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A class of finite element methods based on orthonormal, compactly 
supported wavelets 

J. KO, A. J. Kurdila, M. S. Pilant 

Abstract This paper develops a class of finite elements for 
compactly supported, shift-invariant functions that satisfy 
a dyadic refinement equation. Commonly referred to as 
wavelets, these basis functions have been shown to be 
remarkably well-suited for integral operator compression, but 
somewhat more difficult to employ for the representation of 
arbitrary boundary conditions in the solution of partial 
differential equations. The current paper extends recent results 
for treating periodized partial differential equations on 
unbounded domains in R ~, and enables the solution of 
Neumann and Dirichlet variational boundary value problems 
on a class of bounded domains. Tensor product, wavelet-based 
finite elements are constructed. The construction of the 
wavelet-based finite elements is achieved by employing the 
solution of an algebraic eigenvalue problem derived from the 
dyadic refinement equation characterizing the wavelet, from 
normalization conditions arising from moment equations 
satisfied by the wavelet, and from dyadic refinement relations 
satisfied by the elemental domain. The resulting finite elements 
can be viewed as generalizations of the connection coefficients 
employed in the wavelet expansion of periodic differential 
operators. While the construction carried out in this paper 
considers only the orthonormal wavelet system derived by 
Daubechies, the technique is equally applicable for the 
generation of tensor product elements derived from Coifman 
wavelets, or any other orthonormal compactly supported 
wavelet system with polynomial reproducing properties. 

1 
Introduction 
The rapidly emerging field of wavelet and multiresolution 
analysis 1, 2 has been developed primarily by researchers in signal 
processing in the context of multirate filtering techniques, and 
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by approximation theorists. Not only has the emergence of 
multiresolution analysis affected the understanding of rather 
abstract approximation theoretic concepts (for example, the 
smoothness of functions in Sobolev-Besov spaces in DeVore, 
Jawerth and Popov (1992)), but it has also had an enormous 
practical impact on lossy filtering and compression techniques 
in visualization. It is well-known that independent companies 
have formed over the past five years to design hardware that 
embodies aspects of multiresolution analysis, and computer 
and workstation vendors are incorporating wavelet analysis in 
both software and hardware in forthcoming platforms. 

The potential for wavelet and multiresolution analysis in 
computational mechanics has been noted in Jaffard and 
Laurencot (1992), but far less progress has been made in this 
field. Jaffard and Laurencot (1992) has proven that wavelet 
Galerkin methods can, in principle, yield matrix representations 
whose iterative solution is characterized by a condition number 
that is independent of dimension. This remarkable fact should 
be carefully contrasted to classical h-based finite element 
methods which generate matrix representations whose 
condition numbers grow like O(N;) where N is the number of 
unknowns and p is the polynomial order of the elment. Thus, 
the wavelet-Galerkin methods have computational complexity 
characterizations that compare favorably with hierarchical finite 
element methods. This class of finite element techniques can 
yield matrix representations whose condition number grows 
like O(NIogN),  as in Yserentant (1986, 1990). Still it is 
important to realize that the results in Jaffard and Laurencot 
(1992), for instance, are analytic in nature, and have not been 
realized in practice. Dahmen, Prossdorf and Schneider (1992, 
1993a, 1993b), and Dahmen and Kunoth (1992) have presented 
detailed analyses of the condition numbers of partial differential 
equations with periodic boundary conditions, while Rieder 
(1993) has investigated the convergence of multigrid methods 
for wavelet formulation of periodic problems. Likewise, 
Heurtaux, Planchon and Wickerhauser (1994) employs wavelet 
Galerkin methods to investigate energy exchange between scales 
in a two dimensional Burger's equation subject to periodic 
boundary conditions. Dahlke and Kunoth (1993) derives 
biorthogonal wavelets adapted to a class of constant coefficient 
differential equations, and a multigrid solution strategy, again 
subject to periodic boundary conditions. 

The prevalence of periodic problems in the literature 
discussing wavelet Galerkin methods is, of course, not 
coincidental. General, analytic estimates of convergence rates 
and error are greatly simplified for periodic, in comparison to 
more general Dirichlet and Neumann, boundary conditions. 
Moreover, it is difficult to derive wavelets that retain 
orthonormality, varying degrees of smoothness and satisfy 
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prescribed boundary conditions. For example, the 
constructions of orthonormal wavelets on a closed interval in 
lawerth (1994), while mathematically elegant, requires some 
fifty pages to describe. To circumvent the difficulties associated 
with adapting wavelets to enforce specific boundary conditions, 
several authors have advocated the use of domain embedding 
techniques whereby the problem of interest, with irregular 
boundary, is embedded in a larger domain with simpler 
topology and boundary conditions. This approach has been 
employed in Wells and Zhou (1992a, 1992b), and Glowinski, 
Pan, Wells and Zhou (1992) for classes of elliptic boundary value 
problems, as well as in Ko, Kurdila, Park and Strganac (1993), 
Ko, Kim, Kurdila and Strganac (1993) for control of distributed 
parameter systems and aeroelasticity. Its accuracy and efficiency 
relative to wavelet-based finite dements is addressed in Ko, 
Kurdila, Wells and Zhou (1994). 

The purpose of this paper is to extend the class of problems 
that can be treated effectively using wavelet Galerkin methods 
by deriving tensor product wavelet-based finite elements. This 
task is considerably more difficult than usually encountered 
in conventional, polynomial based finite element methods in 
two respects: (i) many wavelet bases cannot be expressed in 
closed form, and consequently their corresponding Galerkin 
formulations cannot be expressed in closed form and (ii) many 
wavelet bases exhibit unusual smoothness properties, 
sometimes with a fractal character as shown in Daubechies 
(1992). Numerical integration via conventional quadratures 
would not be accurate in these cases, see Alpert (1992). Despite 
these difficulties, wavelet Galerkin finite elements can be 
calculated to any prescribed accuracy using specialized 
numerical techniques. Essentially, one can draw an analogy 
between the role of Gauss quadratures in conventional finite 
element formulations to connection coefficients defined in Latto, 
Resnikoff and Tenenbaum (1991) as sociated with derivatives 
of wavelets. Gauss quadratures provide numerically exact 
representations of integrals of polynomials, while the 
connection coefficients provide numerically exact 
representations of integrals of wavelets. The approach taken 
in this paper generalizes the methodology of Latto, Resnikoff 
and Tenenbaum (1991) and provides an algorithm for 
computing the wavelet elements. It should be noted that the 
uniqueness and existence of this class of elements is proven in 
the context of stationary subdivision refinement schemes in 
Dahmen and Micchelli (1993). The primary contributions of 
this paper are 

(i) the derivation and presentation of a simplified algorithm 
for the calculation of the generalized connection 
coefficients. This work generalizes the approach taken by 
Latto, Resnikoff and Tenenbaum (1991 ), while treating an 
important case within the general theory derived in 
Dahmen and Micchelli (1993). 

(ii) The derivation of tensor-product finite elements that are 
amenable to element processing and assembly techniques 
from the generalized connection coefficients. 

(iii) The determination of quasi-optimal convergence rates in 
these elements. 

(iv) The derivation of associated quadratures to insure 
quasi-optimal convergence rates. 

The recent work of Dahlke and Kunoth (1993) has provided 
important background for tackling steps (i) and (ii) above, while 

Sweldens and Piessens (1994) study wavelet quadratures in 
general. 

2 
Wavelet and multiresolution analysis 
Because of the early stage of development of multiresolution 
analysis, definitions of wavelets can vary considerably 
depending upon the generality of formulation desired. For the 
purposes of this paper the following definition will be sufficient: 

Definition: A multiresolution analysis is a sequence of closed 
subspaces Vj 

o . .V_2~V1cC_ Vo~VI~_V2  . . .  

that satisfy 

(i) U vj=L2(R),(  
J J 

( ii) f (x)e Vj*~ f (2~x)e Vo 

(iii) f ( x ) eVo-+ f ( x - k ) eVo ,  Vk 

(iv) there exists a ~b~ V o such that its translates form a Riesz 
Basis of V o 

It should be noted that function ~b is referred to as the scaling 
function, or generator, of the multiresolution analysis. The first 
three properties of the multiresolution analysis are actually 
quite intuitive, and are consistent with many formulations and 
procedures employed in the finite element formulation as in 
Strang (1989). Property (i) simply requires that the subspaces 
can approximate any function that is square-integrable. 
Properties (ii) and (iii) embody the notion of"multiresolution": 
Property (ii) requires that the larger space Vj+I contains 
precisely scaled, finer versions of coarse functions found in Vj, 
while (iii) maintains that any one V 2 space is shift-invariant. 
Property (iv) is more difficult to characterize simply. It requires 
that {~b(x - k)}k~z form a basis (in the usual sense) for V o, and 
in addition there must exist two constants C 1 and C2 such that 
for any sequence q = {q~} el2 

cl][qlL~ < ~qk~)( '--k)2L<qllqlh,22 (2.1) 

In particular, if {c~ (x -- k)}k~Z is an orthonormal basis of V0, it 
is clearly a Riesz basis with C 1 = C2 = 1. For this paper, it is 
assumed that {~b (x - k)}k~z is in fact an orthonormal basis. It 
should be noted, however, that the methodology derived in 
Section 3 is appropriate for much more general classes of 
wavelets than those whose scaling function generates an 
orthonormal basis of 110. 

In any event, it is proven in Chui (1992) that condition (iv) 
implies that the scaling functions satisfy the two-scale, or 
refinement equations 

4) (x) = ~ ak~b (2x -- k) (2.2) 
k 

for some specific sequence {ak}, or mask, associated with the 
scaling function ~b. Now if {~ (x -- k)}k~z is an orthonormal basis 
for V 0, it is natural to ask how one would characterize its 



complement in the next larger space V. In other words, how 
does one representfzeV~ as 

A =fo + go 

where foe Vo and 

go~ Wo = V1/Vo.~ 

where a (., -) is a coercive, symmetric bilinear form over the 
Hilbert space H. As is well-known, the governing equations 
for any of a number of common problems in computational 
mechanics can be expressed in this form. In the derivations 
that follow, it will be sufficient to consider the potential equation 

a n (x,y)  V u. Vv dxdy + ~ aoo (x,y)  uv dxdy 
.(2 [2 

One of the most significant contributions within the field 
of wavelet analysis is that it is indeed possible to construct 
an orthonormal basis for W 0. In fact, under the conditions 
stated above, this basis is generated from a single function 
ifi (x). The function ~ (x) is referred to as the wavelet of 
the multiresolution analysis and defines the space 

W 0 = closure {~fl (x - k), k~Z} 

By defining 

Wj =- { f~L: (R) : f (2Jx)  ~ 1470} 

one can write 

v;+, = v;e  w; 

L 2 ( g )  = (~  Wj 

J 

By convention, the dilates and translates of the scaling function 
r (x) and wavelet ~ (x) are written as 

~ ) { ( X )  -~ 2(j12) ~ ) ( 2 J  x - -  k) ( 2 . 3 )  

~{(X) ~ 2()n)~t (2)X -- k) (2.4) 

while the r th derivatives are written as 

(x) =- 4) 

d r 0 ~(,) 
dx ~ (x) =- 

In the presentation in Section 3 it is important to distinguish 
between the r th derivative of the k th translate 

r 
d { o ( x  - k)} =- ~ 

k 

= 5 f (x , y )  vdxdy  + .[gvds (3.2) 
~2 F 

In fact, because the derivation of the one-dimensional wavelet 
element facilitates a straightforward discussion of 
multidimensional, tensor product elements, the solution is 
assumed for the present to consist of a superposition of scaling 
functions at resolution ] and wavelets at the same and higher 
levels 

u (x,y) = U(x) V(y) (3.3) 

where 

! ] U(x) = E  G(x) + B G( ix) 
k i>],keZ 

v(y) = E  ' tlk @k(y) (3.4) 
k i>~],kcZ 

The coefficient data is assumed to be expressed as 

arr(X ) = ~ arr, pNp(x ) (3.5) 
p~Z 

in terms of functions N(x) satisfying a two-scale refinement 
equation 

N(x)  = ~ cp n ( 2 x  - p) (3.6) 
p~Z 

Upon substituting Eqs. (3.4), (3.5) and (3.6) into the governing 
Eq. (3.2), it is clear that the wavelet Galerkin approximation 
can be constructed from the following integrals: 

VG-V<ax 
g2 

y Np V r . V r dx 
g2 

y N, V tyq . V ~'~ dx 
n 
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and the k th translate of the 2 r scaled function 

2n2~ (2rx -- k) -= ~9~ 

3 
Wavelet element construction 
For purposes of constructing wavelet-based finite elements, 
this paper considers a typical variational boundary value 
problem, symbolically characterized by 

a ( u , v ) = f ( v ) ,  V v ~ H  (3.1) 

G dx 
.G' 

CrdX 
t2 

l m ~ Np~q @ r dx (3.7) 
.(2 

In conventional finite element methods, these integrals 
would be calculated in closed form or by standard (Gauss) 
quadrature formulae. This is not feasible, however, for 



many wavelet bases. In many cases, there is no closed form 
expression for the bases, and they often cannot be integrated 
numerically due to their unusual smoothness characteristics. 
However, because the wavelet ~ (x) is defined in terms of 
the scaling function qS, these integrals can be re-written in 
terms of the scaling function alone. To this end, define the 
general ized  connect ion coefficients 

l't~ = j N ( x  - -  l)  ~9 (x --  p )  ~ (x --  q)  d x  (3 .8 )  
s 

In other words, the coefficient data al, 1 (x) and ao, o (x) are 
represented in terms of characteristic functions Zi0.11 (x). As 
will be shown, this choice leads to tensor product elements 
based on wavelet functions. To simplify notation, the 
generalized connection coefficients 

/~0,0 j;k,s = Z [ o , 1 ] ( x - j ) 4 ) ( x - k ) d p ( x - s ) d x  
- o o  

(3.13) 

are expressed more concisely as 
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s 

= j N ( x  -- 1) ~?0)(x -- p)  0 (1) (x - q) dx  (3.9) 
g] 

Once these integrals have been calculated, they can be combined 
to form all the integrals in Eq. (3.7), and they will eventually 
form the entries of the wavelet-based elements. It should be 
noted that these terms are derived via a generalization of the 
strategy employed in Latto, Resnikoff and Tenenbaum (1991) 
for the calculation of the usual two term connection coefficients 

F ,  0'0 k,, = Z[O,l l(X)~b(x-k)~ 9 ( x - s ) d x  (3.14) 
-oo 

F~1'1 7 I k,, = Xloal(x)~b ( x - k ) ~ ' ( x - s ) d x  (3.15/ 
--o0 

3.1 

H o m o g e n e o u s  e q u a t i o n s  

By substituting the two-scale relationship satisfied by the scaling 
functions into Eq. (3.14), F ~176 becomes k,s 

H~176 = ~ a, am f ZIO, l l ( X ) ( ~  2 k -  I ) ~ (  2 x -  2 s -  m ) d x  
l, rrl - -r  

(3.16) 

d?' (x - p )  4)' (x - q) d x  ( 3 .10 )  
R 

or three term connection coefficients 

j qS(x -- n ) ~ ' ( x  - - p ) ~ ' ( x  -- q) dx (3.11) 
R 

One should note that the definition of the generalized 
connection coefficients defined in Eq. (3.11) differs from that 
considered in Latto, Resnikoff and Tenenbaum (1991) in that 
the constituents of the integrand do not necessarily satisfy 
the same two-scale refinement equation. In addition, integrals 
of the form calculated in this paper are studied in Dahmen 
and Micchelli (1993) in the context of stationary subdivision 
schemes. The presentation that follows extends the approach 
taken in Latto, Resnikoff and Tenenbaum (1991) to derive 
a simple algorithm for computing the integrals studied in 
Dahmen and Micchelli (1993). 

As noted in Dahmen and Micchelli (1993) and Latto, 
Resnikoffand Tenenbaum (1991), the calculation of connection 
coefficients consists of two phases. First, the connection 
coefficients are shown to satisfy a set of homogeneous equations 
that are derived from repeated application of the refinement 
equation. This procedure leads to an algebraic eigenvalue 
problem. Generally, the connection coefficients are not uniquely 
determined by this eigenvalue problem. Additional 
inhomogeneous normalization conditions are consequently 
derived from moment conditions in Latto, Resnikoff and 
Tenenbaum (1991), or from more general polynomial 
expressions that are "dual" to differentiation in a sense made 
precise in Dahmen and Micchelli (1993). 

For the remainder of this paper, it is assumed that 

N(x )  = ZEo, 11 (x), (3.12) 

which can be written as 

F~176 = ~ a,am ~ Zto, ll (�89 dp (4 -- 2k - l) ~ (4 - 2s - m) �89 d~ 
/,t/1 --~O 

(3.17) 

under a change of variable in the integration. The characteristic 
function Zio,~l (x) satisfies a trivial two-scale equation. This 
can be seen by writing the definition 

1, 0 < ~ < 2  (3.18) 
)Q~189 0, otherwise 

a s  

Zio,1 ] (�89 4) = X[0,1] (~) + ZI1,21 (3) (3.19) 

o r  

Zto, ll (�89 = ZI0,1] (3) + Zt0,1] (~ -- 1) (3.20) 

When the two-scale relationship for the characteristic function 
is replaced in Eq. (3.17), one obtains 

1 o~ 

C~176 = - q ~ a l a m  !oo {)Q0al(~) + Zlo, l~ (s - i)} 
l ,m 

�9 qb ({ - 2 k  - I) q5 ({ - 2 s  - m )  d ~  (3 .21 )  

which can be expressed in terms of the original generalized 
connection coefficients as 

C0,o = 1 ~  cF.o,o C0,o 1 (3.22) 
k,s 21,malaml 2 k + l , 2 s + m  "q- 2 k + I - 1 , 2 s + m - 1 )  



By changing the summation limits, Eq. (3.22) becomes 

/~0,0=~ E a p _ 2 k a r _ 2 s C O , o r  A c _ Z a ~ _ 2 k l S l  ~ 2s~f f ,O~ k,s kp,  r f,~ p,r 

= l E { a p - a k a r  2s - ~ F  ~176 (3.23) q- ap-2k+l r p,r 
- -  p,r 

But Eq. (3.23) is just an eigenvalue problem having the form 

po,o = [A0,0] F0,0 (3.24) 

The same essential steps can be followed to generate the 
generalized connection coefficients F~k'l 

/~1,1 ~ k,s ~" )~[0,1] (X) r (x -- n) ~b'(x -- m)  dx  (3.25) 
oo 

By differentiating the two-scale relationship 

2M 1 d~  
~ b ' ( x ) = 2  ~ a k ~ ( 2 x - k )  

k=o ax  

where M is the order of wavelet system, and substituting the 
result into Eq. (3.25), one can write 

- 2 k - r ) r  d x  
r,p 03 

(3.26) 

Now, by employing the two-scale relationship satisfied by the 
characteristic function ZE0,~l (x) in Eq. (3.18) through (3.20), 
the expression above reduces to 

/~1,1 ~ {Zt0,~l (2x) + Z[0,~l k,, = 22~arap  (2x -- 1)} 
r,p -oa 

�9 r (2x - -  2 k  - r) ~b' ( 2 x  - 2s  - p )  d x  (3 .27)  

by changing variable 

EI'I =22-I E k,, Gap. Z[0,ii(~) r ( ~ - 2 k - r ) r  
r,p k ao 

+ -| Zlo,~,({-1)r162 
(3.28) 

With a change of indices, this equation takes the same general 
form as Eq. (3.23) above 

= E % r  + 
p,r 

=--22-1E{ap_2kar_2s-}-ap_2k+lar_2s+l}l~'l  r (3.29) 
p,r 

In fact, the coefficients F~; 1 also satisfy an eigenvalue problem 

V I'1 = [A~'I] F ~'~ (3.30) 

Considering the derivation of F 1'~ and/-0.0, it is not difficult 
to show that the elliptic partial differential equation of order 
2d will require the solution of an eigenvalue problem having 
the form 

F a'a= [A d'd] F a'a (3.31) 

The entries of the matrix [Aa'q can be derived in an analogous 
manner 

2M-  1 

4(a)(x) = 2 d ~, a k r  k) (3.32) 
k=0 

Fd'dLs = 22d Z Gap ~ ~[0,1] ( X ) r  -- 2k - r) 
r,p co 

. r (2x  - -  2s - -  p )  dx  (3 .33)  

j~d,d  22d-i d,d d,d 
k,, = ~ Gap {F2k+r,2s +p + I'2k + r-1,2s +p-l} 

r,p 
(3.34) 

Fd, a 22d- 1 2 k,s =- {ap-2kar-2,+ap-2k+~ar-2,+l} Fa'a p,r 
r,p 

(3.35) 

3.2 
Normalization equations 
Unfortunately, the eigenvalue problems do not uniquely define 
the generalized connection coefficients required to form the 
constituent finite elements. As suggested in Dahmen and 
Micchelli (1993) and Latto, Resnikoff and Tenenbaum (1991), 
the polynomial reproducing property of wavelets is employed 
to generate a sufficient number of inhomogeneous equations 
to uniquely define the generalized connection coefficients. 
For example, it is well known that the wavelets derived by 
Daubechies (1992) satisfy 

1 = y~, q~(x - -  k)  (3 .36)  
keZ 

By multiplying Eq. (3.36) by itself, and subsequently multiplying 
the product by the characteristic function of the interval [0, 1], 
one obtains 

1 = ~ d p ( x -  l ) r  k) (3 .37)  
l, k~Z 

Z[0,1] (x) = E X[O,l] ( X ) r  k )  
l, keZ 

(3.38) 

Now, a single integration yields a first normalization condition. 

1 = ~,, V,~'k ~ (3.39) 
l,k 

This procedure can be repeated inductively for many classes 
of wavelets. Specifically, Kurdila (1992) and Latto, Resnikoff 
and Tenenbaum (1991) note that the Daubechies wavelets of 
order k + 1 can reproduce polynomials up to degree k 

x = EM r - r)  ( 3 . 40 )  
r 
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Explicit formula for calculating the coefficients M~ recursively 
can be found in Latto, Resnikoff and Tenenbaum (1991). By 
differentiating this expression once, 

k x  k- ' = ~ M~ O' (x - r) (3.41) 
r 

squaring it, 

it is necessary to discuss their approximation properties. 
However, because of the simple geometry of the class of derived 
elements, a succinct characterization of their approximation 
power is possible using the Strang-Fix condition in Strang 
and Fix (1971). 

Theorem 1. Let ~(x) generate a multiresolution analysis and 
suppose its translates span polynomials of degree _~ M - -  1. 
Suppose that s is the union of  elemental domains 

k - 1  I - 1  k 1 r k lx  x Xlo, ll(x) =~M~M',ZIo,  II(x)cb ( x - - r ) ( Y ( x - - s )  
r 

(3.42) 

and integrating 

1 

kl y x k +I-2 dx = ~ M_ k M_~ F~' ~ (3.43) 
0 r,s 

a second set of normalization conditions are derived. 

kl 
-- ~ M k M I F 1'~ (3.44) 

k + l - 1  ~ . . . . .  r,s 

This procedure can be extended to normalize the generalized 
connection coefficients of order d. 

F d ,  d l,k = ~ gto,,l (X) ~Ca)(X -- l) ~d)(X -- k) dx 
r n 

By differentiating the polynomial expansion 

(3.45) 

x k = ~ M ~ ( X - - S )  (3.46) 
s 

d times, one obtains 

n=DnL 
r, sEAJ 

where 

~d,={(x,y)12 J r G x < 2  J ( r + l ) a n d 2  ;s<=y<=2 J ( s+ l )}  

Let % = s p a n { ~ { ( x ) } ~ z ~ d 2 :  Smooth functions can be 
approximated from Y#j with error 0(2 -;(M ')) in H'(f2) using 
the wavelet-based elements derived in this section, where M is 
the order of the underlying Daubechies wavelet. 

Proof. This theorem is a trivial application of the Jackson 
estimate for shift invariant spaces on R 2 and the fact that s is 
C ~ [] 

These error estimates will not be realized in practice, 
however, unless all right hand side terms are calculated with 
commensurate accuracy. This provides another slight difficulty 
for wavelet-based elements in that usual quadratures will not 
suffice. Beylkin, Coifman and Rohklin (1991) introduced 
a means of calculating these terms for the Coifman wavelets, 
and outline an extension that can be used for the wavelet- 
elements in this paper that are based on Daubechies wavelets. 
For a given function f (x) ,  the right hand terms of the 
wavelet-galerkin formulation that must be calculated typically 
have the form 
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k . ( k - 1 ) . . . ( k - d ) x  k a=~Mkdp(a/(x_s) 
s 

k~ 

( k - d - 1 ) l  

(3.47) 

(3.48) 

L{( f )  = 2J/2Sf(x)~(2Jx - k + 1)dx 

= 2J/2Sf(~ + 2 J ( k -  1))q5(2'~)d~ (3.51) 

where L{ (f)  denotes a linear functional on f defining a mapping 
from 

This expression can be multiplied by itself and integrated 

k! I! 
M,k M I F a'a -- Xto,~(x) x x k - d  l-d dx 

~,~ , r,s ( k _ d _ l ) ! ( l _ d _ l ) ! ~  
(3.49) 

to derive sufficient normalization conditions for the coefficients 
C r  d,d 

,s 

• M k M I Fd, a = 
r s r, s 

r,s 

k! l! 1 

( k - d - 1 ) I ( l - d - 1 ) ! ( k  + l - 2 d  + l) 
(3.50) 

3.3 
Wavelet element approximation properties 
To employ the wavelet-based finite elements derived in the 
last section in practical computational mechanics problems, 

L{:C[a ,b]~R  

The approximation of this family of linear functionals 
{b~(f)}j,k~z can be achieved using the following 

Theorem 2. Let the linear funct ional  L: C [a, b] ~ R, and 
the quadrature points and weights 

a = X o < X l ' ' ' X k < X k + l = b  

ao, al �9 ak, ak+l 

be given. Suppose that the linear functional is polynomial 
reproducing in that 

k + l  

L ( f )  - ~ a ip (xi) = 0 
i - - 0  



for all P~NM-V Then for all feCM[a, b], remainder form find ueH ~ (0, 1) such that 

k + l  b 

L ( f )  - ~ aj(x i )  = ~ g ( u ) f  (~ (u) du 
i = 0  a 

d 21A 

dx ~ F u = f l  Vxe[O, 1] 

where the Peano kernel K: [a, b] ~ R is defined by where 
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K ( u )  L L  k + l  = . ) +  - . , ( = , - u ) " + + - '  
r! ( ' -  ~-~ i=o 

for all ue[a, b]. 

When applied to calculating the right hand terms in Eq. (3.2), 
this theorem yields a family of functionals characterized by 

f (x)  = (1 + 4I/2) cos (2 / / x )  

and 

u' (0) = 0 

u ' (a)  = 0  

M - I  

L ; ( f )  = 2 -"/2 ~ q(2 -~ l + 2 - " ( k -  1)) 
I = 0  

x~;.,~ = 2 "l + 2-~(k  - 1) (3.52) 

al; n = 2-n/2ci 

The equations that must be satisfied to define the quadrature 
weights reduce to 

M - 1  

I2 c , =  f = 
1=0 R 

M - 1  

Ic, = ~ x~9 (x) dx = M~ (3.53) 
/ = 0  R 

M - 1  

/ = 0  R 

To demons t ra te  the ut i l i ty of  these quadra ture  formulae,  
the quas i - in te rpola t ion  pro jec t ion  in de Boor (1993) is 

Q{f = ~ LJ ( f )  ~J~(x) 
k 

Because the family of functionals defines a "good 
quasi-interpolant sequence of order M" in the sense of de 
Boor (1993), it is possible to obtain an explicit bound for the 
Peano kernel K(x). One can write 

IIf(x) - Q~f(x) ll~ =< C2-J~IIf(M)II~ 

It is important  to note that this convergence rate is consistent 
with that guaranteed by the Strang-Fix condition for the  
Danbechies wavelet element of order M. 

4 
Numerical examples 
The first example has been selected solely to verify the 
approximation properties of the Daubechies wavelet-based 
elements and quasi-interpolation formula derived in the last 
section. For this study, a one dimensional,  second order 
Neumann problem has been considered. The problem is to 

As shown in Figs. 2 and 3, the rate of convergence matches 
that predicted by the Strang-Fix condition and the 
quasi-interpolation order. One point of interest in these results 
is the sub-optimal rate of convergence for the Daubechies 
wavelet-based element corresponding to M = 6. This is 
expected, however, due to the numerical error induced by 
truncating the generalized connection coefficients to a fixed 
number of accurate digits. This phenomenon is studied in 
more detail in Ko and Kurdila (1993). 

The second example considers a two dimensional Neumann 
problem on a multiply connected, irregular domain. Again, 
order M = 3 Daubechies wavelet-based elements are utilized, 
although in this case tensor product  elements are employed. 
We consider a potential flow over two closely placed ]oukowski 

10"4 

10 .5 
E 

10"6 

10 7 

.,... 10 .8 
UJ 

Daubechies, Neumann L2 Error (N3,N4,N5,N6) 

10 .2 ,~imm,,,,,~mmm,,m~m~",mm,,,,,,, , ,,, 
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4 5 6 7 8 9 
Level 

;. 1. L~ Error versus mu]tiresolution error, Daubechies order 3,4,5,6 
ments 

Rate of decrease of error in L 2 norm(2 ~)  

Wavelet  Order I[ Expected ~ Computed 
3 -3  -3.0655 
4 -4  -3 .9959 
5 -5  -4.9241 
6 -6  -6.0805 

Fig. 2. Daubechies wavelet elements, order 3,4,5,6 L z Error 
approximation rate, theoretical versus calculated 
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Fig. 3. Neumannproblem, two dimensions, Daubechiesorder3 wavelet 
elements, 64 x 64 DOF 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 

Fig. 5. Neumannproblem, two dimensions, Daubechiesorder3wavelet 
elements, 64 • 64 DOF, potential contours 
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1.0 

airfoils. The airfoils are constructed so that they are contained 
in [0, 1] x [0, 1] square. The governing equation is 

V2(p ~- 0 

and the boundary conditions are 

C ~  {- -1 ,  o n x = O  

On 1, o n x  1 

0, o n y =  0 , y =  1, and on airfoils 

where @ is the velocity potential of  the flow. The numerical 
results are shown in Figs. 3 through 6. Figures 3, and 5 are 
the results of 64 x 64 square elements, and Figs. 4, and 6 are 
of 128 x 128 square elements. 

In as much as these examples have been selected solely to 
illustrate that wavelet bases can be implemented as conventional 

1,0 

1.0 ~ 

Fig. 4. Neumann problem, two dimensions, Daubecbies order 3 wavelet 
elements, 128 x 128 DOF 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 

Fig. 6. Neumannproblem, two dimensions, Daubechiesorder3wavelet 
elements, 128 x 128 DOF, potential contours 

finite elements, the Kutta condition has not been enforced in 
these simulations. That is, the model problem has zero 
circulation as shown at the trailing edge in Figs. 5 and 6. Clearly 
this is a feature of the simplicity of the modeI problem, and 
not of the wavelet elements. 

5 

Conclusions 
This paper has presented the construction of a new class of 
finite element techniques that are formulated in terms of wavelet 
basis functions. These elements can be extended using tensor 
products to represent a class of irregular domains in higher 
dimensions. Because of the unusual smoothness properties 
of the Daubechies wavelets employed, specialized techniques 
for element evaluation and quadratures are derived. In addition 
to the derivation of a construction technique for wavelet 
elements, a characterization of the approximation properties 
of the elements is derived using the Strang-Fix condition. The 
accuracy of  quadratures for the corresponding element 
calculations is established by constructing a quasi-interpolation 
scheme associated with the elements. 
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