x I )+(1  -- cos q~)(e x ~ x I). (A.14) 

With the use of the definition of r, this expression may be written as: 

[ 1--c~ ~-~2( sin~b ) ] 
r  i-~ ~“ x f ) +  1 ~b ( r x r x f )  x l .  (A.15) 

Then: 

to= I-~ 1 ~os x l ) +  1 1 -  ( r x r x I )  "e. (A.16) 

This leads directly to the definition of F. 

F F(r)  [_I+ .(r x I )  + 1 - (r x r x I)  

= I + ~ (r x I) k (A.17) 
k=l(k+ 1)!" 

Clearly the above argument, which establish the relationship between oJ and ~, are equally valid 
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for the virtual rotat ions 0 ¦ and br, where: 

O¦ x I =  3 R . R  ~ (A.18) 

and we may write: 

0 ¦ = F(r)"  hr. (A. 19) 

Starting with the expression for f '  in Eq. (A.17) it is staightforward to verify that: 

F r = I - -  a l ( r  x 1) + b l ( r  x r x I )  (A.20) 

- = x l ) +  1 -  ( r x r x l )  (A.21) 

~2(a<) F -7 = / _  ~(r = 1) + 1 -- (r x r x I), (A.22) 

where: 

sin Œ 1 - cos 4~ 1 
a o =  c ~ ,  a l -  q52 , b l = ~ .  ( 1 - a o ) .  (A.23) 

Further,  the tensors F and R a r e  related by: 

R = F - t . F  = F . F  -t ,  (A.24) 

and 

F -~ - F - 1 = r x I. (A.25) 

Then multiplying Eq. (A.25) by F and taking Eq. (A.24) into account  leads to: 

R = I +  F . r  x I = I + r  x F .  (A.26) 

It is impor tan t  to recognize that  F is singular for certain values of ~b. F r o m  the general 
expresion for the determinant  of a 3 • 3 matrix it is seen that: 

der F = �89 F 3  _ �89 tr F2 - t r  F - ~(tr/-)3. (A.27) 

Then, considering Eq. (A.17), the determinant  is: 

2(1 - cos 4)) 
det F(r )  - 4~ 2 (A.28) 

Clearly, F is singular when 4) = 2n~ n = 1, 2, 3 , . . ,  but is not  singular for q5 = 0. In order to 
avoid this problem of singularity an incremental  approach  is adopted.  A more general rescaling 
process may  also be used to avoid this singularity and it is briefly shown here; see also Geradin 
and Cardona  (1989). 

Let: 

r v = r - - 2 n ~ e  n = i n t ( ~ ) ,  (A.29) 

and 

(/)p = e'rp = ~ -- 2nrr. (A.34) 

Then from Eq. (A.29): 

0 ¦ = F ( r ) . 3 r  = F(rp) '3rv ,  (A.31) 

This equat ion and the Eq. (A.29) consti tute the rescaling process. Proving Eq. (A.31) is easy since 
from Eq. (A.29): 

6rv = ~r - 2mr3e (A.32) 



68 Computational Mechanics 7 (1990) 

and  since e = r/~b: 

l - - e . e  ~ e x e • Jr 
~ e  - - -  6 r  - 

4, 4, 

Substituting back into Eq. (A.32) yields: 

6r�87 I +- -~- (e  x I) '(e x I) .6r. 

Further, since: 

E ~~~ 1 F(rp)" I +  - ~ - ( e  x I).(e x l) = F(r) 

from Eq. (A.34) and Eq. (A.35) it is seen that: 

F(rp)'6rp = F(r). f r  

which proves Eq. (A.31). 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

A.2 Propert ies  o f  the tangent  m a p  

In this section, some identities associated with the tangent map of rotation are presented. These 
will be necessary in the development of expressions for the tangent matrices in Appendix B. 

In the space of the rotations r, consider two arbitrary infinitesimal variations 6r and dr and let 
6R and dR be the associated variations on R. The corresponding virtual rotation vectors 0 ¦ and 
0y are, respectively defined through: 

Oo x I =  6 R . R  t and 0 d X I =  d R ' R  ~. (A.37) 

As shown in the preceding section, 0 ¦ and 00 are related to 6r and dr by: 

Oo = F ( r ) ' &  Oy = F(r) 'dr.  (A.38) 

Using the fact that d6R = 6dR and considering Eq. (A.37) leads to: 

d 3 R = d 0 ¦  ¦ x Oa x R,  6dR=6O d  x R + Oa x O~ x R. (A.39) 

Post-multiplication of Eq. (A.39) by R t yields: 

dO~ • l--c~O d • I +  0~ • 0 d X I- -  0d • 0¦ X 1 = 0  (A.40) 

from which: 

dO~ = ¦171 + 0d • O¦ (A.41) 

This result indicates that, in general dO ¦ 4: 60d (i.e. when 0d and 0 ¦ are not parallel), which is a 
direct consequence of the noncommutative nature of sequential rotations. 

In order to better understand implications for this result consider the vectors: 

hk = F(r)'ek. (A.42) 

Since in general det F(r) ~ 1, the three vectors hk are not orthogonal. Now representing r = rkey 
from Eq. (A.41): 

c~hy c~hi 
c3ri er y - h  i • hg. (A.43) 

This clearly shows that the matrix F cannot be understood as a deformation gradient or as the 
Jacobian of any coordinate transformation. Therefore the virtual rotation 0~ can not be expressed 
as a variation of any coordinate, i.e. it is not an exact differential. In the same way, the integral of 
the angular velocity is path dependent. 
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Equat ion (A.41) is very general, in fact if 0d is just the infinitesimal rotat ion associated with the 
angular velocity o acting over the time interval dt, then 0d = ~odt, and: 

dO~ _ 6o~ + ~o x O~ = 6 o  - 0~ x ~o = 6~ (A.44) 
dt 

which shows that  the absolute time derivative of the virtual rotat ion coincides with the corotat ional  
variation of the angular velocity. In the same way if the cross product  term in Eq. (A.44) is moved 
to the left hand side, it is recognized that  the corotat ional  time derivative of the virtual rotat ion 
coincides with the absolute variation of the angular velocity, i.e.: 

d~ dO ¦ 
- o~0�87 = Œ (A.45) 

dt dt 

In order to cast this result in a form which will be useful in Appendi• B, consider the application 
of d0~ to an arbitrary vector b. 

dO¦ b = 6r" dF'(r)-b = 6r'H(r, b)" dr (A.46) 

where H(r, b) depends linearly on b and is obtained by taking a variation of F t. The development 
of this expression is straightforward and it may be verified that: 

H(r,b) = - a lb  x I +  bl[(b x r) x 1 +  b x r x I ]  + clb x r ' r  t - d l ( b  x r) x r-r t. (A.47) 

The constants, a I and b 1 are defined in the preceding section, and are repeated here along with 
there variations c t and dt, respectively: 

1 --cos4) I (s in4)  2(1 - c o s Y ) )  
a l =  4)2 y 4) 4)2 

1 ( s i n 4 ) ) ~ 2 1 1 - c o s 4 )  3 ( sin4)'~~ (A.48) kl= ~-  1 4) d,= 4)2 ~ 1 ~ jj .  

As a consequence of Eq. (AA1), H is not  symmetric. 

H(r, b) = Ht(r, b) + F ' ( r ) ' b  x F(r) .  (A.49) 

Moreover, since Ft ( r ) ' b  x F ( r ) =  det F ( r ) - ( F - l ( r ) ' b )  x I it is easily seen that  H(r, b) will not be 
symmetric for any choice of rotat ion parameters.  

The corotat ional  increment of the virtual rotat ion follows from Eq. (A.45), multiplying by the 
time increment dt: 

d~ = d0~ - 0 d x 0~ = 6Od. (A.50) 

F rom this equation and Eq. (A.46) it follows that: 

d~ = 3r.H'(r, b).dr.  (A.51) 

As will be shown later, the development  of the tangent matrix for the symmetric primal form, 
requires an expression for (d/dt)H(r ,  b). Similarly in developing the tangent matrix for the sym- 
metric mixed form, expressions.for 6 F - ~  and d 6 F - t  are needed. Two other expressions which 
will also be needed are, F and F -  t. These can be easily computed  recognizing that: 

�8 D t = d ~ 4 ) B  ~ ~ = + ( b ~ - a a - 4 c ~ ) $  d ~ = ~ ( c t - 5 d t )  d) (A.52) 

and 4)4; = r'~;. Then the time derivative o f / "  is: 

_#= �8 x I)  + b~(r x r x l )  + al(i, x l )  + bl(i, x r x l + r x i" x I). (A.53) 

The expression for /~  - ~ is then: 

r112a,y 1 ~2(a<)  , a-;~Ta-~~ , (b(r x l ) ' ( r  x l ) - ~ ( r  x l )  + 1 -  (r x r x I + r x i x I). (A.54) 
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Since in each of Eq. (A.53) and Eq. (A.54) the time derivatives may be replaced by variations, 
6 F -  1 operating on an arbitrary vector b may be written as: 

6 F  - 1.b = K(r, b)'6r (A.55) 

where: 

K(r ,b )=  �89 x l + a2[(b x r) x I - r  x b x I]  +b2(r x b x r).r t (A.56) 

where ~b is the magnitude of r, and: 

1 c~ 1 ao 
a2=  ~ 1 2(1-cosq~ = 1 -  

1(  l+ao'~ 
b 2 = ~ x  2 2b ~ j .  

(A.57) 

Finally, taking the variation of Eq. (A.54) we can write the expression for d ¦  - 1 acting on two 
arbitrary vectors b and c as: 

c ' d ¦  - t 'b = dr'L(c, r, b)'6r, (A.58) 

where: 

L(c, r, b) = a2L a + b2L b + c2Lc, (A.59) 

and 

c 2 = ( 6  l +a~  ao ) 
bo 2b¦ ' 

L y 2 1 5 2 1 5 2 1 5  

r 'Ly . 
Lb = La 'r ' r  t + r 'rt 'L�8 + - - ~ - ( r  x r x I), 

Ly = (r'L a �9 r)'r" r t. (A.60) 

The complexity of these relations increases the computations required to calculate symmetric 
tangent matrices, to no apparent advantage for initial value problems. However, if the symmetry 
of the tangent matrices can be exploited, the effort required to calculate H and J or K and L may 
lead to significant savings in the solution process. 

Appendix B - tangent matrices 

In this appendix the expressions for the tangent maps of the various variationat principles are 
obtained. In the following paragraphs several notations are introduced, involving very sparse 
matrices. While the notation makes the discussion simpler, this sparsity must be recognized and 
taken into account in the programming of the residual vectors and tangent matrices. 

B.1 Primal form - unsymmetric approach 

The first form considered is the unsymmetric, primal formulation. In this case the variational 
statement is given by Eq. (3.48), which is repeated here for convenience: 

t2( d A ^) x ^ a  1,2 �9 (p, ( f -  $1 (w)-p))dt = vq-eb,t~ ~[6q ,6q  ~ ~ ~ (B.I) 
t t  
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where • = M6.w. The linearized form reads: 

t2(d ~ ) ' ~ p ' ( d  ~ ) 8 "r t 2 f d ( ~  ^ ) ' ~ p d t  (B.2) d-~ 8q, 60 dq, dq dt = ~ t'b,t, -- I ~~- q, 60 
tl tl 

where J-p and ~p are respectively the tangent matrix and the residual vector for the unsymmetric 
primal approach. The hat indicates that the variational statement employs the test functions 
(d/dt)60 and 80, and the subscript p indicates a primal formulation. Then, directly: 

~ p  = ( / 0 , / - -  S l ( W ) ' p ) .  (B .3)  

Separating the contributions due to kinetic energy and external loads, leads to, ~pk = (10, -- SI(w)'D) 
and Npy = (0, f). Similarly, let 3-p = ~-,k + 9-,y The derivation of the tangent matrix is consider- 
ably simplified if use is made of the relation, ((d/dt)d 0, d0) : Y'((d/dt)dq, dq), where Y is: 

"--E¦ :], x:[¦ ~ 1 ,�9 
Then, 3-pk = ~~,k'Y, and: 

~ [ M6 (S2(/~) -- SI (W) .M6)  t ] 

J'pk : ~ Sl( l))  _ S l ( w ) . M 6  _ S l ( w ) . ( S 2 ( f i  ) _ S , (w) .M6) t  j 
(BS) 

I 0 o  I ,,~> 
~ N  

where: 

[0 ¦ I0 0j ~B7> s~(p)= tx~,  , s~(p)= t x l  h x 1 "  

For a general six dimensional vector z = (ZL, ZA) the linear operators S~ (z) and S2(z) are defined 
as: 

[o  ¦ ,~t~):[ ~ ~ (�9 St(z)= zL x l ' zL x l ZA X l " 

For the following discussion it is useful to also define $3 as: $2(') - $1('). 
By inspection of Eq. (B.5) it is clear that even referring to the center of gravity the tangent 

matrix is greatly simplified, since M6 is block diagonal and S~ (/~) - SI(W).M6 = O. Even with this 
simplification, however, the tangent matrix is not symmetric. 

B.2 Primal form - symmetric approach 

Next, consider the symmetric primal form, 
[2 

= , t2 [6T(o,q, t) + 6q. f]dt  6q Pb]t,. 
tl 

Which in linearized form may be written as: 

t~ / d 8q).~pdt. ~ { d ¦  Sqt 'Zr-F(ddq, dq)d t=8q 'pb , ,~- - ! l l~6y  
t~ \d t  / 

Again the residual vector and the tangent matrix may be 
contributions from the kinetic energy and external forces. 

(B.9) 

(B.lo) 

thought of as begin composed of 

(B.11) 
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Obviously ~pk = 

I Œ 82T Jpy ~q2 ~qOq 
~2T 02T 
~40q 8q 2 

/ST  8T'~ ~ = ( 0 , f )  and: 
~4' Sq J' ~,e 

l ~176 G ~ = s f s f .  
84 Oq 

(B.12, 13) 

Working in this way, ~'-pk is found to be symmetric. 
Performing these derivatives is not a simple matter. However, the expression for ~'-pk may be 

obtained from ~-pk and ~pk which have already been presented. In fact: 

d ~ d 
d6T=(-~t3q,3q). Jpk.(-~tdq, dq) (B.14) 

which must also be given by: 

d . , ,~ d ^ ,, + (_~_t¦ 6q).~pk. (B.15) d¦ 3q).jpk.(_d_tdq, dq) d d A A _ _ A 

Comparison of the last two expressions leads to: 

:pc  v , . ~  .y  + 8( c(Y ".~py (B.16) 
: Jt  o "  p k  8q 

where ~pk is held constant and is equal to the value corresponding to the given state. 
8F"b 

Recalling the definition of the map H(r, b)= for an arbitrary constant vector b and 
8/~.,b 8r 

defining, J(~, r, b) - 8~  ' the last term in Eq. (B.16) may be expressed as: 

8 0 8q f :  H6(q,/~) J6(o,q,p)+H6(q,-Sl(W)'~)J" 
Whereas the operators H 6 and J6  applied to a general six component vector z = (zL, ZA) are defined 
as: 

0 
H6(q ' z )= I ¦  H(r0,ZA)I ' J6(q 'q 'z ) - - [ ¦  J(i',r, ZA)I (B.18) 

The map J(#,r, b) is obtained by taking the time derivative of H(r, b), while considering b 
constant. Making use of Eq. (A.48) leads to: 

J(#,r,b) = Jt(#, r, b) + Ft'b x F + F"b x F. (B.19) 

Taking these properties into account, the symmetry of ~'pk c a n  be easily demonstrated. 

B.3 Mixed form - unsymmetric approach 

In linearizing the unsymmetric mixed formulation, it is convenient to rewrite Eq. (3.40) as: 

I ~ (3  p, 30)'I s-(1o, q) + (¦ 30)'(X-1 "(w�9 -- ~i,),f+ Sa(P)" ~') dt = (3*p, 6O)'Is'(p�87 qb)ltt 2 
t l  

where ~, = Mg 1.10. The linearization of Eq. (B.20) leads to: 

t2[- d , (3,p, 3q).~~,, (diKdO)]d t )I L ~(  3 P, 30)'Is'(dp, dq) + J 
d * .', A 

(B.20) 

(B.21) 
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where: 

~ m  = ( X -  1"( W" - -  ~ ) , f "~ -  S I ( p ) "  ~) .  (B .22 )  

The residual vector and the tangent matrix may be separated into contributions from the 
Hamiltonian function and the external force. 

Bm~-,~mh-[- ~rae, J-m= 3"-mh'31- ~me. (B.23) 

Ctearly, ~,�9 = (0, f) .  The tangent rnatrix ¦ is obtained by taking the variation of ~ ,n ,  and is 
given by: 

3-~h = - X - ' . M ~  1 - X -  ~ - (S3(w�9  - S i ( ~ )  - M g  I X ~ ( P ) ) X  . (B .24)  

SI(P)M~ ~ - & ( ~ )  & ( P ) ( X i ( ~ )  - Mg ~.S~(p))-X 

Both ~,,h and 3-mb are evaluated at the given state (Po, qo)" The linear operators S~, S 2 and S 3 are 
as defined previously and the operator K6(q, z), applied to an arbitrary vector z = (ZL, ZA) is given 
by: 

0 
K 6 ( q ' z ) = I ¦  K(r, ZA)I" (B.25) 

The full expression for K(r, ZA) is given in Appendix A. 

B.4 Mixed form-symmetric approach 

Now consider the tangent map given by Eq. (3.42) in order to find the expressions for the residual 
vector ~,�9 and the tangent matrix Y,�9 Again the vector ~m and the matrix J-,�9 have contributions 
due to the Hamiltonian function as weil as the external force i.e.: 

Since the expressions for ~,�9 and for ~-me depend on the specific nature of the external forces, only 
the expressions for ~,�9 and for Ymh are developed here. 

Starting from Eq. (3.37), the Hamiltonian function may be expressed as: 

H (p, q, t) = �89 M 6 1.~ _ p.  w�9 (B.27) 

Using the relationship between p and p, leads to: 

5p = X - ' . 5 p  + 6 X - ' . p  = X-'(6p - Œ (B.28) 

which may be written as: 

Then the virtual change of the Hamiltonian function can be stated equivalently as: 

5H = (Sp, 64) .~,  h = (5V, ,~q)'~,h, (B.30) 

and the vectors ~,�9 and ~t,�9 can be seen to be related by: ~,�9 = Z t ' ~ , � 9  �9 
The linearization of the virtual change of the Hamiltonian can then be written as: 

A A ~ ^ A d S H  (6~~fiq).Jmh.(d¦ dq)+ ^ ~' ^ = (d~p, dSq)'~mh 
= (6p, 6q)'Y,,h'(dp, dq) 

where (dp, d#) = Z'(dp, dq). By comparison, then: 

~~"mh ~-- Zt" ~-mh. Z-]- ( (~(Zt~-Bmh), ~(Zt(~“ ). 

(B.31) 

(8.32) 
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In the last expression ~mh is the value of the residual evaluated at the given state (aa 0, 40), and 
is considered constant. The definitions of~tmh and 3-mb, are not the same as in the previous section, 
but are consistent with the notation that (^) indicates test functions which are variations of p 
and 0. 

The expressions for ~,�9 and for ~-,�9187 are now developed. The virtual change of the Hamiltonian 
function is expressed by: 

6H = 6~ - w�9 - 6~249 (B.33) 

where ~, = Mg 1./). Since it is known that: 

6~ = 6p  ̂_ S2(p).6q ~ ~ 6~249 = - S](w,,)'6~l (B.34) 

Eq. (B.33) can be rewritten as: 

6H = 6p-(~, - w �9  60. [S3(P)" w�9 - S2(i0)" �8 (B.35) 

then the vector N,�9 has the following expression: 

N,�9 = (# -- w�9 S3(P)" w�9 - S2(P)" �8 (B.36) 

From this, it is straightforward to find the expression of the tangent matrix 3-mb, which has the 
form: 

[ s'~(~) - s'~(w�9 1 M g  1 - M g  ~ ' S [ ( ~ )  

~~"h:l $2(*)-$3(w") Sz(p) 'M~ "S'2(P) - l"  
[_ - S2(p).M61 Sz(p)'St2(~ ,) + S3(P)'St3(w�9 

(B.37) 

In order to compute the terms (d¦ d6O)" ~mh recall the expressions for 6F  - t and d ¦  - 1 that are 
computed in Appendix A. Specifically: 

61" - 1. b = K(r, b)" 6r 

and: 

c.d¦  - 1-b = dr"L(c, r, b)'6r, 

(B.38) 

(B.39) 

The map K6(q, z) is defined in the previous section. In a similar way, L6(x, q, z) is defined, 
considering two general six dimensional vectors, x and z. 

K 6 ( q , z ) = [ ¦  K(r0, ZA)], L 6 ( x , q , z ) = I ¦  L(xAOr, zA) 1. (B.40) 

With the use of these definitions the last term in Eq. (B.32) can be written as: 

( ~(Zt'~mh)'(~(Zt'~mh)~ [ 0 
7 

K6(q, ~ -- w~) I 
L6(X"IO, O, ~' - wn) 4- J 

H6(q,P)'(S3(P)" w�9 - S2(P)" ~) 

(BAD 

Even if the programming of the tangent matrix can be optimized, the fully symmetric mixed 
method requires a great deal of computations. 

Three field form 

The linearization of the three field principle Eq. (3.46) is much more straightforward. For con- 
venience the three field form is recalled here: 
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a4. - & ( w ) .  - a * w .  p - ~ w  - a*p .x -  1 . (w-  w�9 
t l  

d A d , ] **. t2 
+ ~ t ( 6 q ) ' p  - ~ ( ~  p ) ' q  dt -- (60,Ph - a p q�87171 (B.42) 

._1 

Grouping the test functions into a single vector, Eq. (B.42) may be rewritten as: 

(aO, a*w,a*p) .  -Sl(w)- , - p +  a--~,- 
t t  

The linearization is then given by: 

dq)dt  + I (~gl ,6*w,~*P) 'J-3"(dq,  dw,  dp)  d t  
t l  t l  

' 2  d , A t2 

= (6*p, 6gl)'Is.(pb, q�87 -- ~ - ~ ( 6  p, aq)-Is-(py qo)dt + ~ (60, 6*w, a*P)'~3 dt (B.44) 
t l  '1  

where: 

(~ ~ ~~ ) ~ 3  = - S l (w)"  , - 1 )  + 6---w' - X -  l"(w - w�9 . (B.45) 

Once more, it is a simple matter to separate the contribution from the external force. The variation 
of the residual, neglecting the external force terms leads to the tangent matrix for the three field 
approach. 

- O2 2 Sl(w)'fiwŒ S l ( M  6" w) - S l ( w ) . M  6 0 

J / 3 =  
Bw~q M 6  -- 16 

(B.46) 

K 6 ( q ,  w - w�9 - S3(wn)-X - X -  1 0 

The first and second partial derivative of �96 ~ are given by: 
02 ~2~ 
�8  -- M 6 " w '  � 8 2 2 8  [S t2(M6"w)  - M 6 " S 2 ( w ) ] ' X '  (B.47) 

Ow n and the partial derivative of w�9 with respect to q is - ~ q  = St3(w�9 �9 X. The simplicity of this tangent 

matrix, combined with the fact that for initial value problems symmetry of the tangent matrix is 
not easily exploited, makes this a an attractive formulation, with the obvious drawback ofincreased 
degrees of freedom. 
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