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Higher-order sensitivity analysis of finite element method by 
automatic differentiation 

I. Ozaki, F. Kimura, M. Berz 

Abstract To design optimal mechanical structures, design 
sensitivity analysis technique using higher order derivatives are 
important. However, usual techniques for computing the 
derivatives, for example numerical differentiation methods, are 
hard to apply to real scale structures because of the large amount 
of computational time and the accumulation of computational 
errors. 

To overcome the problem, we have studied a new approach 
for higher order sensitivity analysis of the finite element method 
using automatic differentiation techniques. The method 
automatically transforms FORTRAN code to special purpose 
code which computes both the value of the given functional 
dependence and their derivatives. The algorithm used in the 
method automatically and efficiently computes accurate values 
of higher order partial derivatives of a given functional 
dependence on many variables. 

This paper reports the basic principles of the automatic 
differentiation method and some experiments on the sensitivity 
analysis of mechanical structures. The original program of 
structural analysis by the finite element method is implemented 
in FORTRAN, which is developed by the first author. Using the 
proposed method, we get more accurate sensitivity and 
prediction values compared with usual numerical 
differentiation. We also discuss the effectiveness of the proposed 
approach for the sensitivity analysis of the mechanical 
structures. 

1 
Introduction 
The importance of sensitivity analysis using the finite element 
method (FEM) has been recognized to get higher precision and 
higher functionalities of mechanical structures in the structural 
design optimization (Haftka et al. 1986a; Brebbia et al. 1989; 
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Eschenauer et al. 1990). For example, to evaluate dynamical 
characteristics of structures, modal analysis techniques are used 
(Ozaki 1988). The optimal mechanical design has been studied 
by sensitivity analysis using the method. The traditional 
sensitivity analysis methods are usually direct differentiation 
method, adjoint variable method, and numerical differentiation 
method (Adelman et al. 1986; Haftka et al. 1989). 
Usual techniques for the sensitivity analysis (Haftka et al. 
1989; Kleiber and Hisada 1993) require numerically computed 
partial derivatives of the objective functions (Vanderplaats 
1984). Jacobian or Hessian matrices are used to compute 
optimal values by Newton- or quasi-Newton algorithms 
(Evtushenko 1985; Ratschek et al. 1988). However, there are 
several problems for the computation: (1) truncation and 
rounding errors become large when numerically executing the 
sensitivity analyses, (2) much computation time is required to 
compute higher order derivatives to get optimal solutions, and 
(3) it is difficult to develop programs for the computation of 
higher order derivatives of a function with very many variables 
(e.g., Vanhonacker 1980; Belle 1982; Haug et al. 1982; Jawed 
et al. 1984; Haftka et al. 1986b; Wanxie et al. 1986; Dailey 1989). 

To solve the problem, we study a new approach (Ozaki 1991; 
Ozaki et al. 1992; Ozaki and Kimura 1994) for higher order 
sensitivity analysis of FEM using automatic differentiation 
methods. We employ the tool DAFOR, a pre-processor for usual 
FORTRAN compilers (Berz 1991; Berz 1989; 1990a). Users of 
the tool first input their FORTRAN code to compute the values 
of the functional dependence with very many variables for the 
FEM structural analysis. Next, the tool analyzes the input 
program and insert statements to compute higher order partial 
derivatives of the function. Then, the tool automatically 
generates a special FORTRAN program with sensitivity analysis 
capability. The method of code generation to compute partial 
derivatives in many variables is obtained by the automatic 
differentiation technique whose developers include lri (1984), 
Rall (1986), Berz (1989; 1991b), Iri and Kubota (1991), and 
Griewank et al. (1991). The unique feature of the automatic 
differentiation method is that the technique can compute higher 
order partial derivatives with very high accuracy (Ozaki 1991). 
The generated program is free from both truncation and 
rounding errors (Iri and Kubota 1991; Griewank et al. 1991). 
Therefore, by applying the tool, the user can easily carry out 
sensitivity analysis for optimizing structural design problems. 

This paper describes the principles of the automatic 
differentiation method and reports the computational results 
of the FEM codes generated by the method applied to a plane 
truss structure and a machine tool structure. Dixon et al. (1988) 
theoretically discuss the importance of automatic 
differentiation techniques for finite element optimization, 
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however, they do not show numerical results of the method. 
On the other hand, in this paper, we emphasize the theory as 
well as the experimental results. The results indicate that the 
technique and the use of sensitivity analysis by FEM generated 
using an automatic differentiation method are very effective 
in the sense that (1) unlike usual sensitivity analyses for FEM 
methods (e.g., Fox et al. 1968; Wu and Arora 1986; Haftka et al. 
1989; Jao and Arora 1992; Kleiber 1993), the generated program 
can simultaneously compute the values of partial derivatives 
of a given function with very high accuracy, and that (2) the 
values computed by the generated program and the one 
computed by usual re-analysis by the FEM coincide with each 
other. The paper is organized as follows: In section 2, the basic 
principles of the automatic differentiation method is 
introduced. In section 3, the system configuration for automatic 
differentiation method is described. In section 4, some 
experiments to apply the automatic differentiation technique 
to sensitivity analysis are carried out. In section 5, we give some 
concluding remarks. 

2 
Basic principles of automatic differentiation 
In this section, we will provide the mathematical background 
of the theory of the forward mode of the automatic 
differentiation method. Automatic Differentiation methods are, 
in general, based on the direct application of the chain rule for 
computing partial derivatives of a composite function of given 
function with many variables (Ozaki 1991). In the following, 
we will describe the outline of the mathematical theory based 
on Berz (1989; 1990a). We will also provide the mathematical 
background of the theory of automatic differentiation required 
for the promised study of non-linearities. It can be viewed 
as an application of the relatively new field of Nonarchimedean 
Analysis, which allows the introduction of arbitrarily small 
quantities, infinitesimals, in a rigorous theory of analysis (Berz 
1992; 1994). 

2.1 
Principle of first order partial derivatives using 
the automatic differentiation 
Consider the vector space R 2 of ordered pairs (ao, al), a o, alER, 
in which an addition and a scalar multiplication are defined in 
the usual way: 

(a o, a~) + (b o, b~) = (a o + b 0, a, + b~) (1) 

t.(ao, a~)=(t.ao, t.a 1) (2) 

for ao, a v bo, b~eR. Besides the above addition and scalar 
multiplication a multiplication between vectors is introduced 
in the following way: 

(a 0, al). (b 0, b~) = (a0.b 0, ao.b ~ + a~.b o) (3) 

for a 0, a v b 0, b~ ~R. With this definition of a vector multiplication 
the set of ordered pairs becomes an algebra, denoted by ~D I. 

Note that the multiplication is the same one would obtain 
by multiplying (% + aa.x) and (b0 + b~.x) and keeping terms 
linear in x. 

Similarly, as in the case of complex numbers, one can identify 
(a0, 0) as the real numberes a 0. Although as a complex number, 

(0,1) is a root of - 1, here it has another interesting property: 

( 0 , 1 ) . ( 0 , 1 ) = ( 0 , 0 ) ,  (4) 

which follows directly from Eq. (3). So (0, 1) is a root of 0. Such 
a property suggests thinking of d = (0,1) as something infinitely 
small; so small in fact that its square vanishes. Consequently, 
we call d = (0, 1) the differential unit. The first component 
of the pair (a o, a~) is called the real part, and the second 
component is called the differential part. 

It is easy to verify that (1,0) is a neutral element of 
multiplication, because according to Eq. (3) 

(1,O).(ao, al)=(ao, al).(1,0)=(ao, a l) (5) 

It turns out that (a0, al) has a multiplicative inverse if and 
onlyif a0 is nonzero; so 1D1 is not a field. In case a 0 ~a 0 the inverse 
is 

(ao, a ~ ) - ~ = ( ~ - a ~ )  (6) 

It is easy to check that in fact (a 0, a~)--1. (1~0 , a~) = (1, 0). The space 
1D~ is a subspace of the field R* introduced in Nonarchimedean 
Analysis. Besides the usual real number, R * contains a variety 
of infinitely small and infinitely large quantities. The 
outstanding result of the theory of Nonstandard Analysis is that 
differentiation becomes an algebraic problem: a function f is 
differentiable if and only if for any arbitrary small quantity 
6, the real part  of the quotient, 

f ( x  + 6) - f ( x )  
(7) 

is independent of the choice of the specific & Thus, given any 
differentiable function f ,  we can compute its derivatives just by 
evaluating the formula for a special choice of 6. We choose 
6 = d = (0,1) and thus obtain 

f ( x )  =~RIf(x+d)d - f ( x !  1 

o r  

f'(x) = O[f(x + d) - f ( x ) ]  = O[f(x + d)], (8) 

where ~R denote the real part, and 0 denotes the differential part. 
In the last step use has been made of the fact that f(x) has no 
differential part. Hence differential algebras are useful to 
compute derivatives directly, without requiring an analytic 
formula for the derivatives and without the inaccuracies of 
numerical techniques. 

2.2 
Principle of higher order partial derivatives using the 
Automatic differentiation 
We define N(n, v) to be the number of monomials in 
v variables through order n. We will show that 

(n+v)! 
N(n, v) = - -  = C(n + v, v), 

n!v! 



where C (i,j) is the familiar bionomial coefficient. First note that 
the number of monomials with exact order n equals N(n,  v -  1) 
because each monomial of exact order n can be written as 
a monomial with one variable less times the last variable to such 
a power that the total power equals n. Thus we have 
N(n,  v) = N(n  - 1, v) + N(n,  v -  1): the number of monomials 
in v variables through order n equals the number of relation 
is satisfied by C(n + v, v). Since also, obviously, C(1 + 1, 1) = 
2 = N(1, 1), the formula follows by induction. 

Now assume that all these N monomials are arranged in 
a certain manner order by order. For each monomial/14, we call 
I M the position of  M according to the ordering. Conversely, with 
M~ we denote the I-th monomial of the ordering. Finally, for 
an I with M I = xil.., x~ ~, we define F I = i~! ... i~!. 

We now define, in addition, a scalar multiplication and 
a vector multiplication o n  R N in the following way: 

(a I . . . . .  a N ) + ( b  1 . . . . .  b N ) = ( a i + b  ~ . . . . .  aN+bN) (9) 

Although in 1 D p  d = (0, 1) was an infinitely small quantity, 
here we have a whole variety of infinitely small quantities with 
the property that high-enough powers of them vanish. We give 
special names to the ones in components I belonging to 
first-order monomials, denoting them by dM r In the example 
of 2D 2, we have dx = (0,1, 0, 0, 0, 0), and dy = (0, 0, 1, 0, 0, 0, 0). It 
then follows from the theory of Nonarchimedean Analysis that 
instead of Eq. (8) we obtain 

f (x  +dx, y + d y ) =  ,Sy, Sx~,SxSy, c~y~j(x,y). (17) 

In the general case of v variables and order n, after evaluating 
f in the differential algebra one obtains 

~ i z + i z + . . . + i v f  

Oxi~ Oxen... ~x~ - c.+ x~ (18) 
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t.(ai . . . . .  aN) = ( t %  . . . . .  t.aN) (10) 

(a, . . . . .  aN)" (bl . . . . .  bN) = ( q  . . . . .  cN) (11) 

where the coefficients ci are defined as follows: 

a~- b~ (12) 
Ci = Fi E F~.F~ 

O<~v,,u<=N 
Mv.Mp = M  i 

To help clarify these definitions, let us look at the case of two 
variables and second order. In this case, we have n = 2 and v = 2. 
There N- -  C(2 + 2, 2) = 6 monomials in two variables, namely, 

1, x , y ,  xx,  xy,  yy.  (13) 

As an example, using the ordering in Eq. (13), we have t = 5 
and M 3 = y .  Using the ordering in Eq. (13), we obtain for q 
through q in Eq. (12): 

C 1 ~- al .b 1 

C 2 = a 1 �9 b 2 + a 2. b 1 

C 3 = a i �9 b 3 + a 3 �9 b 1 

c 4 = 2 . (a i .b4/2  + a2.b 2 + a4.bl/2) 

q = a 1.b 5 + a 2.b 3 + a 3.b 2 + a Vb~ 

c 6 = 2 . (a l .b6/2  + a3.b 3 + a6.bi/2). (14) 

On ,D~ we introduce a third operation 8i: 

~ i ( a l , . -  �9 , a N )  = ( C 1 , "  �9 �9 , CN)  (15) 

with 

where il  iv ' ' I (x  1 ...xv) is the index of the monomial (x;~...x~O, as 
defined in the beginning of this section. 

3 
System configuration for the automatic differentiation method 
Figure 1 shows the system configuration and usage of DAFOR 
(Berz 1989; 1991; Ozaki 1991). The system consists of two 
components: the first component is a pre-complier for 
generating a FORTRAN source code for the computation by 
automatic differentiation; and the second component is a library 
for computing fundamental functions (e.g., sinx, e x) used for 
the automatic differentiation method. Figure 2 shows sample 
code fragments of an input FORTRAN program for FEM 
analysis. Figure 3 shows the resulting code fragment generated 
by DAFOR. The program contains special purpose subroutine 
call statements to compute higher order partial derivatives 
of a given function (e.g., CALL DACOP, CALL DASUB in the 
figure). 

. 

Sensitivity analysis on mechanical structures using an automatic 
differentiation technique 
We have applied the automatic differentiation method to 
sensitivity analysis problems with the FEM, which is the most 
popular in structural analyses. In the case studies described 
below, the automatic differentiation method is used to 
investigate the sensitivity of design variables of mechanical 
structures. The automatic differentiation method can be applied 
to both linear and non-linear equations (Berz 1989; Ozaki 
1991), if the equations are n times differentiable. Moreover, 
using the method, we can highly accurately compute higher 
order partial derivatives in many variables. In the case Studies, 
we have applied the method to two-dimensional linear FEM 
problems of structural analyses (Ozaki 1989). 

0 if M i has order n 
C i az(M~.xv/ otherwise 

(16) 

So 8~ moves the derivatives around in the vector. Suppose 
a vector contains the derivatives of the function f ;  then applying 
8~ to in one obtains the derivatives of  3f/O& through one order 
less. 

4.1 
Example1: First- and higher-order sensitivity analysis 
The code of sensitivity analysis of FEM using automatic 
differentiation has been applied to a plane truss structure. 
The model is a simple static model shown in Fig. 4, by which 
we will simulate a train passing over an iron bridge. This 
consists of eight nodes and thirteen truss elements. The 
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F•o[RUTS er p r o g r a <  

RAN source cod~J 

Input statement  to e x e c u ~ t e  
A.D. by editor 

Precomplier for generating 
A.D. code 

t_ . . . . . . . . . .  ~r . . . . . . . . . .  Pzocedzgze  f o r  A~r 

~eme~Sourc ~ ~ e z e ~ i ~ m ~  Technique 

putation using I 
atic [ 
ntiation . . i ,  

+ 
FORTRAN complier Li~brary 

for comput 
Linkage 'q ~ [ functions using Automatic ] 

Co~mpu}ational cod . . . . . . . . . . . . . . . . . . . . . . . .  
I executing format to do I 

utomatic Differentiation J A.D. : Automatic differentiation 

Fig. 1. System configuration of automatic differentiation technique 

boundary conditions are that the node 7 and 8 are fixed, and 
that the nodes 1, 2, and 3 respectively have the loads 10,000 kgf, 
20,000 kgf, and 10,000 kgf. Using the model, we have carried 
out the following two experiments. 

The two experiments are to compute the values of first and 
higher order partial derivatives and to predict the deflection 
of each node and the stress of each element against radius of 
each element. The object to compute the values of higher 
order partial derivatives is to indicate the effectiveness of 
Taylor series expansion using derivatives of higher order when 
the machine structures are changing greatly during 
optimization. In particular, the method is very effective when 
the connection of object function and design variables is 
non-linear. The relation of the deflection of each node against 
the radius of each element and the stress of each element against 
the radius of each element is non-linear. The sensitivity analysis 
with respect to the deflection of each node against the radius 
of each element is executed. We show an analytical model of 
each element in Fig. 4. The sensitivity with respect to deflection 
of each node against the radius of the element 1 through 13 

*PRE-NO-NV NO=3,NV=6 ...... inserted statement 
C Program plane truss for sensitivity analysis using AutomaticDifferentiation 

100 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
DIMENSION XX(10),YY(10),II(15),JJ(15),EE(15),AA(15),DX(50), 

& DY(50),TK(20),TFD(20),TU(20),EK(4,4),W(4) 
OPEN(5,FILE='DATA') 
READ(5,*) NP,NE,NB,NF 
DO I00 I=t,NP 

READ(5,*) I,XX(I),YY(I) 
CONTINUE 

DO 300 I=I,NF 
READ(5,*) I,TFD(2*I- 1),TFD(2*I) 

300 CONTINUE 
DO 310 I=I,NF 

*PRE-INPUT I TF(2*I-1)=TFD(2*I-1) 'X-FORCE 

310 CONTINUE 
DO 320 I=I,NF 

*PRE-INPUT I TF(2*I)=TFD(2*I) 'Y-FORCE' -- 

320 CONTINUE 

-- inserted statement 

inserted statement 

*PRE-OUTPUT(6) TU(I) 'RESULT OF DISPLACEMENT' 

-- inserted statement 

END 

Fig. 2. Fortran program for higher-order sensitivity analysis using 
an automatic differentiation technique 

is computed. The highest sensitivity of node 2 against the 
radius of each element is given in the case of radius of element 
2. The values of first and higher order partial derivatives with 
respect to the displacement of node 2 against the radius of 
element 2 is shown in Table 1. Regarding the sensitivity analysis 
of the values of responses according to the value of changing 
design variables, the first and higher order partial derivatives 
were computed in Table 1. The objective of this analysis is to 
examine the effectiveness of higher order Taylor expansions 
in the presence of non-linearity. When we changed the values 
of radius of the element 2 by 1%, 5%, 10%, 20%, 30%, 40%, 
and 50% increases, we obtained the results shown in Table 2 by 
computing the displacement of node 2 by the first and higher 
order partial derivatives obtained using automatic 
differentiation. The result of direct re-computation by FEM 
above the condition is shown in Table 2. The results of the 
displacement of node 2 predicted by the first order sensitivity 
analysis using an automatic differentiation and the ones by 
the direct re-computation by FEM do not coincide with each 
other when the changes of design variables are large, on the 
other hand the results of the displacement of node 2 predicted 
by the higher order sensitivity analysis using automatic 
differentiation and the ones by the direct re-computation by 
FEM coincide with each other even if the changes are large. 
Figure 5 illustrates the results of the computation shown in 
Table 2, and Fig. 6 illustrates the values of differences between 
the results predicted by first and higher order sensitivity 
analysis and re-computational values of the displacement of 
node 2 by FEM. 



*PRE-NO-NVNO= 3 ,NV=6 

* MAIN PROGRAM OFDA 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

INTEGER NODA,NVDA 

COMMON/DANONV/NODA,NVDA 

NODA = 1 

NVDA = 6 

CALL DAINI(NODA,NVDA,1) 

CALL DAINIT 

CALL MAIN 

STOP 

END 

SUBROUTINE DAINIT 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

INTEGER NODA,NVDA 

COMMON/DANONV/NODA,NVDA 

RETURN 

END 

*DA B (I)=B (I)-A(I,K)*B(K) *FOX 

CALL DACOP(B (I),ISCRDA(I+IDAA)) 

RSCRRI(2+IDAA) = A (I ,K ) 

CALL DACOP(B (K),ISCRDA(3+IDAA) 

CALL DACMU(ISCRDA(3+IDAA),I .D0*RSCRRI(2+IDAA), 

*ISCRDA(4+IDAA)) 

CALL DASUB(IS CRDA(I+IDAA),IS CRDA(4+IDAA), 

*ISCRDA(5+IDAA)) 

CALL DACOP(ISCRDA(5+IDAA),B (I)) 

* B(I)=B(I)-A(I,K)*B(K) ..... This statement is converted to the 

above nine statements for automatic differentiation. 

Fig. 3. FEM code fragment generated by automatic differentiation 
technique 

X 

1 2 3 
10000 kgf 10000 kgf 

20000 kgf 

l O m  

...._ y 

l O m  

Fig. 4. Analytical model for higher order sensitivity analysis 

Table 1. Displacement sensitivity of node 
2 against radius of element 2 

Displacement sensitivity of 
node 2 against radius of 
element 2 

Value of first 9.0946" 10 - ~ 
order derivatives 
Value of second -2 .7284"10 -~ 
order derivatives 
Value of  third 1.0914" 10 -3 
order derivatives 
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2.5 

C): Computational result by FEM 
A:  Value expected of first order 

partial derivatives using 
automatic differentiation 

[]:  Value expected of second order 
partial derivatives using 
automatic differentiation 

0 :  Value expected of third order 
partial derivatives using 
automatic differentiation 

~2 .3  
r  
�9 

~2.1 
'3 

1.9 

.~ 1.7 

1.5 , I i I , I , I , I i 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 
Relative increases of radius of element 2 

Fig. 5. Value expected from high order partial derivatives using 
automatic differentiation and computational value by FEM 

50 

A: Case of first order partial 
derivatives using automatic 
differentiation 

[~: Case of second order 
partial derivatives using 
automatic differentiation 

0 :  Case of third order 
partial derivatives using 
automatic differentiation 

�9 : Decreasing quantity of FEM 

o 40  
E 
o 
o 

. ~  c q  

2 ~  o-~ 
=20 

0 
1.1 1.2 1.3 1.4 1.5 

Relative increases of radius of element 2 

i 

1.6 

Fig. 6. Difference between high order partial derivatives using 
automatic differentiation and computational value by FEM 

The second experiment is the sensitivity analysis of the 
stress important for fracture mechanics. The sensitivity analysis 
of the stress of each element with respect to the radius of each 
element is executed. The sensitivity of the stress of each element 
with respect to the radius of the element 1 through 13 is 

Table 3. Compressive stress sensitivity of 
element 2 against radius of element 2 

Stress sensitivity of element 2 
against radius of element 2 
(kgf/mm 3 ) 

Value of first 1.9099" 10-2 
order derivatives 
Value of second - 5.7296* 10 -3 
order derivatives 
Value of third 2.2918" 10 3 
order derivatives 

computed. The highest sensitivity of element against radius 
of each element is the case of the radius of element 2. The 
values of first and higher order partial derivatives of the stress 
of element 2 with respect to radius of the element 2 is shown 
in Table 3. Regarding the sensitivity analysis of the values of 
responses according to the value of changing design variables, 
the first and higher order partial derivatives were computed 
using automatic differentiation in Table 3. The objective of 
this analysis is to examine the effectiveness of higher order 
derivatives to describe non-linearity. When we changed the 
values of radius of the element 2 to 1%, 5%, 10%, 20%, 30%, 
40% and 50% increases, we obtained the results shown in 
Table 4 by computing the compressive stress of element 2 by 
higher order partial derivatives obtained using automatic 
differentiation. The result of direct re-computation by FEM 
above the condition is shown in Table 4. The results of the 
compressive stress of element 2 predicted by the first order 
sensitivity analysis using automatic differentiation and the 
ones by the direct re-computation by FEM do not coincide 
with each other when the changes of design variables are large; 
on the other hand the results of the compressive stress of 
element 2 predicted by the higher order sensitivity analysis 
and the ones by the direct re-computation by FEM coincide 
with each other even if the changes are large. Figure 7 illustrates 

�9 the results of the computation shown in Table 4, and Fig. 8 
illustrates the values of differences between the results 
predicted by first and higher order sensitivity analysis and 
re-computed values of the compressive stress of element 2 by 
FEM. 

4.2 
Example 2: Sensitivity analysis of a machine tool structure 
The next example is the analysis of a two dimensional plane 
strain problem of a machine tool structure, which is a typical 
example of large scale structural analysis problems (Ozaki 
1988). The structural model is shown in Fig. 9, by which we 
will simulate a two dimensional model of a machine tool. This 
consists of twenty eight nodes and thirty two elements. The 
boundary conditions are that the nodes 13, 26, 11 and 23 
respectively have the loads 10 kgf, 10 kgf, 5 kgf, and 5 kgf, and 
that the nodes 20, 21, 22, 25, and 28 are fixed. 

In the first experiment, we want to execute an experiment 
for the purpose O f sensitivity analysis of the important principal 
stress from the viewpoint of fracture mechanics for the 
mechanical structure. The objective of the sensitivity analysis 
is to search for the highest principal stress among the thirty 
two element numbers against the loads of each node. The 
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Fig. 9. Analytical model for machine tool structures 
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first order partial derivatives shown in Table 5 were computed 
for sensitivity analysis by FEM using an automatic 
differentiation method. The objects of the sensitivity analysis 
shown in Table 5 are the elements of the higher principal 
stress in the all elements, that is elements 10, 12, 15, 16, and 25. 

In the next step, we executed an experiment to predict the 
principal stress values of the elements by making use of the 
first order partial derivatives obtained using automatic 

differentiation when the values of the design parameters change. 
In the experiment, because node 13 gives the highest effect 
to the principal stress of the element 10, 12, 15, and 16, 
we hanged the values of load of node 13 (10 Kgf) to 0.1%, 
0.5%, 1%, 5%, and 10% increases. The predicted values of the 
principal stress of each element are shown in Table 6. The 
result of the sensitivity analysis by automatic differentiation 
and the direct re-computation by FEM perfectly coincide with 
each other. In the second experiment, we studied sensitivity 
analysis based on automatic differentiation in comparison 
with other methods of sensitivity analysis. The traditional 
method of sensitivity analysis is based on the design of 
mechanical structures, for example the method of direct 
differentiation method, adjoint variable method, and numerical 
differentiation method (Adelman 1986; Haftka 1989). The 
numerical differentiation method is very popular and easy in 
the above sensitivity analysis method, and the numerical 
differentiation method can also be applied to compute partial 
derivatives concerning linear equation and non-linear 
equations. In this experiment, we would like to execute an 
experiment to study their computational accuracy compared 
to that of the automatic differentiation method. The quantity 
evaluated in this experiment is the important  principal stress 
from a viewpoint of fracture mechanics for the mechanical 
structure. Sensitivity analysis is performed to determine the 
principal stress of the each elements against the loads of vertical 
direction. The first order partial derivative computed the 

Element number Sensitivity of principal stress against load 
(Principal stress) (Value of first order partial derivatives) 

Node 13 Node 11 Node 23 Node 26 
10Kg 5Kg --10Kg - 5 K g  

10 5.10150"10 -a 2.55557"10 -3 -- 1.58716' 10 -7 3.47793 *10-7 
6.37902" 10-z 
12 2.33569"10 -3 --1.78527"10 -4 --3.49382"10 -9 7.65595"10 -9 
2.24642" 10-2 
15 2.37553"10 -3 1.50970"10 -3 8.57690"10 -6 --1.05802 .10-5 
3.13667"10 -z 
16 2.32745"10 -~ 1.57481"10 3 _4.07929,10-~ _1.49148,10-4 
3.28440 * 10 -2 
25 3.80131"10 -4 2.61129"10 -4 7.63843"10 -4 --4.71917 .10-4 
6.00691"10 -3 

Table 5. Sensitivity of principal stress 
against each load 

Table 6. The Principal Stress expected from sensitivity analysis using automatic differentiation increasing load of node 13 

Element number Principal Stress using automatic differentiation 
Original load of node 13 : 10 kgf unit (kgf/mm 2) 

0.1% increase 0.5% increase 1.0% increase 5% increase 10% increase 
0.01 kgf 0.05 kgf 0.1 kgf 0.5 kgf 1.0 kgf 

10 A.D. 6.3841"10 -2 6.4045"10 -2 6.4300 .10-2 6 -6341.10-2 6.889"10-2 
6.3790" 10 -2 Re-analysis by FEM 6.3841 * 10-2 6.4045" 10-2 6.4300" 10 -2 6.6341 * 10 -2 6.889* 10 -2 
16 A.D. 3.2867"10 -2 3.2960"10 -2 3.3077 .10-2 3 .4008.10-2 3.5171"10-2 
3.2844"10 -2 Re-analysisbyFEM 3.2867"10 -2 3.2960"10 2 3.3077,10-2 3.4008"10 2 3.5171,10-2 
15 A.D. 3.1390" 10 -2 3.1485" 10 -2 3.1604" 10 _2 3.2554* 10 2 3.3742* 10 -2 
3.1367"  10 -2 Re-analysis by FEM 3.1390" 10 -2 3.1485"  10 -2 3 .1604" 10 -2 3.2554* 10 2 3.3742* 10 2 
12 A.D. 2.2488* 10 -2 2.2581 * 10 -2 2.2698" 10-2 2.3632* 10 -2  2.4800" 10 -2 
2.2464* 10-z Re-analysis by FEM 2.2488* 10 -2 2.2581 * 10 -2 2.2698* 10 -2 2.3632* t0 -2 2.4800* 10 -2 

A,D.: Automatic Differentiation 



Table 7. Comparison of computational accuracy with automatic differentiation and numerical differentiation 

Element number of object Sensitivity of the principal stress against load of node 13 (maximum load) 
(Principal stress: Kgf/mm 2) load of node 13 : 10 Kgf 

0.1% 1 0.5% 1.0% 5% 10% 
(0.01 Kgf) (0.05 Kgf) (0.10 Kgf) (0.50 Kgf) (1.00 Kgf) 

10 A.D. 5.1015"10 .3 
(6.3790"10-2) 2 N.D. 5.1020" 10 -3 5.1000"10 .3 5.1018"10 .3 5.1025"10 .3 5.1035"10 -3 
16 A.D. 2.3274"10 3 
(3.2844"10 -2) N.D. 2.3279"t0 .3 2 ; 3 2 ~  ~ 2.3275"10 3 ~'~i32:74"~0 3 2.3274"10 .3 
15 A.D. 2.3755"10 a 
(3.1367"10 -~) N.D. 2.3750"10 .3 2.3754"10 3 ~ 5 ~ 0 ~ . ~ :  2.3756,10-s 2.3757,~10-3 
12 A.D. 2.3357"10 -3 
(2.2464" 10 -2) N.D. 2.3350* 10 -3 2.3356* 10 3 ~ 1 ~  ~,3357~10 ~3 2,3357* 10 ~s 
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A.D.: Automatic Differentiation 
N.D.: Numerical Differentiation 

differential width 
2 Principal stress value of each element 

sensitivity analysis by FEM using an automatic differentiation 
method were indicated in Table 6 by the previous experiment. 
As a consequence, the vertical toad of  node 13 experienced 
the highest effect to the principal stress of  the elements 10, 12, 
15, and 16, and we apply the above results in this experiment. 
The result of the sensitivity analysis by the automatic 40 
differentiation method and the numerical differentiation 
method are shown in Table 7. We select the differential width 30 
of 0.1%, 0.5% 1%, 5%, and 10% for the values of load of the ~. 
node 13 (10 kgf) in the sensitivity analysis based on numerical 
differentiation, because for these values, the result computed - 20 
using an automatic differentiation method and the direct ~3 
re-computation by FEM perfectly coincide with each other. 10 
The result of sensitivity analysis using numerical differentiation 
are different; the values of  first partial derivatives are shown 

0 
in Table 7 as a function of  the differential width, and the 0 
numerical differentiation method must change the differential 
width. The computational error is increased by rounding error 
and truncation error in the numerical computational process 
of sensitivity analysis, and therefore the numerical 
differentiation method is not useful from the viewpoint of 
computational accuracy and computational effort. The 
automatic differentiation method is very effective from the 
viewpoint of computational accuracy and computational labor 
in comparison with numerical differentiation method. 

In the third experiment, we have investigated computation 
costs of  the sensitivity analysis by FEM using the automatic 
differentiation method. The structural analysts would like to 
want the sensitivity analysis of the plural objective functions 300 
against the design variables when the optimum design is 
executed the design for the mechanical structures. We have 
computered the sensitivity analysis of the plural objective ~ 200 
functions by the sensitivity analysis code of FEM for the plane .~_~ 

strain analysis using the automatic differentiation method. 
The design parameters are the loads of nodes (four loads) ~ 100 
and the Young's modulus of the all elements (thirty two 
elements), and the evaluation items are each the stress, shearing 
stress, and two kinds of the principal stresses of the X direction 
and the Y direction. We have executed the sensitivity analysis 
when increasing the number of  objective functions. Figure 10 
shows the computation of the sensitivity analysis when the 

Design : load of node 
variables (4 loads) 

C) : Automatic differentiation 

[ ]  : Re-computation by FEM 
(Numerical differentiation) 

[] 

[] 

H 

[] 

o o O O 

I i ] ; I ; I i I  

1 2 3 4 5 
Evaluative item numbers (case) 

i 

6 

Fig. 10. Computational time increasing evaluation item 

Design : All elements 
variables Young's modulus 

(3 2 elements) 
C) : Automatic differentiation 
�9 : Re-computation by FEM 

(Numerical differentiation) 

0 0 O '  0 0 

0 
0 6 

Evaluative item numbers (case) 

Fig. 11. Computational time increasing evaluation item 



Table 8. Sensitivity of node against Young's modulus of element 

Node number Sensitivity of node against Young's modulus of element 

13 --1.71634"10 7 _1.47323,10-7 _1.40783,10-8 
EN 9 EN 16 EN 8 

12 --1.71768"10 -7 --1.47321"10 7 _1.40801,10-7 
EN 9 EN 16 EN 8 

11 -1.06680"10 -7 --9.96540"10 -8 -6.97619"10 -8 
EN 16 EN 9 EN 8 

10 --1.06631"10 7 _1.02653,10-7 _7.01887,10-s 
EN 16 EN 9 EN 8 

-7.75710"1o 8 _6.o8862,1o-8 
EN 10 EN 6 
-7.70304,10 -8 --6.08888,10 -8 
EN 10 EN 6 
--5.19272,10 -8 -3.35183,10 -8 
EN 10 EN 6 
--3.92238,10 -8 -3.35796,10 -8 
EN 10 EN 6 

232 EN: element number 

design parameters are the loads of the nodes (four loads). 
Figure 11 shows the computation of the sensitivity analysis 
when the design parameters are the Young's modulus of the 
all elements (thirty two elements). The increases of the 
computational time are very little against the increases of 
evaluative items from the Fig. 10 and 11. On the other hand, 
the evaluation items against the design parameters are 
increasing, the usual sensitivity analysis using the numerical 

1 2 3 

% o,o 
4 

i 5 kgf 
14 

17 

%1/'| 
20 21 22 25 

�9 1 St Influence sensitivity 
(Element 9) 

[ ]  2 nd Influence sensitivity 
(Element 16) 

[ ]  3 rd Influence sensitivity 
(Element 8) 

[ ]  4 th Influence sensitivity 
(Element 1 O) 

[ ]  5 th Influence sensitivity 
(Element 6~ 

12 

13 

10kgf 

26 

27 

28 

Y 

5oo mm T 
x 

500 mm 

Fig. 12. Distribution chart of the computational sensitivity 

differential method rapidly increases the computational time. 
Therefore, the sensitivity analysis for FEM using the automatic 
differentiation method is the very effective when the plural 
evaluation items must be computered. This suggests the 
superiority of our automatic differentiation method. 

4.3 
Example 3: Optimum design of a machine tool structure by 
sensitivity analysis 
We tried to find the optimum design of a machine tool structure 
by sensitivity analysis using an automatic differentiation 
technique. In this experiment, we use the machine tool structure 
shown in Fig. 9 of the previous section. The machine tool 
structure has problems in the form of deflection of the point 
of contact of the grinding wheel and the cut product, because 

Table 9. The computational result using FEM when Young's 
modulus increase 5 times 

Node number Computational result when Young's modulus 
increase 5 times unit (um) 

Element 6 Element 16 i~li9 

13 19.2884 18.2772 !7 
21.0994 um 8.5% 13.4% ~ ~5~0 
12 18.6262 17.6097 ~95Z5 
20.4373 um 8.8% 13.7% 
11 10.6845 9.6286 G 52~6~ 
11.6789 um 8.5% 17.9% 1~8i8% ~ 
10 10.2900 9.2369 ~ 4 5 ~  
11.2861 um 8.8% 18.6% 

per cents(%): decreasing ratio 

Node number Computational result by FEM when the Young's modulus of the 
element 9 increases unit (urn) 

E = 21000 10% 2 times 5 times 10 times 
Kgf/mm 2 23100 42000 105000 210000 

Table 10. The deflection of processing 
point when the Young's modulus of the 
element 9 increases in order to optimize 
design 

13 20.7674 19.1224 17.6185 17.0036 
21.0994 um 1.9% 9.5% 16.5% 19.4% 
12 20.1051 18.4585 16.9525 16.3367 
20.4373 um 1.5% 9.3% 16.7% 20.1% 
11 11.4851 10.4916 9.5276 9.1180 
11.6789 um 1.7% 10.3% 18.8% 22.2% 
10 11.0863 10.0555 9.0452 8.6132 
11.2861 um 1.8% 10.6% 20.4% 23.9% 

per cents(%): decreasing quantity 
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grinding accuracy is dependent on the deformation of the 
grinding wheel (Ozaki 1988; 1991), therefore we want that 
deformation of the grinding wheel reduced as much as possible 
to realize a high quality product. We hope that the stiffness 
of the parts affecting deflection of the grinding wheel are strong. 
To obtain a high quality product, the objective of the sensitivity 
analysis is to explore the optimal Young's modulus of the 
most effective elements in order to minimize the deflections 
of the nodes 12 and 13, which shows the largest values among 
the nodes. To get the sensitivities of the deflection of each 
node, we determine the values of Young's modulus of all the 
elements as design parameters. The objectives of the experiment 
are (1) to get the sensitivity of the deflections of the nodes, 
and (2) to optimize stiffness of the machine tool structure 
in order to minimize the deflections of the nodes connected 
grinding accuracy. 

In the first step, we computed the sensitivity of the node 
delection values against the changes of Young's modulus. The 
results of the analysis are shown in Table 8, which describes 
the effects to the nodes 12, 13, 11, and 10. For example, on 
the node 13, the deflection value is the largest, and the elements 
9, 16, 8, 10, and 6 give the effects of increasing order. Figure 12 
shows the distribution chart for sensitivity describing the 
effects to the Young's modulus of each element against the 
node 13. To validate the results of sensitivity analysis by the 
automatic differentiation method, we have carried out direct 
FEM analyses, in which we have changed the Young's modulus 
of the elements 9, 16, and 6 from the original to a value increased 
by a factor of five. We compared the deflection values of the 
elements 9, 16, and 6. The results are shown in Table 9, in 
which we find that the deflection values decrease according 
to the increases of the effects of deflections of the nodes. 

In the second step, it is desired to reduce the deflection of 
the point connected to the grinding wheel as much as possible 
in order to realize a high quality product. It is assumed that 
the grinding wheel is fitted on node 11 and node 13 in the 
machine tool structure shown in Fig. 9. We assume that the 
objective function for optimization is the deflection of node 
13. The previous sensitivity analysis showed that the Young's 
modulus of elements 9 is the optimal Young's modulus of the 
most effective elements in order to minimize the deflection 
of the node 13. The computational result is shown in Table 10 
when we increase the Young's modulus of the elements 9 in 
order to minimize the deflection value of nodes 13, 12, 11, 
and 10. 

In the third step, we executed an experiment in order to 
minimize the deflection of the nodes fitted the grinding wheel 
when the Young's modulus of the multi elements increases at the 
same time. In the experiment, because the element 9, 16, 8, 
10, and 6 give a higher effect to the deflections of the 
nodes 13, 12, 11, and 10, we changed the values of Young's 
modulus of the each element to 2 times, 5 times, and 10 times its 
original value. The computational result of deflection of each 
node by FEM are shown in Table 11, when the Young's modulus 
of the effective multi elements increases at the same time. In 
the modified design of the above experiment, we have obtained 
optimum design that the deflection of the nodes 13 and 12 
are minimized compared to the Young's modulus of the 
elements 9 and 16 to 5 times increases with the Young's modulus 
of the elements 9 to 10 times increases. The mechanical structure 
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as to machine tool structure required higher quality and higher 
precision are given damage to lose the equilibrium connection 
around the objective parts optimized, when the changing design 
are large. We have gotten that the optimal design is very 
effectiveness and practical use by a few changing design in 
this experiment. 

5 
Concluding remarks 
Using automatic differentiation techniques, we observed the 
following advantages in the analyses. 

(1) We can very easily and quickly execute sensitivity analysis 
of structural design problems. 

(2) We can very easily execute optimal design on machine 
toot structure by sensitivity analysis. 

(3) We can also predict the effects of changing design 
parameters with high accuracy. 
The most remarkable feature of the automatic 
differentiation method is that the method can 
simultaneously compute the values of higher order partial 
derivatives. This results in the following effects in the 
sensitivity analyses. 

(4) Our method becomes superior to the conventional ones 
using numerical differentiation, because it is not sensitive 
to the rounding and truncation errors associated with 
the numerical computational process of sensitivity analysis. 

(5) Our method is very effective when there are non-linear 
dependences in on the design parameters. 
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