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Abstract. Some possibility of numerical analysis of coupled dynamic problems of linear elastic heat conductors on classical 
thermoelasticity theory by using the boundary element method is shown in this paper. The boundary integral equation 
formulation and its numerical implementation of the two-dimensional problem are developed in the manner by the newly 
derived fundamental solution for the coupled equations of elliptic type in the transformed space and the numerical inversion 
of Laplace transformation. The boundary element unsteady solutions of the first and second Danilovskaya problems and the 
Sternberg and Chakravorty problem in the half-space are demonstrated through comparison with the existing solutions. 

1 Introduction 

Thermoelasticity deals with the interaction between temperature, stress and elastic deformation 
due to both mechanical and thermal loadings. The basic system of differential equations governing 
thermoelastic phenomena is more complicated and coupled one than the Navier equation in 
elasticity. The system is composed of a wave-type equation of the displacement field and a 
diffusion-type equation of the temperature field. The first analytical solution in dynamic uncoupled 
thermoelasticity was obtained by Danilovskaya (1950). Further extensions and developments to 
that analytical solution was reported by Danilovskaya (1952), Sternberg and Chakravorty (1959) 
and Boley and Tolins (1963). The class of problem which admits closed-form solution in dynamic 
thermoelasticity is extremely small. Therefore numerical techniques have to be resorted to for more 
complex geometries and boundary conditions and more complex coupled field theories. Numerical 
solutions through the finite element method have been reported by Nickell and Sackman (1968), 
Odean and Kross (1968), Ting and Chen (1982), Prevost and Tao (1983), Tamma and Railkar 
(1988). 

The boundary element method based on the boundary integral equation formulation of the 
problem has been recognized as the one of effective approximate procedures for the numerical 
solutions of various problems in continuum mechanics (Banerjee and Butterfield 1981; Brebbia 
et al. 1984). Especially, applications of this method to the static or dynamic problems in linear 
elasticity may be in the satisfactory stage. In spite of the existence of many investigations and 
applications in this field, some attempts have been made on only formulation to apply the method 
to dynamic problems in coupled thermoelasticity by Predeleanu (1981), Tanaka and Tanaka 
(1981), Sl~tdek and Slfidek (1983). 

This paper concerns with the boundary element application to the dynamic problems in two 
dimensional linear coupled thermoelasticity. First of all, we apply the Laplace transform to the 
governing differential equation because of difficulty to construct the time-dependent fundamental 
solution (Tosaka 1986). And then, we derive the boundary integral equations of displacement and 
temperature fields in the transformed space and present the coupled fundamental solution in a 
closed form. The boundary element unsteady solutions of the first and second Danilovskaya 
problems and the Sternberg and Chakravorty problem in the half-space demonstrate the versatility 
aad accuracy of the proposed method through comparison with the existing solutions. 

Throughout this paper, the summation convention on repeated indices is used. A dot (') is used 
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to denote time differentiation and a coma ( ),i to denote partial differentiation with respect to x~ 
(i = 1, 2). 

2 Governing equations 

We consider the coupled dynamic problems of a linear elastic heat conductor based on the 
so-called classical thermoelasticity theory. Let -(2 be a finite domain with boundary 1" occupied by 
a homogeneous, isotropic, elastic body. And, let T = [0, t] be the time interval. The basic equations 
of linearized coupled thermoelasticity can be given as follows (Carlson 1972): 

the strain-displacement relation 
1 % = 5(u~d + uj,~), (1) 

the thermal gradient-temperature relation 

gi = O,i, (2) 

the equations of motion 

zji,j + bi = Pill, (3) 

the energy equation 

- -  q i , i  - -  ~ O o U i , i  -]- P = cO, (4) 

the stress-strain-temperature relation (Duhamel-Neumann law) 

�9 ~j = (2u~,k - ~,O)6~j + ~(u~.j + u j,3, (5) 

the heat conduction equation (Fourier law) 

q i  = - -  k g i  = - -  kO,i, (6) 

in which ul, e~j, zij, q,, bi, p are displacements, strain measures, Cauchy stress tensor, heat flux, body 
forces, and the density of the elastic body, respectively. 

The initial-boundary-value problem of the resulting field equations in terms of displacements 
ui and temperature 0 can be written as follows: 

field equations 
1_ 0 

t 

~ui.jj + (2 + la)uj, ij -- 70 d + pb, = pii~, O,a - - qfi,,i + -~Q = 0, (7, 8) 
K K 

where 

k ~ 
K=--,pc r l=-k  0~ Q = k P '  (9) 

initial conditions 

ui(x, O) = oUi(X) ui,i(x, O) = oe(x) 

Z-li(X , O) = OVi(X) O(x, O) = o0(X), (10) 

boundary conditions, 

u i = u i  on flu• T 0 = 0  on 1" o•  T (11) 

zi = z i jnj  = "ci on F ,  x T q = q i n i  = 0 o n  1"q X T. 

Here the boundary 1" with the unit normal vector component n i may be split into the displacement 
boundary 1"u, the traction one 1"~, the temperature one Fo, and the heat flux one Fq. 

In this place, we introduce the Laplace transformation procedure to solve the above initial- 
boundary-value problem. By means of an application of the Laplace transform to the initial- 
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boundary-value problem of the coupled thermoelasticity, we can rewrite the problem into the 
boundary-value problem of elliptic type. 

Applying formally the Laplace transform defined by 
oo 

t~ i (x, o~) = ~ exp ( -  o~t)ui(x, t) dt (12) 
o 

to the coupled system of Eqs. (7) and (8) and taking into consideration of the initial conditions (10), 
we can get the following elliptic type differential equations in the transformed space: 

#~'ii,jj -'~ (2  -{- #)~-ij.ij - -  p ( . O 2 U i -  ~)O,i = - - G i  (13) 

O,,ii - -  0.) ~ _ _  1](OUi,i = - -  H (14) 
K 

where the pseudo body force Gi and the pseudo heat supply H are defined by, respectively, 

Gi = bi + P(-OoUi + poVi, H = 1_~ + 1 0  + rloe. (15) 
K K o 

Consequently, the initial-boundary-value problem reduces to the boundary-value problem of the 
set of (13) and (14) with the boundary conditions in the transformed space. 

For the sake of derivation of the boundary integral formulation of the boundary-value problem, 
it is convenient to rewrite the above system of (13) and (14) into the following matrix form: 

Li i Uj = B i (i,j = 1, 2, 3) 

where each quantities for two dimensional case are given as 

-7D1 1 --~:D 2 

- -  r /roD 2 A - -  O~ 
K 

#A + (2 + #)D12 - -  p r o  2 

[L,j] = / (2 + #)D1D 2 

L _qcoDa 

(2 + #)D1D 2 
#A + (2 + #)D22 - -  p o )  2 

U j  = {/~1 /~2 ~}T, ~ i : { _ G I _ G 2 _ H } T .  

(16) 

(17) 

(18, 19) 

Here we use the notations D~ = a/dxi (i = 1, 2) and A, the Laplacian, as the abbreviation of 
differentiation. 

3 Formulation of integral equations 

In order to derive the integral equation formulation of the coupled differential Eqs. (16), let us 
start with the following weighted residual expression of the system (16) for the weighting tensor V* 

S (L,j [Tj -/~,)V~dl2 = 0. (20) 
a 

After integration by parts and some manipulations, we can obtain the following boundary integral 
equation set in terms of the transformed unknown functions: 

U Cv; co) = S {L(x; y ;  co) - a,(x; co)z *j (x, y; }dr(x) 
F 

+ ~ {O,(x;o~)V~j(x ,y;@-~(x;@V*j . , (x ,y ;@}dF(x)  
F 

-- ~ B,(x; og)V*(x,y; og)dl2(x), (i,j, k = 1, 2, 3, c~ = 1, 2), (21) 
a 

where cij is the shape coefficient matrix to be determined with properties on both the location of 
a boundary point x and the local geometry at the source point y, and the vector f~ and the 
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corresponding quantity 22*. are defined by, respectively, aJ 
f~ = ?.ant~ = { (2tTk, k -- y0)6~p + .(tT~,t~ + tTa,~)}nt~, (22) 

27".=.j {(2Vk*,k + qogV*i)6~, ~ + .(V*j,a + V~j,.)}ntj. (23) 

Here the weighting tensor V* k must be determined as the solution which satisfies the differential 
equation 

L,j V~ = - 6,k6(X -- y). (24) 

From the above it is evident that the weighting tensor is the fundamental solution tensor for the 
adjoint operator L~i of L~j given by 

F . A  + (2 + .)D2 - pr (2 +.)D1D2 t/c~ 

[L~j] = / (2 + . ) D I D  2 .A  + (2 + . ) 0  2 - pr 2 flooD 2 . 

L ~'D1 ~D 2 A - 09 
K 

(25) 

Moreover, from the derived integral Eq. (21) and the stress-strain-temperature relation, the stress 
tensor at some point y in the domain D can be expressed with the following integral equation: 

~a (y; 09) = I {~,(x; r t~ (x,y; co) - tT,(x; w)D,,~(x, y; w) } dr(x)  
F 

+ I {if, n( x; ~ 09) - 0(x; 09)D#3(x ,y ;  09) }dF(x) (26) 
F 

--  I nk(X;  r  o~)dY2(x), (a, fl, 7 = 1, 2, k = 1, 2, 3), 

where we introduce the quantities 

, v *  v * ~ )  Saflk = (2 V~m m --  ])V~3)6,,6 @ " (  ka,fl "Jr- , 

* 27* Oa# ,=(227~m,m--  727~,$3)6a# + ,t/(277a,# + ~,/La) 

D~a 3 = {2(V~m.n), m - ])V~3,n}6 fl 71- . {  (V~a.n),fl -~- (V~fl,n),a}. 

(27) 

(28) 

(29) 

4 Fundamental solutions 

Let us consider how to construct the fundamental solution tensor defined by (24). We follow the 
methodology developed by Tosaka (1985) which was originated from HSrmander (1946). 

We may put the fundamental solutions tensor V* into the following potential expression: 

V* = #,j~b*, (30) 

where ok* is the scalar function and #~j is the transposed cofactor operator of Lij such that 

( ) = - - - s  , ( 3 1 )  
- - 5 -  , " ~ p  = - " ~  A - = c~  ] \ c 2 

C 2 

where cl and c 2 are velocities of longitudinal and transverse waves, respectively, and 6 denotes 
thermomechanical coupling parameter given by 

6 =  t/~c (32) 
2 + 2 . "  
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Subst i tut ion of expression (30) into Eq. (24) yields 

L~b* = - 6 ( x  - y )  (33) 

where L is the determinant  of L~. F r o m  the adjoint  operator  (25) we can get immediately 

L = #(2 + 2#)(A 3 - iliA 2 + fiE A -- 93) (34) 

with 

0)2 0)2 0)2(0)2 0)20) 0) 0)20)  2 (35) 
92=-3- 93-  

cl c 2 x c~ \ c 2 c~ c 2 x" 

After all, it is found that  the scalar function <p* is the fundamenta l  solution for the differential 
operator  L. We can rewrite the above expression (34) into the following factorized form (Kupradze 
1979): 

L = #(2 + 2#)(A - h2)(A - hE)(A - h 2) (36) 

in which the coefficients h 2, h 2 and h 2 mus t  be determined as these which satisfy 

0) 2 0)2 ('O2 0) 2 (37) h 2 + h 2 = + (1 + 6)0), h 2h 2 = - y - - ,  h 3 = --~-. 
K C 1 K C 2 

In this place, if we introduce the assumpt ion  1 + 6 - 1, then the above coefficients can be determined 
with the following closed form (Tosaka 1986; Sub and Tosaka  1987): 

0)2 0)2 
h2 = co, h2 = ZS-' h2 = -ST" (38) 

K C 1 C 2 

However  this assumpt ion  is applicable to only the restricted case in which the thermomechanical  
coupling is very week. 

F r o m  the relations (37) the coefficients h E and h~ can be determined as the roots of the following 
quadrat ic  equat ion of u n k n o w n  h 2. 

E 0)-c-~ ~] 0)20) 0. (39) (h2)  2 + + (1 + 6) h2 ~ 2 - 
c I K 

Making  use of the determined roots h 2 and hE 2, the fundamenta l  solution of the operator  (36) can 
be given as 

1 3 

~b*(x, y; 0)) - 2rc#(2 + 2#)k~=~ WkK~ (40) 

where Ko(r) is the modified Bessel function of the second kind of order zero with the argument  
r =  I l x - y l l  and 

- 1  - 1  - 1  
Wt (h 2 2 2 h2) ' W E =  = (41) = _ h 2 ) ( h  3 (h  2 2 2 h 2 )  ' W3 __h2)(h2__ (h 2 2 2 _ _ h a ) ( h  3 - -  h E )  . 

After all, we can determine each componen t  of fundamenta l  solution tensor from (30) and (31), 
respectively, by using of the derived fundamental  solution (40) as follows ~. 

1 3 

V*a = 2rcpc 2 k=lE Wk[ ! [ ' t k ( r ) ~  ct# - -  z*(r)r,~r,a] 

3 1 3 

~1 -- ? ~ Wk~*(r)ra, V* =~-~nk~ Wk(*(r). (42) V*~t3 : 2~D C21~0) k=3 Wk~(r)l', et, V~f127[pc2 k = 1 3 3  = 1 
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And, we can also obtain the quantities 27*, 

.1  
+ ( cC2-~12z -- 2 ) ( ~.,  -- Zk*~ -- Zk r )r 3n" + f-09~*r,~ n~ ] 

C 2 

(43) 

w * -  n. " ~ / ~ - - 2 ~ c 2 ~  k[(~k,r r Or 1 3 Or 
p , ,=,  ;)r,,Ynn + 

Here we introduce the following functions: 

q , , *= { (h209 '~ {h2-  ogz _ }Ko(rhk)+fl---L_{h 2 
k X ( 2 ( l - - v ) \  k X ) r 

_ h2 1 = hk h 2 092 Z*-- k {~(l_vi(h2--~)--lb09}Kz(rhk), ~* ( --~2 )K,(rh*), 

092 092 
tl:=(h2---~)(h~--~)Ko(rhk). (44) 

5 Numerical solution procedure 

We can apply the standard boundary element procedure in order to solve numerically the system 
of boundary integral Eqs. (21). The boundary F(x) is divided into Ne elements and the unknown 
functions over each element are discretized with the following expression: 

if= q)T0U 0 , =  oT0 u (45) 

where �9 x are the interpolation functions and ~ ,  ~ ,  ~u, ~u are the nodal values of displacements, 
tractions, temperature, and temperature gradient, respecti;~ely, at nodal point xu on the boundary 
element. If the pseudo body force and the pseudo heat supply are assumed to be zero, the discretized 
form of the boundary integral Eqs. (21) can be expressed as 

Ne Ne 

Cki Uk{Y; 09) = ~ ~N I V*~ (x(~),y; Co)~T(~)dF(Q -- ~ fiN ~ 27*~(X(~),y; 09)@T(QdF(~), 
e = l  Fe e = l  Fe 

Ne Ne 
+ ~ fiN,. ~ V~j(x(O,y;09)OT(~)dF(r ~., 0 ~ ~ V'~j,.(x(~),y;09)OX(OdF(~) (46) 

e = l  Fe e = I  ire 

where ~ = {r denotes the intrinsic coordinates on F e. For all boundary nodes, we can express 
the discretized form (46) as the following matrix system of equation 

HI~ + H20 = Gli"+ G20,.. (47) 

Reordering the system (47) with respect to the unknown, the final system of equation to be solved 
can be expressed as follows: 

A,~" = B (48) 

where A is the influence matrix, B is the contribution vector of the known boundary conditions 
and X is the vector of unknowns in fiN, ON, i f ,  ~.~. The above system (48) can be solved with the 
proper solver and we can get all the transformed unknowns on the boundary. 
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The above procedure gives us only the numerical solution in the Laplace transformed space. 
Then, it is necessary to invert the transform to restore the original variables in the time domain. 
It is well known that there exist a number of numerical inversion methods (Papoulis 1957; Durbin 
1974; Narayanan and Beskos 1982) corresponding to different methods of approximation of the 
Bromwich integral, 

f(t) = ~ ~-!oo exp (o~t)f(og)d~. (49) 

In this paper, we use the method of Hosono (1979) which has recently attracted attention as an 
efficient and accurate method (Suh and Tosaka 1988a). In the Hosono's method a function defined 
by (49) is expressed approximately as the following series: 

exp(a) V%~ t 1 M - 1 f ( t ) -  L . : l y n + 2 - ~  ~=oAu,mfn+. (50) 

with the coefficients, 

(M + 1)! (51) 
AM, M = 1, AM,m- 1 = AM,,. + mI(M-- m + 1)!" 

Here the function f .  in the transformed space at the nth sample point ~o n to be defined below, is 
given by 

L = ( -  1) n Im {f(co.)} (52) 

with 

COn = ;  

where Im {f} denotes the imaginary part of the complex function ~ 
According to the solution algorithm based on the numerical inversion formula (50) due to 

Hosono as shown in Fig. 1, we can get the transient solution of a particular time directly with 
only 20 ~ 30 sample points co, in the transformed space. 

I NP T til 

INPUT NUMERICAL INVERSION 1 
PARAMETERS N,M,ff 

N+M ' ,  

FROM EQ.(51),[ 

EVALUATE o On 
I 

WITH RESPECT TO EACH OF~n, 

DETERMINE THE TRANSFORMED 

SOLUTION 5 i (x,~ n) 

t 
USING EQ.(4S), 

DETERMINE THE TRANSIENT 

SOLUTION u i(x,ti) 

Fig. 1. Solution algorithm 
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6 Numerical examples 

In the following, a number of well-known examples are presented in order to demonstrate the 
versatility and accuracy of our formulation and its numerical implementation developed in the 
previous section. For the numerical examples three half-space problems are selected as follows: 

a) the first Danilovskaya problem, 
b) the second Danilovskaya problem, 
c) the Sternberg and Chakravorty problem. 

The above three problems are essentially one-dimensional and therefore it may be needed to apply 
the one-dimensional boundary element method. For one-dimensional problems, we can develop 
the boundary element method quite easily and actually we can get almost same results as the ones 
which are obtained in two-dimensional problems and presented later in this paper. The geometry 
of the problems in the half-space is depicted in Fig. 2. 

It is convenient to introduce the following dimensionless variables and we refer to the results 
on these quantities: 

xi 1 0 x ~ 1 2 + 2/z 
= - x i, 0" = /" = ~-~ t, ~i - - -  ui (54) 

a T '  zq = ~-TZ,j, ayT 

where 

K 
a = - .  ( 5 5 )  

c1 

Figure 3 shows the boundary element representation of the domain of problem in which a 
half-space is modeled by two-dimensional boundary elements constrained to undergo axial 
displacements only at upper and lower parts. In our calculations, we adopt 58 linear elements and 
we perform the numerical integration with 8 points Gaussian quadrature on each element. For 
simplicity, initial conditions, body force, and heat supply are assumed to be zero. 

The infinite elastic body in numerical examples is assumed to possess the following material 
properties corresponding to the carbon steel: 

# = 8.4 10 6 kg/cm 2, k = 0.105 cal/cm-s-K, 

v = 0.25, p = 7.84 10- 3 kg/cm 3, (56) 

= 0.107 10-*/K c = 1.17 10 a cal/kg'K. 

es 

X 2 

Fig. 2. Problem geometry 

~ 

I x2 71 =~J2=q =0 
~ "  ; : ~ : ; : : ' ,  ' , ; I  I I I  I I t I I I f 

�9 

. ; : : ' , : ! ' , 1  I l l  1 1 ; 1  i I [ I I [ 

�9 10 0 

T 1 = U 2 =  q = 0  

Fig. 3. Boundary element discretization 
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6.1 The first Danilovskaya problem 

The problem proposed by Danilvoskaya (1950) concerned a linear elastic half-space subjected to 
a uniform sudden temperature change (i.e., step surface heating) on its boundary plane in which 
the traction was assumed to be free. 

The boundary conditions in this problem are given as 

{ ? i (~ ,  t") = 0 on :~1 = 0 
(57 )  

0"(x,t ')=n(t ') on 

where H(t') denotes the Heaviside step function. Danilovskaya obtained the first analytical solution 
to this problem in the sense of dynamic uncoupled thermoelasticity. Analytical investigations into 
the fully coupled theory was made by many authors (Boley and Tolins 1963; Dunn 1966) and 
approximate solutions have recently been obtained by using the finite element method in several 
papers (Ting and Chen 1982; Prevost and Tao 1983). 

We wish to show the results for time history on a particular location ~ = 1.0 in the following 
figures. This point Y = 1.0 means the dimensionless location of the thermally induced elastic wave 
front at the dimensionless time/" = 1.0. Figures 4-6  show the dimensionless stress B11, temperature 

and displacement ti t time histories at Et = 1.0 in the uncoupled case 5 = 0.0 and the coupled 
case 5 = 1.0 through comparison with the exact solutions in the uncoupled case. The present results 
in the uncoupled case shown in these figures are very good agreement with the exact solutions, 
although we used a coarse discretization. Especially, in stress, the numerical results put on the 
exact solution very well, nevertheless there exists the stress-discontinuity at/" = 1.0. The oscillations 
take place after passage the stress wave front and tend to converge to the exact solution with 
increasing time. This oscillations are due to the introduction of the numerical inversion method 
by Hosono which has a feature to occur the so-called Gibbs phenomenon at the discontinuity, 
and the oscillations can be reduced to some degree by taking a large number of inversion parameter 
N in Eq. (50). 

4: 

0.5' 

-0.5" 

-1.0 

- -  Exact sotution (6=0 .0 )  
o 8 .E .M . (6=0 .0 )  % 0 0 0  ~ 
o B.E.M ( 6 = 1 . 0 )  o o on ~ 

o 

O 
0 

o 

lls 

0.6  

O.Z,. 

E 0.2- 

0 
0 

5 

- -  Exact sol.uriah (5=0 .0 )  
o B.E.M. (6 = 0.0) 
o B.E.M. ( 6 = 1.0 ) , ~ , ~ - ' / -  

/ o o  
o ~ 1 7 6 1 7 6  o o o 

o15 11o 1~.5 
Time "{ 

0.3 - -  Exact sotution ( 6 : 0 . 0 )  
o B.E.M. (6 = 0.0) 
o B.E.M. ( 6= 1.0) 

'=~i 0.2 

~- 0.1 tt~ 

c5 

o oZs i.o 1'.5 
6 Time'{" 

Figs. 4-6 .  4 Stress ?11 time history at ~ = 1.0. T e m p e r a t u r e  0 time history at ~ = 1.0 for the first Danilovskaya problem. 
5 for the first Danilovskaya problem. 6 Displacement fil time history at ~ = 1.0 for the first Danilovskaya problem 
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0.28 - -  Exact sotuhon 
- -  Exact sotution o E.R.S. (Nickett-Sockmon. fi=q.0) / 

6=0 U ~ - - / o  E.R.S. _ ~ 0.1 
/(N,ckeE S-ockrnan. 6: l .0,  

-0.2 ' ~  o B.E.M.(6=I.0) 

0 
1.0 2.0 0 1:0 210 

7 Time'{ 8 Time'{ 

- -  E x a c t  sotution 
o E.R.S. (Nicke[t-Sackman, 6=1.0) 

0.06 o B.E.M. ( 6 = 1.0) 

0.0~ 

~5 
0.02 

0 
1.0 2.0 

9 Time'{ 

Figs. 7-9.  7 Stress ?t l  time history at ~ = 1.0 for the second Danilovskaya problem with 5 = 1.0 and H = 0.5. $ Temperature 
0 time history at 2 = 1.0 for the second Danilovskaya problem with 5 = 1.0 and H = 0.5. 9 Displacement ~t time history at 

= 1.0 for the second Danilovskaya problem with ~ = 1.0 and H = 0.5 

6.2 The second Danilovskaya problem 

The first Danilovskaya problem was extended to account for boundary layer thermal conductance 
along the boundary plane by Danilovskaya (1952). We refer this problem as the second Danilovskaya 
problem in which the boundary condition (57) is modified with 

~(x,t')=m{1-0"(a~,t')} on ~ t = 0  (58) 

where we introduce the following coefficient instead of the boundary-layer thermal conductance h, 

p~ch 
m = (59) 

(2 + 2#)k" 
The coupled results obtained by the present method for the stress ~t t, temperature 0", displacement 
fit at 2t = 1.0 are shown in Figs. 7-9  in which we adopt 5 = 1.0 and m = 0.5. These results are 
compared with the exact solutions and extended Ritz solutions by Nickell and Sackman (1968) 
and excellent agreement is also observed. 

6.3 The Sternberg and Chakravorthy problem 

As the third problem, let us consider the Sternberg and Chakravorty problem (1959) in which a 
more realistic ramp-type heating of the boundary plane than the previous first problem subjected 
to a thermal shock was discussed. The boundary conditions in this problem become 

(1, 0">0 , x t = 0 ,  (60) 



N. Tosaka and I. G. Suh: Boundary element analysis of dynamic coupled thermoelasticity problems 341 

0.2 

0 

~-0.5 

-1.0 

10 

- -  Exact solution ~ r ~  c a 

N ~ 6 - - O  

B.E.M. ( 6= 1.01 
o E.R.S. ( Nickel.l- Seckmann, 6 = 1.0 ) 

0.6 

0.4 

E 
~. 0.2 

0 
1.0 2.0 0 

Time '[ 1 1  

- -  Exact solubon 
o F.E.M. (Oden-Kross, 6=1.0)  
o B . E . M ~  

6 =1.0 

1.0 2.0 
Time '[ 

0.2 

,2 0.1 

I / I  
~ 0 

= 

-- Exact solution \ ' ~  
o F.E.M. (Oden-Kross, 6=1.0)  
[] B.E.M. ( 6 = 1.0 ) 

-0 08 
0 10 2.0 

1 2  Time'[ 

Figs. 10-12. 10 Stress 711 time history at ~ = 1.0 for the Sternberg and Chakravorthy problem with 6 = 1.0 and t o = 0.25. 
11 Temperature 0"time history at ~= 1.0 for the Sternberg and Chakravorthy problem with 6 = 1.0 and to =0.25. 12 Displacement 
gl time history at ~ = 1.0 for the Sternberg and Chakravorthy problem with 5 = 1.0 and to = 0.25 

where 

0 = (2 + 2#)2to (61) 
p2~c 

Figures 10-12 depict the stress ~11, temperature 0, and displacement t~l time histories for the ramp 
heating time to = 0.25 in the coupled case 6 = 1.0. These results are compared with the exact 
solutions by NickeU and Sackman (1968) and the finite element solutions by Oden and Kross 
(1968). The present results shown in these figures show excellent agreement with the exact solutions. 

7 Conclusion 

In this paper, we have developed the boundary element method for obtaining approximate 
solutions to initial boundary-value problems in the classical dynamic theory of two dimensional 
coupled thermoelasticity. The coupled fundamental solution in the Laplace transformed space 
was newly constructed and presented in a closed form. According to the solution algorithm 
introduced in this paper, we can obtain the transient solution at a particular time directly with 
fewer time consuming. As numerical examples, the first and second Danilovskaya problems and 
the Sternberg and Chakravorthy problem have been chosen. Through the comparisons of our 
results of test problems with other existing results we conclude that the efficiency and applicability 
of the boundary element method is demonstrated for predicting the dynamic response of coupled 
or uncoupled thermally induced stress waves, especially the traveling discontinuity phenomena in 
the normal stress. The present method and solution procedure can be easily developed to three- 
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dimensional problems and to the generalized thermoelastic problems with the finite temperature 
wave speed. Applications and numerical implementations in above two problems have been 
reported by our papers (Tosaka and Suh 1987; Suh and Tosaka 1988b; Suh and Tosaka 1989). 
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