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Abstract .  The problem of looking for high efficient modern control 
strategies in fermentation technology is very urgent, nowdays. Par- 
ticular attention should be paid to the processes in fed-batch mode. 
Both, optimal feedforward and feedback control approaches are 
suggested. A contribution is considered to have been made in the 
feedback control where continuous and discrete versions are treated 
as well. The control laws are carried out by a variation calculus 
problem and a polynomial pole placement synthesis solution, re- 
spectively. All the algorithms result in an optimal substrate feed rate 
profile. On the basis of recursive least squares identification of the 
model coefficients an adaptive discrete-time control strategy is pro- 
posed. Some satisfying simulation results are dealt with. 

1 I n t r o d u c t i o n  

In comparison with conventional chemical industries the 
fermentation industry still holds a backward position in re- 
spect of the application of modern control techniques. Some 
plausible reasons are the following: 

- Shortage of adequate dynamic process models suitable for 
control purposes. 

- Lack of on-line sensors for substrates, biomass and prod- 
ucts. 

- Major part of the processes in the biotechnical industries 
is carried out in batch for fed-batch reactors, causing op- 
erating points to vary. 

- Some technical limiting factors, e.g. continuous feeding is 
not possible. 

Many industrially important fermentation processes are 
carried out in a semibatch mode in which a feed stream 
containing substrate and/or nutrients is fed into the fermen- 
tor during the course of batch fermentation. At the end of 
fermentation the broth is withdrawn partially or completely, 
and the operation is repeated. These, so called fed-batch 
cultures have been used to produce antibiotics, amino acids, 
microbial cells, enzymes, and organic acids. Control of the 
substrate concentration is considered to be most effective in 
overcoming such effects as substrate inhibition, catabolite 
repression, product inhibition, glucose effect, and auto- 
trophic mutation. 

Numerous articles have been dealing with the determina- 
tion of the optimal feed rate profiles for fed-batch fermenta- 
tion, e.g. San and Stephanopoulos [1], Lim, Tayeb, Modak 
and Bonte [2], Modak and Lim [3], etc. This paper has not 
been designed to make a contribution in this field. Neverthe- 
less, in order to complete the fed-batch process optimization 
problem, we shall list the basic mathematical formulas for 
optimal feed rate profile calculation. This is necessary for 
comparability with other methods. 

Algorithms for optimal feed rate profile determination 
result in a feedforward control law. From the state of art in 
the off-line optimization of batch and fed-batch operations 
it may be concluded that a feedforward control of a biotech- 
nological process is rather risky, not to say hazardous. 
Therefore, an additional feedback control seems to be an 
essential requirement. The implementation of such feedback 
control, however, is very often hampered by the absence of 
on-line sensors for the most important state variables. This 
is one of the reasons that development of various estimation 
schemes is of crucial importance for an effective control. 
Although progress in this area has led to improved on-line 
estimations of the bioreactor state, it is not likely that reli- 
able identification in industrial processes with multiple sub- 
strates and products will be achieved by these methods. 
Special emphasis has been therefore given to new automatic 
sampling device, which may help to move the analysers from 
the laboratory to the process, Reuss [4]. As in many chemical 
processes these process analysers may then become key in- 
puts to more reliable computerized process control systems. 

In this paper a fed-batch process equipped with such an 
analyzer is considered. For this case an effective feedback 
control law is suggested. Both, a continuous and a digital 
control problem are treated. The first one is based on a 
linearized model of second order having been carried out 
under conditions of "quasi-steady state" [5]. The control law 
is given by a "classic" variation calculus method. For the 
second one a discrete-time model identified by a least 
squares method is used. The control law results from poly- 
nomial approach of discrete linear control [6]. This provides 
a basis for adaptive feedback control of biotechnological 
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process when a recursive identification method is used. 
Herein a combinat ion of the recursive least squares method 
with exponential forgetting with a polynomial  pole-place- 
ment  control strategy is proposed. For  all cases as a control 
variable the feed flow rate is considered. 

2 Optimization problem 

The optimization problem is to determine, for a given fed- 
batch fermentation described by a set of mass balance equa- 
tions, the optimal feed rate profile which will minimize a 
given profite function. The usual lumped mass balance equa- 
tions under certain assumptions [5] are the following: 

(x v ) '  = ~ x v, x (0) = Xo (1) 

(s V)' = - cr x V + sv F, s (0) = s o (2) 

( p V ) ' = ~ x V - k p V ,  p(0) = p o  (3) 

V' = F, V (0) = V o (4) 

where x, s and p are the concentrations of cell mass, substrate 
and product,  respectively; s F is the feed substrate concentra- 
tion; V is the fermentor volume; F is the volumetric feed 
rate; k is the hydrolysis constant;  and #, a and ~ are the 
specific rates of cell growth, substrate consumption, and 
product  formation, respectively. 

Physical constraints must be imposed on the final fermen- 
tor volume and the feed rate: 

V(t l )  = V I and 0 :Ymi n <_F(t) <__Fro.x, 

where f is used to denote the final fermentation time. 
Let x be a state vector which takes the form 

x r = Ix V, s V, p V, V, t] (5) 

Substitution of Eq. (5) into Eqs. (1)-(4) yields a state-space 
description: 

x ' =  a(x) + bF; x(O) = Xo (6) 

Elements of vectors a(x) and b are obvious from Eqs. (1)-(4). 
The profit function to be minimized is considered to be a 

function of the final outcome of fermentation: 

g = - - f [ x ( t l )  ] (7) 

Hence, the optimization problem is to determine the optimal 
feed rate profile, F (t), which minimizes the performance in- 
dex given by Eq. (7) for the fermentation processes described 
by Eqs. (1)-(4) with respect to the given physical constraints. 
According to the minimum principle of Pontryagin [8] the 
problem can be solved by minimizing of the Hamiltonian:  

H = 2  r [a(x) + bE],  (8) 

where ~r is the adjoint vector defined by: 

,~=--~H/~x;  2 / ( t s ) = - - S f / 8 x i ( t r  i---1, 2, 3, 5. (9) 

The optimal feed rate F~ (t) can be determined by examining 
the coefficient ~r b = a the following equation: 

Fma• ~ < 0 
F~(t)= ~ , ~ r ( a ~ c - c x a ) ~ r c ~ b  0~=0 (10) 

( Fmi n ~ > 0 

where a~=Oa/Ox, c = - a x b  and cx= Oc/Sx. 
Thus, the procedure of optimal feed rate determination 

can be summarized as follows: 

1. Choose an admissible profile of F (t) 
2. Calculate elements of x by simulation of Eq. (6) 
3. Calculate ~, from Eq. (9) according to a backward time 

variable z = t I -  t 
4. Examine coefficient e and choose the right formula for 

Fr (t) calculation using Eq. (10) 
5. Calculate F (t) ~ F~ (t) 
6. Repeat the calculation procedure with the "new" F (t) pro- 

file 
7. Stop when F (t) = F~ (t) 

3 Continuous feedback control 

Let us define the task of the optimal control as follows: 
Generate  an optimal feed flow rate course such that  the 
substrate concentration is maintained on a desired constant 
value for a certain phase of the fermentation. 

For  feedback control purposes the mathematical  model 
can be transformed to: 

x ' =  ( p - u ) x  (11) 

s' = - a x + u (s~-- s) (12) 

p ' = ~ x  - (k +u) p (13) 

where u denotes the control variable, u = F / V  
The quasi-steady state of a constantly-fed-batch culture is 

characterized by dx /d t  ,~ O, ds/dt  ,~ 0 and # ,~D where D is 
the dilution rate. Assuming such a case, for the fed-batch 
process described by Eqs. (1)-(4) a linearized model of sec- 
ond order can be derived [9]: 

a z S " + a l s ' + a o s = b o u + b t u ' ;  s(0)=So,  s ' ( 0 )=s~ .  (14) 

For  a t ime-invariant system, coefficients ao, a l, a 2, b o and bl 
are constant. The Laplace transform of the linearized system 
gives: 

bl p + bo (15) 
F~ (p) = a 2 p 2 + a l p + a o ,  

where p is the Laplace argument. The performance criterion 
to be minimal is: 

oo 

J = j G t d t =  ~ [(s w -  s) 2 -t- A 2 (st) 2] dr, (16) 
0 0 

where sw is the set-point value and A is a weight factor. The 
Hamiltonian,  when a variation calculus method is applied, 
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Fig. 1. Scheme of the continuous-time control strategy 

takes the form: 

Hj  = G 1 + 2 s (t) G2, (17) 

where 2j is the Lagrange function and G 2 is the left side of 
the system description (14) transformed to an equation 
G 2 = 0. Using the Euler-Poisson equations [10] we can deter- 
mine the optimal substrate concentration profile as: 

s(t) = s w [1 - exp ( -  t/A)]. (18) 

Then, the optimal control law results from Eqs. (11)-(15) as: 

al  a0 f blu'+bo u= ~ ( s w - s ) + ~  (Sw-S) dt 

a2 d 
+ --~ ~[ (sw-s), (19) 

where the right side represents an optimal P I D  controller. 
The continuous feedback control scheme is proposed in 
Fig. 1. 

4 Discrete feedback control 

For  a successful discrete control design the impulse transfer 
function of the controlled object 

B(d) 
F,  - (20) 

A(d) 

should be known. Ill Eq. (20) d is the shift operator,  B and A 
are polynomials. The coefficients of Eq. (20) can be calculat- 
ed directly from Eq. (15) using Z-transform, however, the 
utilization of the obtained transfer function is strongly limit- 
ed. When a reliable input-output  measurement  system is at 
disposal coefficients B and A can be identified by means of 
a least squares identification method. Either a single or a 
recursive identification method can be applied. The latter, 
when combined with an effective discrete control algorithm, 
gives a good basis for adaptive control. 

As a control strategy the algebraic polynomial  approach 
with pole-placement design is proposed [6]. The adaptive 
control scheme is shown in Fig. 2, where R/P and Q/P 
represent a feedforward and a feedback controller, respec- 
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Fig. 2. Discrete-time adaptive control structure 

tively. R (d) is chosen as a zero-order polynomial.  Polynomi-  
als Q (d) and P(d) fulfill the Diophant ine equation: 

A P + B Q = M ,  (21) 

where polynomial  M (d) includes all the designed poles of the 
feedback system. 

Then, the control law in accordance with Fig. 2 is 

R Q 
u =  PS'~ --pS. (22) 

4 An example 

The object of feedback control is a fed-batch biochemical 
reactor described by equations (11)-(13) while sF= 500 g/1 
and k = 0.01 1/h. The initial conditions are x o = 1.3 g/l,  s o = 
69 g/l, Po = 0 g/1 and V o = 8.121 I. 

The bioprocess kinetics is governed by the equations 

/~ = 0.11 s x/(0.006 x + s) (23) 

= 0.004 s/(0.0061 x + s + 10 s 2) (24) 

cr = #/0.47 + ~/1.2 + 0.029 (25) 

The system has been modelled and simulated on a digital 
computer.  In Fig. 3 and Fig. 4 we offer a comparison when 
the process is operated in a batch and a fed-batch mode, 
respectively. The advantages of the fed-batch fermentation 
are obvious. Applying the Taylor's expansion to Eqs. (23) 
and (24) in the neighbourhood of x = xs, s = ss and p = p, the 
coefficients of linearized model (14) can be calculated. For  
x s = 30.535 g/l, s s = 1.57 �9 I 0  - 2  g/1 and ps=0.188 g/1 we have 
obtained: s2=1.489 , a1=47.732 , %=0.738 ,  b o = l  and 
b 1 =744.313. 

Some optimal feedback control simulation results for the 
continuous case using the control law in accordance with 
Eq. (19) are demonstrated in Fig. 5 and Fig. 6. While in 
Fig. 5 the influence of the weight-factor A upon the control 
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Fig. 3. Batch process concentration profiles 
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Fig. 4. Fed-batch process concentration profiles 

- 8  
g/I 

E 
O 

O 
2 

0 

b 0.4- 
l/h 

. E l  

-~ 0.2. 

0 

0.010 

g/[ 

to 

E 
.9 

0.005 

8 

A=I 

0.5 

1 

0 2 4 6 
Time t 

h 8 

Fig. 5. Input and output variable courses for various A 

Bioprocess Engineering 7 (1992) 

I-4 
i 
o 

�9 7 0.3 
D 

_~ l/h 
d ~  

"~ 0.2 

"5 

8 0.1 
( . )  

2.0 -[ x 0.01 
x g / t [ ~  g/t  

.~_ 
s 1.0J~ ooo 

o 
L )  

0 
o 

( . )  

# 

s / 

2 4 6 8 10 h 12 
Time t 

Fig. 6. Input and output variable courses by substrate continuous- 
time control 
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Fig. 7. Simulation results of adaptive discrete-time control 

action is underlined, Fig. 6 shows the behaviour  of the con- 
centrat ion profiles in the reactor. The substrate set-point 
value s w = 0.01 g/1 was strictly maintained.  

In Fig. 7 we introduce a result of the adaptive version of 

discrete-time opt imal  feedback control  on the basis of the 
control  scheme in Fig. 2 for the discussed fed-batch process. 
F o r  evaluat ion of Eq. (20) the recursive least squares identi- 

fication method has been used. 

5 Conclusion 

Plenty of simulation events have been carried out. However,  
it would exceed the normal  extent of this paper  to present all 
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results. The complex analysis of fed-batch process control 
shows, that the control design is strongly influence by both, 
mathematical  model availabilities and measurement  possi- 
bilities. When an exact mathematical  model is at disposal an 
open-loop process control can be proposed,  however, expe- 
rience shows that an only feedforward control action is 
rarely entirely sufficient. On the other hand, the feedback 
control needs a highly reliable measurement  system. 

The present results confirm a good ability of the proposed 
algorithms in set-points value tracking. It  is better, of course, 
for continuous control but, unfortunately, very few of indus- 
trial processes ar~e equipped with continuous substrate feed- 
ing facilities so far. Taking into account the relatively large 
time constants of these processes and with respect to the 
rapid development in computer  control strategies recently, 
the adaptive discrete-time control should be preferred. A 
reasonable choice of the sampling period for the control 
variable calculation and the system parameter  identification 
is of significant importance. Obviously, this should be made 
in accordance with system dynamics. 
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