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Computational study of flow past a cylinder with 
combined in-line and transverse oscillation 

D. Karanth, G. W. Rankin, K. Sridhar 

Abstact A computational study of the two dimensional flow F~ 
past an oscillating cylinder is carried out using vorticity and 
stream function as the dependent variables. With the use of F~, Fy 
a log-polar coordinate transformation, the nondimensional 
vorticity transport equations in a non-inertial frame attached 
to the cylinder are solved using the ADI and SLOR finite 1 
difference schemes. The effects of combined in-line and p 
transverse oscillation of the cylinder in the "lock-in" range of p~ 
frequency on the time history ofthe drag and lift are investigated P 
at a Reynolds number of 100. In addition, the influence of PSD 
position amplitude of the cylinder's transverse oscillation on (r, O) 
the lock-in range of frequency, mean drag, amplitude of drag 
and maximum lift is studied. The time histories of drag and lift R 
forces in the case of combined oscillation are compared Re D 
with the cases of the cylinder oscillating in the in-line and 
transverse directions separately. The dominant frequency 
components in the drag and the lift variations are determined 
using a Fourier frequency analysis. 
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List of symbols 
a transformation parameter U, V 
a x, ay position amplitudes of forced cylinder oscillation 

in the in-line and transverse directions, Uo~ 
respectively, A'xTx/27c, A'rTy/2rc vr, Vo 

A'~, A~ Velocity amplitudes of forced cylinder oscillation 
in the in-line and transverse directions, respectively V r, V o 

Ax, Ay nondimensional velocity amplitudes of forced 
cylinder oscillation in the in-line and transverse (~,/7) 
directions, respectively, A'JU~, A'y/Uo~ 

force, d/ pU o~R Cd nondimensional drag 2 
Cdm mean drag force 
Cdam p amplitude of drag force v 
C1 nondimensional lift force, lip U~ R p 
Clm~ maximum lift force r 
d drag force r~ 
D diameter of the cylinder ~b 
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nondimensional natural shedding frequency 
(Strouhal number), D/T~ U~ 
nondimensional forced frequency parameters in 
the in-line and transverse directions, respectively, 
D/Tx Us, D/T; G~, 
lift force 
pressure 
free stream pressure 
nondimensional pressure, ( p - Poo)/ P U2 
Power spectral density 
radial and tangential coordinates in a frame of 
reference attached to the cylinder 
radius of the cylinder 
Reynolds number based on cylinder diameter, 
Uoo D/v 
time 
time delay 
natural shedding period 
period of forced oscillation in the in-line and 
transverse directions, respectively 
nondimensional convective velocities in the ~ and 
t/directions, respectively (Eq. 6) 
free stream velocity 
relative velocities in the r and 0 directions, 
respectively 
nondimensional relative velocities in the r and 
0 directions, respectively, Vr/Uoo, VdU ~ 
nondimensional log-polar coordinates, 
rlR = e% 0 = atl 
incident angle of the free stream velocity relative 
to the frame of reference attached to the cylinder 
kinematic viscosity of the fluid 
density of the fluid 
nondimensional time, tUo~/R 
nondimensional time delay, TdU~/R 
phase difference between the transverse and in- 
line oscillation 
stream function relative to the frame attached to 
the cylinder 
nondimensional stream function relative to the 
frame attached to the cylinder, O/rUo~ 
vorticity 
nondimensional vorticity, coR/Uo: 

1 
Introduction 
Wakes behind bluff bodies are of major importance in 
engineering, primarily because of the associated drag, lift and 
energy loss. In addition, they are associated with flow induced 

1 



2 

oscillation of a variety of cylindrical structures. Over a wide 
range of Reynolds numbers, vortex streets are formed in the 
wakes of the cylindrical bluff bodies. The vortices in the wake 
interact with the cylinder and induce oscillating lift and drag 
forces on the cylinder. The oscillation frequencies of the lift and 
drag forces are directly related to the vortex shedding frequency. 
The drag force oscillates at twice the vortex shedding frequency 
and the lift force oscillates at a frequency equal to the 
vortex shedding frequency. The incident flow may excite 
resonant oscillations if the cylinder is flexible. 

The transverse oscillation of the cylinder with a frequency 
at or near the natural vortex shedding frequency results in an 
increase in the mean drag on the cylinder and causes the vortex 
shedding to occur at the frequency of cylinder oscillation. 
This type of fluid-structure interaction is known as "lock-in" 
or "synchronization" or "wake capture". Similarly, the in-line 
oscillation of the cylinder with a frequency at or near twice the 
natural vortex shedding frequency produces an increased lift 
amplitude and causes the vortex shedding to occur at half 
the frequency of the cylinder oscillation. Both the in-line and 
transverse oscillation of the cylinder within the respective 
lock-in frequencyrange, alter the phase, sequence and pattern of 
vortices in the wake and increase the vortex strength. In the 
case of flow induced oscillation, the position amplitude of the 
cylinder oscillation in the in-line direction is less than in the 
transverse direction. Lock-in occurs both with forced oscillation 
of the cylinder and flow induced oscillation of the cylinder. 

There are several experimental investigations of cylinders 
oscillating in a direction in-line or transverse to that of the mean 
flow direction (Tanaka and Takahara (1969); Bublitz (1972); 
Tanida et al. (1973); Griffin and Ramberg (1974, 1976); Stansby 
(1976); Bearman and Obasaju (1989); Moe and Wu (1989)). 
Hurbult et al. (1982), were the first to carry out a numerical 
investigation of flow past an oscillating cylinder. They solved 
the governing equations in the primitive variable form in 
a non-inertial frame of reference using the Marker and Cell 
(MAC) method. Other numerical investigations (Chilukuri 
(1987); Tsuboi et al. (1988); Lecointe and Piquet (1989); 
Triantafyllou and Karniadakis (1989); Rao et al. (1992); Li et al. 
(1992); Mittal and Tezduyar (1992)) consider only the flow past 
a cylinder oscillating in the in-line or transverse directions 
separately. To the author's knowledge, no numerical or 
experimental investigation has been attempted for the case of 
flow past a cylinder with combined oscillation, i.e,, the cylinder 
oscillating in the in-line and transverse directions 
simultaneously. 

The primary objective of this study is to determine the effects 
of combined oscillation, in the lock in range of forcing 
frequencies, on the time histories of the lift and drag forces. The 
secondary objective is to investigate the influence of position 
amplitude of the cylinder's transverse oscillation on the 
lock-in range of frequency, mean drag, amplitude of drag and 
maximum lift. In addition, the independent effects of in- 
line and transverse lock-in cylinder oscillations will be 
considered. The non-dimensionalized vorticity transport 
equation in a non-inertial reference frame (attached to the 
cylinder) is solved in a rectangular grid based on log-polar 
coordinates (G t/). Finite difference simulations are conducted 
at a Reynolds number of 100. The position amplitude of the 
cylinder in the in-line direction is set equal to 0.2D. In order 
to study the effect of position amplitude of oscillation in the 

transverse direction on the drag and lift forces, numerical 
experiments are conducted using values of 0.2D, 0.4D and 0.8D. 

2 
Governing equations and boundary conditions 
After an alternating vortex street is formed in the wake, the 
cylinder is forced to oscillate sinusoidally with velocities, 
A'x sin (2n{t -- Ta}/T~) and A'y sin (27r{t -- Ta}/Tz - 4) in the in- 
line and transverse directions respectively, relative to the mean 
flow (Fig. 1). The phase difference ~b between the in-line and 
transverse oscillations is set equal to zero in this study. The time 
delay T~ is the time allowed for the development of a stable 
alternating vortex street in the wake of a stationary cylinder. 
In order to achieve a fixed grid with respect to the cylinder, it 
is necessary to use a non-inertial reference frame attached to the 
cylinder. The governing equations for a two dimensional flow 
problem are the continuity and two momentum component 
equations. By introducing the stream function and vorticity into 
these equations, they can be simplified and reduced to two 
equations: the vorticity transport equations. In the case of an 
oscillating cylinder, the vorticity transport equations in 
a non-inertial reference frame retain the same form as in the 
inertial frame of reference and are given by 

,o = - V2q, 

where 

(1) 

(2) 

V2 
0 2 1 0 1 0 2 

= + + 2" 

The relative velocities in the radial and tangential directions 
are defined as 

V r = r ~ ,  re--  & .  (3) 

In order to achieve a more accurate numerical solution, it is 
essential to have a finer grid near the cylinder. This can be 
accomplished by the use of a log-polar coordinate 
transformation given by 

r/R = e < and 0 = a~, (4) 

where "a",  the transformation parameter, is set equal to x in 
this study. This log-polar coordinate transformation allows us 

y, 

Uoo 
~--X" 

Fig. 1. Coordinate systems 

Y ~ x 

(2~ {t-Td }/T• 



to have a uniform grid in a transformed rectangular domain. 
After applying the log-polar coordinate transformation, the 
nondimensionalized vorticity transport equations are 

g ( { ) ~ +  ~ ( ~  0/" O~ff\ 2 2 
(5) 

g ( ~ )  ~ = _ v 2 ~ ,  

where 

g( {) = ale 2~e~, 

~2 ~2 

and the nondimensional convective velocities in { and 
t/directions are given by 

8 T  a T  
U = - -  V -  

at/ '  8{" 

The nondimensional relative velocities in the radial and 
tangential directions are then given by 

v ,  _ U Vo - Vo _ V 
Vr -- u* g / g O '  , /  g( e ) " 

The boundary conditions on the cylinder surface are given by 

T = - ~ - = O ,  n = - 7 \ - ~ - j 0  o n e = 0 .  

The assumption of T = 0 on the body surface is valid as the 
defined stream function is relative to the coordinate frame 
attached to the cylinder. 

The time-dependent far-field boundary condition for the 
relative stream function is obtained by using the potential flow 
solution: 

The time-dependent downstream boundary condition is called 
the "radiant-Sommerfeld like" condition where the diffusion 
of vorticity is neglected (Ta Phuoc Loc and Bouard (1985)). 
Upstream of the cylinder, the irrotational boundary condition 
is always valid. 

3 
(6) Computational procedure 

Figure 2 shows the computational domain in the ({,t/) 
coordinate system. On the boundaries: t /= 0 and t/= 2, a cyclic 
boundary condition is imposed on the dependent variables. The 
vorticity transport equations are solved numerically using the 
ADI scheme. The time derivative is approximated using forward 
differencing and the diffusion terms are calculated using the 
central differencing scheme. The velocities in the convective 
terms are calculated using the fourth order accurate Hermitian 
relation. The vorticity boundary condition on the cylinder can 
be approximated numerically in different ways. In this study, 
a second order accurate cubic polynomial approximation is 
used. The Poisson equation is solved iteratively using the SLOR 

(7) scheme�9 An optimum relaxation coefficient (Son and Hanratty 
(1969)) is used to enhance the convergence rate. The numerical 
solution obtained is first order accurate in time and second 
order accurate in space. The nondimensional time step and the 
grid size are taken to be 0�9 and 101 x 121, respectively. The 
far-field boundary was located at 23.24R ( ~  = 1). In the 

(8) initial stage of simulation, the cylinder was rotated 
counterclockwise and then clockwise for a small duration of 
time with a constant angular velocity. This numerical triggering 
procedure is required to initiate the alternating vortex street 
(Jordan and Fromm (1972)). At every time step, the vorticity 
in the far-field was calculated using the finite difference form of 

(9) equation (11). The nondimensional time of 40 (%) was allowed 
for the development of an alternating vortex street. Numerical 
simulations were carried out for the stationary cylinder case 
and for the cylinder oscillating in the in-line and transverse 
directions separately as well as the case of a combined oscillation 
in the in-line and transverse directions�9 The nondimensional 
pressure distribution on the cylinder was obtained by 
integrating the following equation: 

3 

T =  2 x/[1 --Ax sin (rt(z -- zd) F=)] 2 + [Aysin 0r(z -- Zd)F e -  r j~ 

�9 sinh (a~.~o) sin ( a t / -  ~), (10) 

where 

. _~--A~sin(7~(r-- zd)Fy-- r  
~ : , a n  ~_ lCAxsin(~('c--zd)F=)J" 

cot/- R e  D \ 84  Je=0 - art { - A , <  cos  ( ~ ( v  - r . )  Fx) sin (at/) 

+ G C  cos (=(~--~2% -- r  (at/)}. (12) 

In order to reduce the error in the computed pressure values 
between the starting point 01 = 1) and the ending point (t/= 1), 
the vorticity gradient on the cyinder in the ~ direction is 

The far-field vorticity boundary conditions are 

3 
O<t/<�89 ~ < t / < 2 ,  

and 

1 <_3 

(11) 

~J 

1 Far4ield boundary 

2 
Cylinder surface 

Fig. 2. Computational domain 



4 

calculated using a fourth order accurate finite difference form. 1 

O.75 
2zc 2 2n 

C a = - ~ P c o s O d O  - - -  ~ ~ 2 s i n O d O ,  (13) 
o ReD o 

2~ ,)  2~ C,=-rPsin'~A~+~r'~cos'~'~'~.jt,,,~,-~---j~,L,,,v (14) ~ 0.5 
o l~eD o 

0.25 

[~J L 

The drag and lift coefficients were calculated using the following 
expressions: 

4 
Numerical results 
Excluding the initial transients associated with the start-up of 
the cylinder oscillation, the results are given in the form of mean 

0 
drag, amplitude of the drag, maximum lift and power spectrum 0 2 3 
at various conditions. The time history of the drag and lift 
are shown at F x = 2F,,, i.e., the forcing frequency in the in-line 
direction equal to twice the Strouhal frequency and Fy = F,, i.e., 
the forcing frequency in the transverse direction equal to the 
Strouhal frequency. The power spectrum of the drag is 
obtained by taking the FFT of the drag variation minus the mean 
drag. The power spectrum of the lift is obtained by taking the 
FFT of the lift variation. 

Figure 3 shows the time history of the drag and lift for 
a stationary cylinder at a Reynolds number of 100. Note that 
the drag is oscillating at twice the Strouhal frequency with a very 
small amplitude. The lift is oscillating with a frequency equal 
to the Strouhal frequency. The power spectra (Fig. 4) shows 
the dominant frequencies in the drag and lift variation. 

4.1 
Validation 
In order to validate the numerical model, simulations were run 
at a Reynolds number of 80. The predicted Strouhal numbers 
at Reynolds number of 80 and 100 are compared with the 
experimental values given by Roshko (1955). The numerical 
results obtained for the case of flow past a stationary cylinder 
and for the cylinder oscillating in the in-line direction and in the 
transverse direction are compared (Table 1) with the 
experimental results given by Tanida et al. (1973). 
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Fig. 3. Time dependent drag and lift of stationary cylinder 
(Re = 100, F~ = 0.164) 
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At a Reynolds number of 100, the computed value of Strouhal 
number (F, -- 0.164) agrees well with the experimental value 
of 0.166. The Strouhal number at a Reynolds number of 80 was 
calculated to be 0.157 which is in good agreement with the 
experimentally observed value of 0.154 (Roshko (1955)). It was 
also observed that the Strouhal numbers computed with 
a second order accurate time interpolation scheme were the 
same as those calculated with a first order accurate time 
differencing scheme. 

The numerical model was also validated with the cylinder 
oscillating in the in-line and the transverse directions separately. 
In order to compare the numerical predictions with Tanida's 
experimental results, the position amplitude was set equal 
to 0.14D in both the in-line and transverse directions. The 
cylinder was forced to oscillate at twice the natural shedding 
frequency in the in-line direction and at a frequency equal to 
the natural shedding frequency in the transverse direction. 
Table 1 compares the computed values of mean drag and 
maximum lift with the experimental values given by Tanida 
et al. (1973). It can be observed that the mean drag values agree 
satisfactorily with the measured values of mean drag. A large 
discrepancy between the computed maximum lift and measured 
maximum lift has been observed in the case of flow past 
a stationary cylinder. This discrepancy may be attributed to the 
three dimensional nature of vortex shedding from a cylinder 
of finite length. Similar discrepancies were also observed in 
other computational investigations. In general, the numerical 
method used can be considered as valid. 

In the following sections, the numerical results obtained at 
a Reynolds number of 100 with the cylinder oscillating in the 
in-line direction (a x -- 0.2D), transverse direction (ay = 0.2D, 
0.4D and 0.8D) and combined in-line and transverse directions 
(a~ = 0.2D, ay = 0.2D, 0.4D and 0.SD) are discussed. 

4.2 
Inqine oscillation 
The lock-in range of frequency depends on the Reynolds 
number and the position amplitude of the cylinder. The 
maximum range of lock-in frequency is approximately +_ 40 
percent of the midpoint frequency (Griffin and Ramberg 

_ i I 

4 5 6 

Frequency/Fn 

Fig. 4. Power spectra of the drag and lift force (stationary cylinder, 
Re = 100) 



Conditions Mean drag Mean drag 
computed measured 

(Tanida et al.) 

Maximum lift 
computed 

Maximum lift 
measured 
(Tanida et al.) 

R e  = 80 & stationary 1.379 1.3 0.23 0.08 
R e  = 80, a x = 0.14D 1.5075 1.5 0.6577 0.5 
& F x = 2F, = 0.314 
R e  = 80, a z = 0.14D 1.4964 1.6 0.3239 -N/A- 
& Fy = F, = 0.157 
R e  = 100 & 1.3241 1.25 0.2496 0.1 
stationary 

Table l. Comparison of 
experimental and computational 
results 

(1976)). Accordingly, the cylinder was forced to oscillate at 
frequencies such that the frequency parameters (Fx) were 
1.2F,, 2F, and 2.SFn). The frequency parameter 2F, is the 
mid-point frequency where the lock-in should occur 
irrespective of the position amplitude of oscillation. Figure 5 
shows the time history of drag and lift of the cylinder oscillating 
with a frequency parameter Fx = 2F n compared to 1.2F, and 
2.8F n. The mean drag, amplitude of drag and maximum lift are 
defined in Fig. 5. The variations of the mean drag, amplitude 
of the drag and maximum lift with the forced frequency of 
oscillation are depicted in Fig. 6. An higher mean drag and 
maximum lift were found with F x - 2F,. The amplitude of the 
drag increases with F~. The power spectra of the drag and lift and 
lift are shown in Fig. 7. The dominant frequency component 
in all the drag variations is equal to the forcing frequency 
(Fig. 7(a)). The lift variations are always dominated by the 
frequency component equal to the Strouhal frequency (F,) 
(Fig. 7(b)). This indicates that lock-in occurs at F x = 2/:, only. 
Previously, other researchers have reported that an increase 
in the position amplitude of oscillation widens the lock-in 
frequency range of oscillation. Additional frequency 
components in the lift variations are due to the changes in the 
vortex shedding process from the cylinder oscillating in the 
in-line direction. The dominant frequency components in the 
drag and lift variations are listed in Table 2. Figure 8 shows the 
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Table 2. Summary of dominant frequency 
components (In-line oscillation, G = 0.2D) 

F~ Frequency Frequency 
components Cd components C1 

0 21:, F, 
1 . 2 F  n 1 . 2 F  n F n 

2L 2F. F~ 3L 
2.8F~ 2.8 G G, 3.73G 

a 

Fig. 8a, b. Contour maps of a stream function b vorticity (in-line 
oscillation, G = 0.2D, F x = 2F,) 
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contour maps of the stream function and the vorticity at the 
same instant of time. At this time, the oscillating cylinder has 
a zero velocity. 
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Fig. 9a-c. Time dependent drag and lift (transverse oscillation, 
Fy --- F~) a ay = 0.2D bay = 0.4D c ay = 0.8D 
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T r a n s v e r s e  o s c i l l a t i o n  

In the case of transverse oscillation, the cylinder was forced to 
oscillate at frequencies such that the frequency parameters (Fy) 2.25 
were 0.6F,, F, and 1.4F,. The frequency parameter Fy = F n is ~ 1.50 ! 
the mid-point frequency where the lock-in should occur o 
irrespective of the position amplitude of oscillation. The time 0.75 
history of the drag and lift of the cylinder with the frequency 0 
parameter Fy = F, and position amplitudes of 0.2D, 0.4D and 
0.8D, are depicted in Figs. 9(a), 9(b) and 9(c) respectively. In ' c 

• ay = 0.2D 
ay = 0.4D 

~, ay = 0.8D 

x 

I .. I 

x 

x 

0.25 
I 

0.50 0.75 1.00 
Fy / Fn 

I 

1.25 1.50 

these figures, the variations of the amplitude of the drag and , 
- -  Fig. lOa-c. Forcing frequency vs a mean drag b amplitude of drag 

maximum lift with the position amplitude at the mid-point c maximum lift (transverse oscillation) 
lock-in frequency can be observed. In order to quantify the 
observations, Figs. 10(a), 10(b) and 10(c) show the mean drag, 
amplitude of drag and maximum lift at different forcing 
frequencies and position amplitudes of oscillation. Figure 10(a) 
shows that, for ay = 0.2D and 0.4D, the predicted mean drag 
attains a maximum value between Fy = 0.6F n and Fy = 1.4F,. 
In the case ofay = 0.8D, the mean drag increases with frequency 
of oscillation. The computed mean drag for Fy = 1.4Fn is 

marginally higher than for Fy = F~. The mean drag increases 
with the position amplitude at all the frequencies of oscillation. 
The amplitude of the drag (Fig. 10(b)) increases with both the 
frequency of oscillation and the position amplitude, i%r 
ay = 0.2D and 0.4D, the maximum lift (Fig. 10(c)) attains 



a minimum value between Fy = 0.6F, and Fy = 1.4F,. In the case 
of ay = 0.8D,  the maximum lift continually increases with the 
frequency of oscillation. 

The power spectra of  the drag with ay = 0.2D (Fig. 11 (a)) 
show that the dominant frequency component  is 2F~ for 
F z =  0.6F, and Fy= F=. With Fy= 1.4F, ,  the dominant 
frequencies are 2.8F, and 2 F~ indicating the influence of forcing 
frequency on the drag at frequencies higher than the mid-point 
lock-in frequency. The existence of a frequency component  F~ 
in the drag variation at Fy = 0.6F~ and Fy = 1.4F~ implies that 
the lock-in does not occur at these forcing frequencies. With 
ay = 0.4D (Fig. 11 (b)), the dominant frequencies in the drag are 
associated only with the forcing frequency of oscillation at 
Fy = F~ and Fy = 1.4F~. Hence, the lock-in occurs at both Fy -=- F~ 

and Fy = 1.4F~. With Fy = 0.6F,, the power spectra of the drag 
also contains a frequency component  2F, in addition to 
1.2F, indicating that the lock-in does not occur at this frequency 
of oscillation. With ay=0.8D (Fig. ll(c)),  the dominant 
frequencies in the drag are associated only with forcing 
frequency at all the chosen frequency parameters of oscillation. 

This means that all the selected forcing frequencies of oscillation 
fall within the lock-in range of frequency. The power spectra 
of the lift with ay = 0.2D (Fig. 12(a)) show that the dominant 
frequency component  is F, at Fy = 0.6F, and Fy = F,. The forcing 
frequency of oscillation, however, dominates over the Strouhal 
frequency at Fy = 1.4F,. The power spectra of the lift with 
ay = 0.4D (Fig. 12(b)) indicates that the forcing frequency is 
dominant at all the frequencies of oscillation. With ay = 0.4D 
and Fy = 0.6F,, the forcing frequency is marginally more 
dominant than F,. It is evident from the power spectra of the lift 
at ay = 0.SD (Fig. 12(c)) that the frequency components in the 
lift are attributed only to the forcing frequency oscillation. 
Table 3 gives the summary of dominant frequency components 
in the time-dependent drag and lift at different position 
amplitudes. With Fy = F, and a, = 0.2D, contour maps of the 
stream function and the vorticity at the time of zero velocity 
of the oscillating cylinder are shown in Fig. 13. A comparison 
of Figs. 8(a) and 13(a) shows that the separation region the case 
of transverse oscillation is smaller than that of the in-line 
oscillation. 
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Fig. l la-c.  Power spectra of the drag forces (transverse oscillation) 
a ay = 0 . 2 D  b a y  = 0 . 4 D  c ay = 0.8D 
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Figl 12a-c. Power spectra of the lift forces (transverse oscillation) 
a ay = 0 . 2 D  b a y  = 0.4D c ay = 0.8D 

Frequency components Frequency components Fre~ency components 
%=0.2D %=0.4D ~ =0.8D 

Cd C1 Cd C1 Cd C1 
0 2 L ~ 2 ~  ~ 2~  
0.6~ 1.2~,2~ 0 .6~ ,~  1.2~,2~ 0 .6~ ,~  1.2~ 0.6& 

2L L 2 L ~ , 3 ~  2 L 
1.4 L 2~,2 .8~ ~,1.4 L 2.8 L 1.4~ 2.8 L 1.4 L 

Table 3. Summary of dominant frequency 
components (Transverse oscillation) 
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Fig. 13a, b. Contour maps of a stream function b vorticity (transverse 
oscillation, a r = 0.2D, Fy = F~) 

4.4 
Combined oscillation 
The cylinder was forced to oscillate simultaneously in the in-line 
and transverse directions with the following combinations of 
frequency parameters: F x = 2Fy = 1.2F,, F= = 2Fy = 2F~ and 
F, = 2Fy = 2.8F,. The position amplitude in the in-line direction 
(ax) was set equal to 0.2D. In the transverse direction, the 
cylinder was forced to oscillate with three different position 
amplitudes (ay): 0.2D, 0.4D and 0.8D. Figures 14(a), 14(b) and 

14(c) show the time dependent drag and lift with Fx = 2F~ and 
F 7 = F~, at three different combinations of position amplitudes 
in the in-line and transverse directions. The lift variation is very 
much different than a sinusoidal variation. It contains several 
frequency components. At the mid-point lock-in frequency, 
the variations of the amplitude of the drag and maximum lift 
at different combinations of position amplitudes can be 
observed in these figures. In order to quantify these 
observations, the mean drag, the amplitude of drag and 
maximum lift at different forcing frequencies of the oscillating 
cylinder are depicted in Figs. 15(a), 15(b) and 15(c). With 
ay = 0.2D and O,4D (Fig. 15(a)), the predicted mean drag attains 
a maximum value at Fy = Fff2 = F~. In the case of a z = 0.SD, the 
mean drag increases with frequency of oscillation, however, the 
computed mean drag for Fy = F,/2 = 1.4F, is only marginally 
higher than for F z = F,. The mean drag increases with the 
position amplitude at all the frequencies of oscillation. This is 
similar to what happened in the case of transverse oscillation, 
however, the mean drag is higher for combined oscillation at 
all the forcing frequencies and position amplitudes of oscillation 
studied. At smaller position amplitudes, the mean drag 
variation with the frequency of oscillation (Figs. 6, 10(a) and 
15(a)) is very similar to the case of in-line oscillation and 
transverse oscillation. The amplitude of the drag (Fig. 15(b)) 
increases with the frequency of oscillation. Unlike in the case 
of transverse oscillation, the influence of position amplitude of 
oscillation in the transverse direction on the amplitude of the 
drag is negligible. The maximum lift (Fig. 15(c)) increases 
with both the position amplitude and the forcing frequency of 
oscillation. 

The power spectra of the drag (Figs. 16(a), 16(b) and 16(c)) 
show that the dominant frequency components are associated 
only with the forcing frequency of oscillation. Similar spectral 
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characteristics are observed in the case of in-line oscillation. 
The posit ion ampli tude of oscillation in the transverse direction 
does not influence the spectral characteristics of the drag 
variation. As in the case of transverse oscillation, the power 
spectra of the lift with G = ay = 0.2D (Fig. 17(a)) show that the 
dominant  frequency component  is F, at Fz = F / 2  = 0.6F~ and 
Fr = F J 2  = F~. This implies that the lock-in does not occur at 
F z = Ff l2  = 0.6F~. In the case ofF~ = Ff l2  = 1.4F~, the forcing 
frequency of oscillation is dominant  in the lift variation. The 
absence of the frequency component  F, in the lift variation for 
Fy = F J 2  = 1.4F~ means that lock-in occurs. The power spectra 
of the lift for G = 0.4D (Fig. 17(b)) indicates that the forcing 
frequency of oscillation is dominant  at all the frequencies of 
oscillation as opposed to the a~ = 0.2D case. With ar = 0.4D and 
F~ = 0.6F,, the frequency component  F,, is less dominant  than 
0.6F~. However, the existence of the frequency component  
F~ in the lift variation implies that complete lock-in does not 
occur at F~ = F / 2  = 0.6t:, .  It is evident from the power spectra 
of the lift at % =  0.SD (Fig. 17(c)) that the frequency 
components in the lift are attr ibuted only to the forcing 
frequency of oscillation. This indicates that all the selected 

forcing frequencies of oscillation fall within in the lock-in range 
of frequency. Table 4 gives the Summary of the dominating 
frequency components in the lift and drag at three different 
combinations of position amplitudes of oscillation of the 
cylinder. At the mid-point  lock-in frequency (F~ = Ff l2  = F~), 

Fig. 18 depicts the contour maps of the stream function and the 
vorticity at the time of zero velocity of the oscillating cylinder 
in the in-line and the transverse directions. A comparison 
of Figs. 13(b) and 18(b) indicates that the diffusion ofvort ic i ty  
is greater in the case of transverse oscillation than the combined 
oscillation. 

5 
Conc lus ions  
The following conclusions are drawn from the present 
numerical simulation of a flow past an oscillating cylinder. 

In-line oscillation: Lock-in is observed at F~ = 2F,. At this 
frequency, the maximum lift is predicted to be 3.7 times the 
maximum lift for the case of flow past a stationary cylinder. An 
additional component  of frequency equal to 3 F~ exists in the 
lift variation. 
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Fig. 17a-c. Power spectra of the lift forces (combined oscillation) 
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Frequency components Frequency components 
a, = ay = 0.2D a x = 0.2D, ay = 0.4D 

Cd C1 Cd C1 
2 G F~ 2G G 
1.2/7, 0.6F~, F, 1.2F, 0.6F~, F~, 1.aF~ 
2F~ F~,3F~ 2F~ F,,3F~ 
2.8s~ 1.4G 4.2F~ 2.8F~ 1.4so, 4.2~o 

Frequency components 
a x = 0.2D, ay = 0.8D 

Cd C1 
2G L 
1.2 G 0.6G, 1.8F~ 
2F~ t:o, 3F~ 
2.8F~ 1.4F~,2.SF~,4.2F~ 

Table 4. Summary of dominant 
frequency components 
(Combined oscillation) 
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Fig~ 18a, b. Contour maps of a stream function b vorticity (combined 
oscillation, a x = ay = 0.2D, Fy = Fff2 = F n) 

Transverse oscillation: The mean drag and the amplitude 
of drag increase with the posit ion amplitude of the oscillating 
cylinder. With ay = 0.2D and ay = 0.4D, the maximum lift attains 
a min imum value at Fy = Fn. The lock-in range of frequency 
widens at higher posit ion amplitudes in the transverse direction. 
With ay = 0.2D, the dominant  frequency components in the drag 
and lift variations are associated with the forcing frequency and 
the natural shedding frequency. At higher posit ion amplitudes, 
the dominant  frequencies in the drag and lift variations are 
associated only with the forcing frequency of the cylinder 
oscillation and the lock-in occurs at all the chosen frequency 
parameters.  

Combined oscillation: The mean drag and the maximum lift 
increase with the position amplitude in the transverse direction. 
The influence of the posit ion amplitude in the transverse 
direction on the amplitude of drag is negligible. As in the case 
of transverse oscillation, the lock-in range of frequency 
increases with the posit ion amplitude of the cylinder oscillating 
in the transverse direction. With Fx = 2Fy = 2.8 Fn, the frequency 
components  in the drag and lift variations are associated only 
with forcing frequency at all the selected posit ion amplitudes 
of oscillation. At higher posit ion amplitudes in the transverse 
direction, the lift force contains additional frequency 
components.  The present study gives a better understanding of 
the effects of  lock-in with combined oscillation on the mean 
drag, amplitude of drag, maximum lift and the frequency 
components  in the drag and lift variations. 

References 
Bearman, P. W.; Obasaju 1989: Transverse forces on a circular cylinder 
oscillating in-line with a steady current. Proc. Eighth Int. Conf. on 
Offshore Mechanics and Arctic Engineering. Hague, 253-258 
Bublitz, P. 1972: Unsteady pressures and forces acting on an oscillating 
circular cylinder in transverse flow. Flow Induced Structural Vibrations 
Symposium, Karlseruhe, Germany, 443-453 
Chilukuri, R. 1987: Incompressible laminar flow past a transversely 
vibrating cylinder. ASME. J. Fluids Engg. 109:166-171 
Griffin, O. M.; Ramberg, S. E. 1974: The vortex-street wakes of vibrating 
cylinders. J. Fluid Mech. 66:553-576 
Griffin, O. M.; Ramberg, S. E. 1976: Vortex shedding from a cylinder 
vibrating in line with an incident uniform flow. 1. Fluid Mech. 
75:257-271 
Hurlbut, S. E.; Spattlding, M. L.; White, F. M. 1982: Numerical solution 
for laminar two dimensional flow about a cylinder oscillating in 
a uniform stream. ASME 1. Fluids Engg. 104:214-222 
Jordan, S. K.; Fromm, I. E. 1972: Oscillatory drag, lift and torque on 
a circular cylinder in a uniform flow. Phys. Fluids 15:371-376 
Lecointe, Y.; Piquet, I. 1989: Flow structure in the wake of an oscillating 
cylinder. ASME J. Fluids Engg. 111:139-148 
Li, 14 Sun, J4 Roux, B. 1992: Numerical study of an oscillating cylinder 
in uniform flow and in the Wake of an upstream cylinder. J. Fluid. Mech. 
237:457-478 
Mittal, S.; Tezduyar, T. E. 1992: A finite element study of incompressible 
flows past oscillating cylinders and aerofoils. Int. J. Num. Methods in 
Fluids 15:1073-1118 
Moe, G.; Wu, Z.J. 1989: The lift force on a vibrating cylinder in 
a current. Proc. Eighth Int. Conf. on Offshore Mechanics and Arctic 
Engineering, Hague, 159-268 
Rao, P. M.; Kuwahara, K.; Tsuboi, K. 1992: Computational study of 
unsteady viscous flow around a transversely and longitudinally 
oscillating circular cylinder in a uniform flow at high Reynolds 
numbers. Computational Mechanics 10:414-428 
Roshko, A. 1955: On the wake and drag ofbluffbodies. I. Aero. Science, 
22:124-135 
Son, J. S.; Hanratty, T. I. 1969: Numerical solution for the flow around 
a cylinder at Reynolds numbers of 40, 200 and 500. J. Fluid Mech. 
35:369-386 
Stansby, P. K. 1976: The locking-on of vortex shedding due to the 
cross-stream vibration of circular cylinders in uniform and shear flows. 
I. Fluid Mech. 74:641-665 
Ta Phuoc Loc; Bouard, R. 1985: Numerical solution of the early stage 
of the unsteady viscous flow around a circular cylinder: a comparison 
with experimental visualization and measurements. I. Fluid Mech. 
160:93-117 
Tanaka, H.; Takahara, S. 1969: Study on unsteady aerodynamic forces 
acting on an oscillating cylinder. Proc. Nineteenth Japan National 
Congress for Appl. Mech., Tokyo, 162-166 
Tanida, Y.; Okajima, A.; Watanabe, Y. 1973: Stability of a circular 
cylinder oscillating in uniform flow or in a wake. J. Fluid Mech. 
61:769-784 
Triantafyllou, G. S.; Karniadakis, G. E. 1989: Forces on a vibrating 
cylinder in steady cross flow. 8th International Conference on Offshore 
Mechanics and Arctic Engineering, Hague, 247-251 
Tsuboi, K.; Tamura, T.; Kuwahara, K. 1988: Numerical simulation of 
unsteady flow patterns around a vibrating cylinder. AIAA Paper No. 
88-0128, Reno 


