
PETER BENDER AND ALFRED SCHREIBER 

T H E  P R I N C I P L E  OF O P E R A T I V E  C O N C E P T  

F O R M A T I O N  IN G E O M E T R Y  T E A C H I N G  

In recent discussions the logical (deductive) structure of geometry as a pre- 
dominant guiding principle for geometry teaching has become more and more 
questioned (see [2]). Instead more emphasis is placed on informal aspects of 
concept formation, not least by regarding geometry "as an important means 
of understanding and organizing spatial phenomena" ([13, p. 286]). Such 
considerations have given rise to recommendations that geometry should be 
taught at the primary level [1]. But above all, the most significant demands 
appear to be for practical activities with concrete forms, and the exploration. 
of the primordial relation between geometry and reality (cf. [11], in par- 
ticular the list of 'haphazard questions' on p. 418f; and [9]). In our studies 
on geometric concept formation [3, 4, 20] we proposed that these demands 
could be met by using a didactical principle which we call the principle of 

operative concept formation (POCF). 

1. OPERATIVE GENESIS OF GEOMETRICAL CONCEPTS 

One of the most important problems in learning geometry is that of acquiring 
geometrical concepts. In traditional instruction there are mainly three ways of 

introducing such concepts: 

(a) by definition (language), 
(b) by giving examples (intuition), 

(c) by drawing (construction). 

(For that see [14] .) 
Let us take, for example, the concept of the straight line. 
Concerning (a): Being a primitive concept, 'straight line' is usually not defined 

at all. One could define it by means of intersections of planes, but this leaves 
the task of explicating what 'plane' means. Even ifa concept remains undefined, 
there are still certain facts about it that can be formulated as axioms; e.g., two 
straight lines which lie in one plane are either parallel or intersect in one, and 
only one point; or: every straight line is determined by two of its points. 

Concerning (b): One could ask: Where do straight lines occur? There are 
many suitable phenomena such as the edge of a table, axes of rotation, rays of 
light, etc. 
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Concerning (c): The standard method is producing, or rather reproducing, 

straight lines with a ruler. Other possibilities are folding a sheet of paper or 

stretching a thread. 

Of course, these three ways of introducing concepts are all indispensable 

to any method of teaching geometry. On closer inspection, however, there 

appear certain epistemological and pedagogical problems. Language, intuition, 
and construction are widely used in an essentially empiricist manner, that is, 

instruction is based ~pon the opinion that geometrical concepts are mainly 

derived from things in the world around us, by some sort of  abstraction. 
However, one should not forget the fact that most of those real forms repre- 

senting geometrical ideas do not arise from nature, but are artificial, made by 
man, such as rulers, edges, stretched threads, folded sheets of  paper, wheels, 

rollers, boards, bricks, screws . . . . .  Therefore the genesis of concepts like 

'straight line', 'circle', 'cylinder', 'plane', 'orthogonal', 'parallel' is not complete 

if based on mere contemplation or reproduction of such forms. In fact, these 

concepts are not found as such in nature, but exist first as ideas in man, who 

carries them into the physical world for his own purposes. This origin is, in 

our opinion, an essential part of geometric concepts. (Cf. [7] and [21].) 

This requires a method of evolving concepts which complements the three 

ways mentioned above. It will not simply be added to them as a fourth way 

but will be used in each of them. We call it the principle of  operative concept 
formation (POCF), which reads as follows: 

Geometrical concepts are formed operatively, that is, starting from given 
purposes, norms are developed to generate forms which fulfil these purposes. 
The norms, mostly homogeneity postulates, are associated with rules for their 
realization by exhaustion, thus establishing an actual basis for the concepts 
attached to them. 

We want to explain this principle with the following scheme (Figure 1), 
taking as an example a possible formation of the concept 'Quader' (rectangular 

solid). 

To build a wall bricks are needed that ensure solid, gapless construction. 
The bricks should not be too big, or too heavy, so that the bricklayers can 
handle them without too much effort. The tessellation of the wall must not 
be determined by the position of one brick, but must be variable. Further- 
more, all sides of the bricks should be parallel or orthogonal to the direction 

of gravity. 
An analysis of these purposes leads to the following geometric function of 

the brick: it should fit copies of itself, it should fit into the gravitational field, 
it should fit into the human hand. Fitting of geometric forms (i.e., (partial) 
incidence of their surfaces) generally requires three aspects to be considered: 
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Fig. 1. Scheme of the operative concept formation. 

restriction of movableness, optimization (size and proportions of the brick in 

our example), and measurement (three short edges yield one long one). Only 
the first aspect is really essential for the purpose of the brick, that is, variable 

parquetry of walls within the gravitational field. 

From these considerations we can derive a norm for bricks: A brick must 
have pairs of parallel plane sides, these pairs being orthogonal to each other. 
Thus the concept of the Quader has been generated by Meation, involving, 
however, the concepts 'plane', 'parallel', and 'orthogonal'. This concept is 
exhausted by the usual brick (realized form) up to a certain degree of accuracy 
which depends on the purpose and use of the brick. This degree of accuracy 
need not be too high, because many kregularities can be compensated for with 
mortar. 

Thousands of years of  practice have proved this form of brick to be the 
most expedient one for the purpose of constructing walls. 

Let us now have a closer look at the two arrows 'ideation' and 'exhaustion' 

in Figure 1. 
By ideation we mean, roughly speaking, procedures which lead, via norms, 

to (a system of) concepts (ideas) being used as if those norms held. This means 
essentially that the ideas are not gathered from reality, but conceived on their 
own and then carried into it ; (for a general discussion of this point see [21] ). 

As Dingier stressed in [7], norms for geometric forms frequently demand 
the points of the surface to be indistinguishable. This is equivalent to the 
postulate that a property attributed to at least one point has to be attributed 
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to all points (homogeneity postulate). There is a close relationship between 
homogeneity and symmetry (of. [4] ). At the pre-geometricallevel,homogeneity 
affects various phenomena: a drawer can be moved in its bearing ;things on tables 
can be placed everywhere; a wheel rolls without hitching; etc. Homogeneity 
of surfaces, for example, can be formulated precisely (after Lorenzen [17]) 
by the following scheme: 

PIS ^P'IS Aae'(S,P) -~ ~'(S,P'). 

That means: All sentence forms JaI(S,P), with no free variables other than S 
and P, that are true for the point P of the surface S, are also true for every 
other point P' of S. Why, for example, does the surface of a tin can come to 
be inhomogeneous in the sense of this scheme? Taking for ~(S ,P)  the 
sentence form 'In P exists one, and only one support plane of S' regular points 
of S fulfilling Jr P) can be distinguished from edge points having more than 
one support plane (Figure 2). Without proof we mention the fact that the only 
surfaces for which the above scheme holds are the plane, (the surface of) the 
sphere, and (the surface of) the (infinite) cylinder. Straight line, circle, and 
helix represent the corresponding homogeneous curves. (For details cf. [4].) 

Fig. 2. 

As to the arrow called exhaustion, procedures are to be considered which, 
via suitable rules, produce real forms that represent a given geometrical 
concept. Exhausting a geometric idea essentially means making a series of real 
forms with increasing degree of accuracy, i.e., which fulfil the given idea 
(norm) with growing perfection. (The terminology follows [8] ; see also [20] .) 
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Simple examples are the realization of a point by sharpening a pencil, or 
of a straight line by intersecting two planes (e.g., on a cube). Obviously, in 
both examples planes already embodied are involved. Planes, for their part, can 
be produced by taking three plates and grinding two of them on each other 
alternately ('three-plates-method', first systematically applied in industrial 
production by Maudslay in the beginning of  the 19th century). Homogeneity is 
effected by the grinding; curvature vanishes in consequence to taking three 
plates. Exhaustion never yields a perfect representation of  the concept itself; 
geometrical forms can only approximately be represented by real forms, the 

degree of  accuracy depending on the given purpose. For example, it is unnecess- 
ary to sharpen a pencil too much, to straighten the edges of  a flower bed with a 
ruler of  precision, or to polish a brick. 

The POCF, till now, has dealt with the formation of concepts, involving 

analyses of purposes, making real forms and their practical use. These oper- 
ations differ from what is usually understood by Piaget's term 'operation': 
for an instructive description of this term, particularly its possible r61e in 
mathematical education, see Fricke/Besuden [12a;pp. 12ff].  In short: 

operations are introverted actions which are organized in so-caUed groupings, 
i.e., states of dynamic equilibrium of thinking; their generation and application 

are understood as causal phenomena as a consequence of man being part of his 

physical and biological surroundings (cf. the 5th paragraph of the introduction 
to Piaget [19a]). In distinction from that our concept of operation includes 

essentially human intentions. 

2. EXAMPLES FOR THE PRACTICAL USE OF 
GEOMETRIC FORMS 

In searching for concepts which play a fundamental role in geometry we find, 
among others, the following ones: plane, sphere, cylinder, straight line, circle, 
helix, symmetry, parallelism, orthogonality, polyhedron, (truncated) cone, 
polygon, line segment, convexity, rigid body, congruence. All these notions 
are connected with homogeneity, more so at the beginning of the list than 
at the end. From this list we will take four examples and study their appli- 
cation and practical use in connection with homogeneity. 

The plane. Many things used in everyday life, and in engineering, possess plane 

surfaces. These forms fulfil a great number of purposes, whose analysis brings 
mainly three functions to light: Neutralizing gravitation, movableness of a 
solid in its bearing, and forming a common border for two convex areas of 
space. 
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Billiard-tables, dining-tables, floors, pavements, roadways, and stairs are 
plane, and, when positioned in the gravitational field as accurately as possible, 
objects on them can be put anywhere and be moved in any direction without 

being affected by gravitational forces. 
The function of movableness is essential in the following examples: timber 

is planed by sawing, walls made of concrete are smoothed down with a plane 

board, objects with a plane bottom can be slid arbitrarily on plane supports. 
This movableness is the direct result of homogeneity and therefore can also 

be found on the sphere and the cylinder (ball-bearing, ball-point pen, piston, 
revolving-door, corkscrew). 

The third function (forming a common border for two convex areas of 
space) admits only planes, as, for example, walls of rooms, sides of boxes to 
be piled on top of each other, faces of bricks, or the surface of a mirror. In 
these cases the geometrical indistinguishability of the two sides of the surface 
is needed. As to the mirror, it can be moved arbitrarily in its imaginary 
bearing (the plane defined by its surface) without distorting the picture. Not 

only must the two half-spaces determined by this plane be of equal form but 
also any two corresponding parts of them. 

The truncated cone. No less important than homogeneity, as illustrated by 

the form of the plane, are the intended deviations from it. A simple example 
is the truncated cone which deviates from a finite cylinder by having a bottom 
and a top of different sizes. This form is given to funnels, waste-paper-baskets 

(also as truncated pyramids), buckets, handbasins, deceptive packaging, tall 
chimneys, the screw in mincers, conic gears, flower-pots, bricks in arches. It 
fulfils the various functions required by these objects. 

A large opening facilitates tilling and emptying a container. So, water can 

be poured out of a truncated cone handbasin with less effort and better 
balance than out of a cylindrical one which has an equally wide opening 

(Figure 3). This is because a great part of the water lies on the other side of 
the fulcrum and therefore does not have to be supported; in fact, it even 
supports the tilting of the handbasin by its weight, and, moreover, the water- 
level does not rise too fast. Also, one needs less water to fill it up. 

| 
I 
I 

r 

Fig. 3. 
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Fig. 5. 
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Fig. 4. 

The truncated cone also differs from the cylinder in that its volume does 
not depend proportionally on its height (Figure 4). Therefore deceptive 
packaging is sometimes given the form of a truncated cone: lifting its inner 

base produces a relatively greater loss of volume. Moreover this form is very 
stable when standing. This principle is also used in stabilizing tall buildings or 
certain tankards. Mincers are provided with screws which gradually become 

thicker at one end, thus crushing the food that runs through it better (Figure 
5). In gearings conic gear wheels are used to transmit rotations to non-parallel 
axes (Figure 6). 

The truncated cone, unlike the cylinder, is not arbitrarily movable in its 
bearing. This means that within its bearing it can only be moved away from 
the smaller end, and then it no longer coincides with the bearing at all, or at 
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Fig. 6 
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most in a line. Thus a flower-pot can be emptied with only one jerk (imagine 
if flower-pots were cylindrical) (Figure 7). For the construction of arches, 

bricks are used that have the form of truncated wedges that cannot fall out of 
the bearings formed for them by surrounding bricks. Shopping carts are 
equipped with containers and undercarriages shaped as truncated pyramids 

(wedges) and one movable side so that they can be slid into each other in 

order to save space (Figure 8). 
In some objects several functions of  the truncated cone are combined. 

Drinking cups have large openings and, held in the hand, cannot fall down 

because of their conic shape. When they are made of plastic, they can be 
inserted into each other like the shopping carts. Jelly moulds are formed 
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like truncated cones: having turned the mould upside down one can easily 
lift it, thus removing it from the jelly without the jelly losing its shape owing 

to its conical form. 

The helix. A somewhat more sophisticated geometrical form is the helix, the 
only homogeneous line which does not lie in a plane. Its function can only be 

understood kinematically and consists essentially in moving objects along a 

given straight line while they rotate around this line (the axis of  the helix). 

Although the (cylindrical) helix is homogeneous, which means it is freely 

movable in its bearing, the rotation around its axis is by no means a motion 

within its bearing, at least if one thinks of the bearing as fixed to the axis. It 

then functions like a cylinder; for example a drill bit when set on a work- 

piece does not generate a helix, but a cylindrical hole. However, a rotating 

helix stays in its bearing, if this bearing does not rotate but is moved along 

the axis with suitable velocity, for example a nut on a bolt. Hence the helix 

functions by simultaneously turning and sliding two objects against each 
other. 

A striking example for this is the corkscrew within a frame (Figure 9): 

it is put on the neck of the bottle, and the helical screw is driven into the 

cork by turning the handle. The screw moves downwards until it cannot go 
any further. If  one continues turning it in the same direction, the relative 
movement of the screw against the cork goes on, and the cork is lifted out 
of  the bottle into the frame. If the frame is narrow enough, the cork can be 



68 P E T E R  B E N D E R  A N D  A L F R E D  S C H R E I B E R  

( D 

Fig. 9, 

removed from it by turning the screw in the other direction. Both in the 

bottle and in the frame, the cork cannot turn with the screw because of its 

pressure against its enclosure. During the whole procedure no tractive force 

need be applied, only rotational force. 

It is just this relationship between the rotation carried out and the intended 

movement along the axis that is used as a functional principle in many practical 

appliances like the wine-press, the printing-press, the corkscrew, screw tops, 

and bolts with nuts. In these examples two things, being partial bearings to one 

another, are moved relative to one another along a helix and thus pressed 

tightly against each other in the direction of the axis. With the exception of 

the corkscrew, these helices have a small pitch, and therefore their turns are 

nearly circles that are orthogonal to the axis, so that only a small amount of 

the force opposed to the pressure along the axis acts upon the helix, working 
against the screwing, or loosening the connection. 

There are also objects in which a straight motion is transformed into a 
rotation by a helix, for example, a certain kind of mechanical screw-driver 

(Figure 10). Of course, their helices must be rather steep. 

Fig. 10. 

All these mechanisms would not work, if the helices were not homogeneous, 
especially if they did not have a constant radius and a constant pitch. 
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Fig. 11. 

A famous application o f  the forementioned functional principle is the 

Archimedean screw which is used as an elevator for water, sand, or grain 

(Figure 11). It  consists o f  a hollow cylinder and a helical surface, with the 

same radius, in it. If  the cylinder is filled up with water (sand, grain), the 

water encloses the helical surface like a bearing. If then the tube is tilted and 

the helix starts turning, gravitation keeps the water in a fixed position and 

prevents it from participating in the rotation, and the 'bearing' consisting of  

water is slid out of  the cylinder. 
In practice the lower end of  the Archimedean screw is dipped into water. 

Of course, the tube is not completely filled with water by the rotation, but 

in each turn a small quanti ty is elevated. Insofar as this 'bearing' is not solid, 
homogeneity of  the helix is not indispensable. Still more imaginary is the 

bearing of  winding staircases or chutes: it consists of  the potential traces of  

persons or things on them. Accordingly, homogeneity needs to be realized 

to a lesser degree still. 

The common purpose underlying these examples is to move things from 

one place to a higher or lower one within the gravitational field. The helix 

is not in the form of a line but of  a two-dimensional surface which can be 

conceived as the trace of  a curve segment which is uniformly screwed along a 
straight fine. The helical surface is not a homogeneous form and therefore 

cannot be moved freely in its bearing (two-dimensionally), but at most along 
a helical Iine (one-dimensionally). 

Hence corkscrews need not necessarily be helices but can also be made as 
helical surfaces, because these, too, can be screwed into a cork. Yet, they are 
of  inferior quality as they leave a nearly cylindrical hole in the middle of  
the cork. 
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Sometimes, several helical lines or surfaces are wound into each other so 

that the surface or the interior of  the bearing cylinder is better exploited and 

the screwing can be started from more than one angular position. Screw tops 

can have up to six short helices; the screw-driver in Figure 10 has four helices, 

two in each orientation; for actual use, Archimedean screws can be fitted out 

with two, three, or even more helical surfaces (unlike the simplified version 

in Figure 11). 

Concerning the construction of a helix, its principle can be understood 

best in the example of the (winding) staircase. Essentially, a staircase is an 
inclined plane (with steps) for surmounting differences in elevation. For the 
sake of saving room it is wrapped around an axis and thus becomes a helical 
surface, while its handrail becomes a helical line. In geometrical terms this 

comes to the same thing as wrapping a triangle around a cylinder. 

This procedure results in a simple method for determining the length of 

a finite piece of a helix without calculus immediately. Textbooks of analysis 

usually treat this question by evaluating the integral 

f ;  IIf'(t)II dt, 

where f ( t )  = (r cos t, r sin t, pt/27r) is a parametric representation of the helix 

in the interval 0 ~< t ~< ~. A more elementary and adequate way is derived from 

the method of construction described above and only uses the Pythagorean 

theorem and similarity argttments (Figure 12). Let r be the radius of the cylinder, 
p the pitch of the helix, ~ the rotational angle, then L~r = p2 + (2rrr)2, and 

L2~:L~ = 27rr :~r, whence La = (~/2rr)x/(27rr) 2 + p2. 

Usually the pitch is small compared with the length of one turn. Therefore 

variations of the pitch yield only small variations of the radius. This property 

proves essential for the way springs and spring-balances work. A tractive or a 

pressing force on a helical spring along the axis causes a variation of the pitch, 

which becomes smaller the more turns there are on the helix. This, in turn, 
generally causes a variation of the radius which is so small that the spring is 

deformed elastically and does not reach its limit of elasticity. These arguments 

still hold, when the spring is not a homogeneous helix but a conical one, or 
one with rectangular turns as in the magazine of a pistol (Figure 13). 

The hexagon (bolt nut). The series of  examples we have presented so far does 
not contain in each case a thorough analysis of the transition from purpose and 
geometric function to the geometric form; such details would have expanded 
our considerations unduly. Yet we have already given a more detailed analysis 
of the brick in Section 1 and will give one for the football in Section 4. Now 
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Fig. 13. 
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we are going to analyze the edge of the bolt nut which is commonly shaped 
as a regular hexagon (actually it is shaped as a prism, but considering the 
problem in the plane is adequate for the present). 

The edge of the nut should, to fulfil its purpose, allow stable connections 
with a long and, in general, rigid lever (wrench). It must be possible to apply 

and to loosen the wrench easily, and to use it to turn the nut strongly around 

a fixed axis. For this motion, the long lever arm needs sufficient room. Often 

this room is occupied by the elements to be screwed together, and only a 
relatively small angle of, say a ~ remains for turning (Figure 14). After one 
turn of about a ~ the wrench must be applied to the nut in a position a ~ back- 
wards for the next turn. Consequently the nut must have rotational symmetries 

of at least order 360/a. 

\\\\ 

Fig. 14. 

Its stability is mainly effected by that part which belongs to the maximal 

circle which can be inscribed into the form of the nut, whereas the projecting 
parts contribute less. For that, it would be economic to provide the nut with a 
circular, and hence homogeneous, edge (Figure 15). Unfortunately this would 
mean that a wrench fitting this edge would (geometrically) be freely movable 
and would be connected with the nut only by adhesive friction. 

The wrench should confine a large angle at the nut in order to avoid slipping 
of its jaws. Furthermore, the contact edges should be long and perpendicular 
to the direction of the turning force (Figure 16). The forms of the wrench 
and the nut must fit together: one is the bearing of the other. 

One should be able to slide the wrench onto the nut. In the plane, motions 
which can freely be carried out in a bearing must be straight or circular. From 
this the two alternatives in Figure 17 result as the only possible ones. In both 
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cases those parts of the edge along which the wrench can be slid must be 
parallel lines. In case (a) this would mean: opposite arcs belong to concentric 
circles, and, consequently, convexity is lost, n-fold symmetry requires the 
edge to consist of 2n pieces, and the wrench is liable to slip. Therefore the 
parts of the edge are made as pairwise parallel straight line segments (case (b)). 
The whole figure is a regular polygon whose number of vertices is even and 
not too large, perhaps 4, 6, or 8. 
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All three forms occur in practice. In normal circumstances the side of the 

octagon is too short and the angle needed for one turn of the quadrangle is 

too large. So the hexagon is the most popular form of the nut. 

The form in which water taps are frequently made is neither a hexagon, 

nor an even-numbered polygon at all, but it is an equilateral triangle with 

sides curved inwards. The reason for this is that in general, the taps are easily 

accessible and therefore can be made larger. Furthermore they need not be 

tightened too much. So no particular lever is required, and three fingers of the 

human hand suffice. 

In [t8] a remarkable species o f 'bo l t  nut' is described thus: in Philadelphia, 

U.S.A., fire hydrants are protected from misuse by the heads of the shafts 
being shaped as Reuleaux triangles (Figure 18). This is a form of constant 

width, as it is an equilateral triangle whose sides are replaced by arcs having 
centres in the respectively opposite vertices. So an ordinary wrench will 

slip around it, even if it has suitable width, and a special wrench is needed. 
The Reuleaux triangles can be interpreted as forms like the one in Figure 

17(a) with vanishing radius of the smaller circle. If  those shafts had circular 

heads, ordinary wrenches could also not be applied, of course, but due to the 

homogeneity of the circle even special wrenches would not work. 
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3. THE DIDACTICAL FUNCTIONS OF THE POCF 

We shall now describe what the POCF can do for geometry teaching, by 
giving some comments on several of its didactical functions which we consider 

to be relevant. It  will be shown that the POCF proves to be not only the 
essence of an epistemological understanding of geometry but also an efficient 

didactical principle. 

Opening up the real world. Ever since geometry was first reflected upon, it 
has tended, in its foundations and in its teaching, to detach itself from reality. 
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Of course, there have always been attempts by didacticians to compensate 

for this tendency. We only mention here Kempinsky [16], Freudenthal [11], 

and Winter [26]. 
According to the customary view the connection between theories and reality 

is such that the theories reflect certain sections of reality ('Widerspiegelung') 

and therefore can be interpreted as models for it. But for many theories, 
especially for geometry, this kind of connection is not sufficient, as it is only 
possible on a more advanced level of theory formation, namely after the funda- 
mental concepts have been constituted. In geometry this is done according 
to the POCF, which means that concept formation is linked with the practical 
operations by which the real world is shaped ('Ergreifung der Wirklichkeit'). 

These operations, and not reproductive procedures, guarantee that our 
geometrical ideas match with reality. Both ways of connecting theories and 
reality are component parts of what we call 'opening up the real world' 
('Umwelterschliel~ung'). Thus opening up the real world is an essential part of 
concept formation and not merely a type of motivation for the students. 

Our examples of the practical use of geometrical forms comprise typical 
phenomena that should be dealt with in geometry lessons in which an adequate 
understanding of geometric structures in the real world is aimed at. In par- 

ticular, this involves considering the purposes of everyday objects having more 
or less technical features. Everyday objects are to be preferred because they 

are more accessible, their purposes can be identified more easily, and their 

expediency can be controlled more definitely. In order to understand how 

(these geometrical forms work one has to place the emphasis on kinematical 
aspects, thus overcoming the poor conceptions acquired by a mere description 

of shapes as can be found in many textbooks. Furthermore, real space is three- 
dimensional. Certainly a lot of problems can be reduced to two dimensions, 
but many important geometrical ideas can only be grasped if their three- 
dimensional character is heeded. 

Central ideas. In pedagogy there is the old and plausible, but nevertheless 
often neglected, advice that education should not focus on subordinate matters, 
but on the central ideas of a discipline (recommended for example by White- 
head [24] and Bruner [6] : see also Schreiber [21a]). The central ideas of a 
theory should not be thought of as its primitive (basic) notions, but rather 
they are the key concepts which bring to light fundamental results and specific 
patterns of thinking at a more advanced stage of the theory. From our operat- 
ive point of view the following ideas turn out to be central: exhaustion, 
homogeneity, and fitting of forms. 

The idea of exhaustion, given in its special form for operative geometry in 
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Section 1, is to be seen as a collective notion for any kind of approximating 

procedure, and at the same time it is thereby the theoretical forerunner of 
mathematical approximation. In practice, as well as in teaching, exhaustion 
plays a fundamental role not only in making real forms, as pointed out in 

Section 1, but also in measurement. 
An idea more specific to geometry is homogeneity. By dealing practically 

with geometric forms the students recognize that homogeneity, and the in- 

tended deviations from it, are indispensible for their functioning. In the pre- 
ceding sections we have already presented several examples of homogeneous 
forms. Besides the truncated cone there are various kinds of deviations, e.g., 
the staircase (its basic form in the inclined plane; the deviation consists in 
the steps), the cogwheel (circle; cogs), the shaving-mirror (plane; curvature), 
the barrel of a pistol (cylinder; a helical line on it), the bowling ball (ball; 
holes), etc. 

One central idea which is pecular to geometry we call the fitting of forms, 
being one more constituent part of the POCF (cf. Figure 1). Freudenthal [11] 
has pointed out the relevance of this idea. Any geometric function seems to 
be such a fitting of forms. 

As we pointed out in Section 1, there are three aspects to be considered: 
restriction of movableness, optimization, and measurement. 

The most characteristic and obvious aspect is the restriction ofmovableness, 
possibly even immovableness. A typical example is the brick in a wall; others 
are: a key in its hole, a train on the rails, a wrench on a nut, and any movable- 
ness of a form within its bearing for which we have noted some examples 

in Section 2. 
Optimization is a somewhat more complicated aspect: although there are 

operations research methods for solving a great number of optimization prob- 

lems where the objective function and the constraints are known, a geometric 
form is determined less cogently by optimization arguments, as the choice of 
the objective functions and the relevance of the constraints are influenced by 

subjective views. Along which line is a road laid out in a terrain? Besides the 
geometrical aspects others, especially economic ones, have to be taken into 

account, and so roads are often not straight. The size of bricks or space-saving 
arrangements of things are further examples of geometrical optimization. Also 
outside geometry optimization has an obviously operative sense. Clearly, for 
many problems, even purely geometrical ones, optimization requires operations 
going beyond geometry, e.g., numerical, due to the measuring process involved. 

The idea of measurement is essentially geometrical, but it also comprises 
non-geometrical operations, namely obtaining and processing numerical 
measuring data. Originally measuring is a kind of geometrical fitting: in order 
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to fired out whether a wardrobe passes through a door one can try with the 

wardrobe itself; one could also take a piece of rope or a stick, apply it success- 
ively to the door and to the wardrobe, put a mark on it both times, and com- 
pare the marks; one could even use measuring rods and compare the lengths 
entirely numerically. 

These three possibilities represent three levels of modelling, the last one 
going beyond geometry by using numbers. Numbers have to be employed 
because often a direct comparison of real objects is rather difficult or even 
impossible. Besides, there are situations where data have to be determined for 
purposes other than the fitting of forms. For example, in order to determine 
the required quantity of goods (paint, fertilizer, working time, etc.) one has 
to know the area of the corresponding surface. 

Often measured values are the basis for calculating further quantities which 
can hardly be measured directly, e.g., the length of an inaccessible line segment 

by geodesic methods, the area of a rectangle with the formula A = p �9 q, the 
half-life period of a substance with known law of decay. 

The correspondence of length and number allows numbers to be treated 

like geometrical ideas. In many problems of a geometric nature such numbers, 
whether measured directly, calculated, or given otherwise, can be considered 

as norms, thus being applied to real situations. On the scale of a measuring rod 
the mark belonging to the number is discriminated, and at the same time the 
corresponding segment is copied in some given material. 

It is essential for an understanding of measurement to elaborate the 
assumptions which are made in producing measuring rods. The main prob- 
lem lies in generating an equidistant scale on a rod and keeping it constant. 

This can be achieved by fixing a unit segment, bisecting it as far as necessary, 
and copying it repeatedly, the fineness of the marks depending on the required 

degree of accuracy. Any of these operations presupposes the rigid body, 
and also the rod itself has to be rigid. The idea of the geometrically rigid 
body is developed by rules for its (stepwise) realization [4]. We think that 
an intuitive grasp of operating with rigid bodies is the natural grounding 
for the idea of congruence with all its properties, e.g., those of an equivalence 
relation. 

Congruence itself is involved in the fitting of two forms, insofar as the two 
contact surfaces are congruent and both forms are situated on different sides. 
The concept of congruence is also needed for a mathematical treatment of 
fitting. Yet, in practice, the fitting of forms could not be achieved with 
absolutely rigid bodies, but rather one must be able to grind, cut, saw, solidify, 
stick, bolt, or tie together things which one assumes to be rigid afterwards. 
(Also cf. [121 .) 
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Learning goals. We have already stressed that opening up the real world is an 
essential part of concept formation. This does not mean that reality is a mere 
vehicle for acquiring geometrical concepts. On the contrary, opening up the 
real world should be a teaching aim in its own right to which concept forma- 
tion has to be subordinated. This leads to the following general learning goal 
for geometry: 

Geometry teaching shall enable the students to structure the real space and 
to explore the utilization of this structure. 

It is mainly the first half of this postulate which has been discussed in publi- 
cations concerning geometry teaching. The goal corresponds to our POCF and 
is furthered by it. That is made evident by the following specification of partial 
goals: 

(a) see through geometric forms and visualize them (Archimedean 
screw, Wankel engine, a landscape with the help of a map, etc.), 

(b) recognize and describe the purpose and expediency of geometric 
forms (the hexagonal edge of a bolt nut, the paraboloid surface of 
a burning mirror, the spherical form of a container for liquid gas 
under overpressure, etc.), 

(c) make and model geometric forms by means of three-dimensional 
embodiment, operating on a drawing-plane, language, numbers, 
analytic or algebraic formulae, axiomatic description (constructing 
with a construction set, functional models of gear transmissions, 
visual models of solids, simulating the furnishing of a room with 
small-scale pieces of paper on a floor plan, any kind of construc- 
tive drawing, verbalizing and formalizing the properties of a geo- 
metrical form, etc.), 

(d) solve geometric and non-geometric problems geometrically (the 
polyhedral structure of a football, linear optimization, Engel's 
probability abacus, etc.), 

(e) buiM up a system of geometric notions (geometry of the circle 
attached to transmissions, calculation of volume in relation to 
deceptive packaging, spatial congruence transformation attached 
to the helix, etc.), 

(f) meet with aesthetic aspects (proportions, viewing and making orna- 
ments, the design of objects used in everyday life, etc.). 

Some special reflections on these goals can be found, among others, in [5], 
[22], and [10] (concernining (a), (d), and (f) respectively). 
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Of course, in geometry teaching, too, other educational aims have to be 

pursued as well - social, affective, and cognitive ones. But since they are not 
specific to it we do not discuss them here. The goals of our catalogue are 

related to the POCF more or less closely. 
In the above formulations the concept 'form' is meant in a slightly wider 

sense than usual, comprising also more complex function units, like four 
landmarks determining a field, the lock of a door together with its key, or 

a clockwork mechanism, etc. 
A special type of forms are those arising in nature, like the hexagonal 

form of the cells of the bee, the upright growth of a tree or the spherical 
surface of a soap-bubble. Insofar as they are relevant parts of the world 
around us, the teacher should take them into account in teaching. However, 
from the operative standpoint they should be treated with reserve, since they 
are not made intentionally by man in order to fulfil purposes, but they are 
a result of processes obeying natural laws. 

Under the influence of the POCF a concept can never be evolved in isolation. 
The formation of a concept always affects the formation of neighbouring 
concepts, thus building a local system. The students have to be made conscious 
of this process, and they must extend it to building a global system. This 
entails developing a terminology (definitions), acquiring factual knowledge 
(propositions, examples), and providing algorithms (for realizations, construc- 

tions, measurement). 

Organization. From our discussion of didactical functions of the POCF up 

to now several aspects have emerged which may serve the organization of 
geometry teaching. There are at least three dimensions, where this organization 

takes place: local, and global structure of contents, and integration of subjects. 

Most of the examples introduced in this paper are of a local nature. We have 
already indicated that locally forming a system of concepts is guided by the 

POCF. 
As to the global organization, there can be distinguished three stages in a 

complete genesis of geometry, following the POCF: first/y, the students 
become aware of situations and phenomena involving geometric forms in 
the world around them. They discuss the origins and the purposes of these 
forms, make (models of) them and handle them consciously. Secondly, the 
concepts are formed in a more explicit way by analyzing the corresponding 
geometrical functions. Finally, the system of concepts is ordered formally 
and given an axiomatic frame. This allows one to prove known facts in a 
deductive manner. This heuristic sequence of stages corresponds roughly 
to the cognitive development of children. 
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The POCF brings about close connections with the rest of mathematics, 
to handicrafts, technics, physics, and art. The extent to which the integration 
of geometry with these subjects is carried out depends on additional pedagogi- 
cal assumptions. In any case geometry is not a part of handicrafts, technics, 
or physics. 

4. HOW TO USE THE POCF IN THE CLASSROOM 

We now describe a series of lessons held in 1978 and hope to show how the 

POCF can be used in the classroom practically. One will realize that the POCF 
is applied in a slightly modified manner. So, beforehand, we give some explana- 
tory remarks. 

For the formation of a concept it is usually not enough to run through the 
scheme in Figure 1 only once. Different forms can be derived from the same 
purpose, the form that is the most suitable is found by using all of them practi- 

cally for the intended purpose. Conversely, different purposes may lead to the 
same form. Finally, applying our scheme to one concept mostly entails apply- 
ing it to a whole conceptual context. 

A rigorous application of the POCF would presuppose that students be con- 
fronted with genuine situations in which a problem involving constructing 

something exists, that can only be solved by evolving appropriate geometrical 
concepts (e.g., making furniture, building a bungalow [15; pp. 239-257],  
constructing a swimming-pool, repairing a watch, land-surveying, etc.). In 

school, however, most situations are not genuine but contrived ones. In any 
case a suitable treatment often cannot be achieved because of lack of time, 
material, and skill. 

Real exhaustion, therefore, has to be discussed verbally and replaced by 
constructing simplified models with already geometrized material, for instance 
a functional model of a wind-screen wiper with premanufactured elements 

[23], the surface of a cube with pasteboard, or geometrical drawing on plane 
paper. 

Children usually are well acquainted with many things in their environment 
which possess geometric ~brms such as table-tops, marbles, parallel rails, etc. 
For students it would not be very convincing and for teaching pedagogically 
not very economic, if the application of the POCF to such forms consisted in 
inventing them without making use of what the students already know from 
experience, that is, those forms have to be reconstructed by an analysis of  the 

purposes that arise in practical situations. 
One more aspect should be taken into account: there is no geometry teaching, 

whether based on the POCF or not, which is purely 'operative', that means 
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where each activity directly concerns purpose, making, or practical use of a 

geometric concept. There are always phases where a system of geometric notions 

is built up or the efficiency of such a system is made use of in constructions or 

argumentations, while the POCF is effective only from the background. 
But we think the POCF should underly any geometry teaching and, besides, 

cultivating the students' operatively geometric thinking will be a long process 

which cannot be rushed. So any teacher who ever tries an accentuated application 
of the POCF in his (her) geometry lessons must be aware of initial difficulties 

arising from the students not being used to considering purposes etc. 

We are going to present as a hopefully instructive example a sequence of 
lessons based on the POCF. We call it geometry of  the football. It deals with 

the polyhedral structure of the leather football used nowadays. Starting from 
its purpose as an implement for football (soccer) games we deduce several 

essential features: it should be as good a sphere as possible, it should be elastic 

and light, and it should be robust. Therefore it has an inner-tyre filled with air 
and an outer cover made of leather. In the lessons the geometric structure of 
this cover is discussed. To do so, the purpose resulting from the game and its 

rules must be introduced into geometry. We must ask about the geometric func- 
tion of the form. Which form is a good sphere and at the same time can be made 

of (elastic, light, and) robust material? The problem is solved by the idea of the 

Archimedean solid: its surface consists of regular polygonal pieces (of leather) 
sewn together, each vertex having the same arrangement of polygons around it, 

i.e., having the same star; the solid thus having a high degree of homogeneity 
and a large symmetry group (Figure 19). The truncated icosahedron with 

32 faces and star (5 6 6) proves to be most advantageous. This idea (concept) is 

realized according to the following rule: cut out 12 regular pentagons and 20 

regular hexagons, all 32 polygons with the same edge length, and fit them 

together so that one pentagon and two hexagons meet in each vertex. In 

practice, i.e., in innumerable football games, this form has proven good. 

A great part of the course consists of the transition from 'geometric func- 

tion' to 'concept' (cf. Figure 1), however, not detached from problems of the 

Fig. 19. 
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world around us, but embedded in such ones; the analysis of the purpose, the 
making and the use of the concrete object still being essential parts of concept 
formation. 

In realizing Archimedean solids the central idea of exhaustion is not so 
significant, as the concept of Archimedean solid is founded on basic concepts 
like 'plane', 'line segment', 'angle', 'sphere', 'polygon', 'regular polygon', in 

whose formation exhaustion has already taken place. But the students come 
to know the importance of accuracy, when they try to construct solids out of 
polygons with deviations from regularity or intended edge lengths. Whereas on 
plane drawings with stencils such deviations can easily be compensated, they 
are much more difficult to deal with when fitting faces of solids. 

Moreover, the idea of exhaustion appears in its mathematized apparel of 
approximation of the sphere by polyhedra. This is an example of discrete 
mathematics, where there is no steady improvement towards an ideal form. 
In everyday life (more than one could suppose from the contents of school 
mathematics) there are a lot of problems which cannot be treated with 

methods based on continuity but which demand special strategies. 
We think the course can contribute to the general learning goal for geometry 

which we formulated in Section 3. On closer inspection, however, one can see 
that the course could satisfy not only any of the six partial goals which are 
specific to geometry, but also more general goals for mathematics teaching 
which are discussed for example in [25]. 

Extensions to the series could be groups, particularly symmetry groups; 
topological considerations, like the Euler characteristic; trigonometry, 
e.g., calculation of the solid angles; or a more intensive treatment of the 
Archimedean solids, like establishing more relationships between them, dis- 
covering the two versions of (3 4 4 4), or dealing with the dual solids. 

The series was held in the 9th form of a German Hauptschule and con- 
sisted of 5 lessons (7 or 8 lessons would have been better). The course ended 
with a test which the students, on the whole, passed satisfactorily. We will not 
give an exact record, but rather an improved version, i.e., how we might do it 
the next time. We think this series would be suitable for use from the 6th grade 
upwards, as it requires only few prerequisites: some elementary geometric 
experience (like the fitting of forms) and acquaintance with polygons (perhaps 
regular) and angles (adding up angles, in particular those of a triangle or 
perhaps of any polygon). The intellectual level is not too demanding, but 
the content may even be interesting to grown-up students. 

In the classroom we used as working material: paper, scissors, glue, pencils, 
stencils of polygons, rulers, protractors, pocket calculators, sheets with defi- 
nitions or results, printings of all Archimedean tessellations (Figure 20), 
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Fig. 20. Examples of plane Archimedean tessellations. 

% 
Fig. 21. 

construction plans of the Platonic solids (Figure 21), pictures of all Archimedean 
solids (for prism and anti-prism only one example each) (Figure 22), an over- 

head projector, transparencies of the students' working-sheets, a blackboard, 
and, last but not least, balls with surface structures of various kinds, models 
of (Archimedean) solids, a globe, an orange, and an egg (Figure 23). 

Now to the sequence of the lessons: 

First Lesson 

1. Balls with surface structures of various kinds, Platonic solids, pyramids, an 
orange, an egg, and a picture of a rugby ball. The purpose of the football is 
analyzed. By rehearsing games with balls of alternative properties students 
decide that the ball should be highly symmetric (homogeneous), without 
protrusions or indentations, elastic, light, and robust; briefly: a leather sphere. 
Trying to curve plane paper to a sphere and the peel of the orange or the shell 
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Fig. 22. Pictures of some Archimedean solids. 

Fig. 23. Some variants of the form of the football. 

of the egg to planes the students recognize that a football cannot be made of 
o n e  flat piece of leather, but only of several smaller pieces sewn together. 
Criteria are developed. For the sake of hard wear: straight, short seams, and 

not too many of them; at each vertex only three seams; furthermore pieces of 
leather which are convex (hence polygonal) and not too big (because of the 

inflation pressure) and, at the same time, not too small (in order to keep the 
number of seams small). For the sake of symmetry: regular polygons and one 

kind of arrangement of polygons for all vertices. For the sake of roundness: 
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small polygons and consequently all of (nearly) equal size. The form of the 
truncated icosahedron (we did not mention that name) seems to fulfil these 

criteria well. Is it the best form possible? 

2. Plane tessellations, starting from floors, ornaments, walls, etc.; definition, 
examples, counterexamples. The students lay and draw tessellations which 
fulfil certain conditions. For some vertices the equivalence of their stars is 
shown by superimposing two transparencies with the same tessellation on the 
projector and sliding and turning them suitably with respect to each other. 

We start with plane tessellations, because they can be seen through and 
constructed more easily, and, even more important, the construction of the 

solids will be started from (incomplete) plane tessellations. 

Second Lesson 

No. 2 continued. 

3. From now on we consider only tessellations with the following properties: 
the tiles are polygons (with all angles different from 180~ the pattern is 
repeated in at least two (linearly independent) directions (i.e., the symmetry 
group of the tessellation contains at least two translations on different straight 
lines); a point, being a vertex of one polygon, is a vertex of any polygon 
meeting it. Examples and counterexamples are presented and discussed. 

When the students construct tessellations, they start with one vertex, fill up 
its neighbourhood with polygons (the star of this vertex; we call it Eckenkranz, 
i.e., the wreath of the vertex). In order to make sure that the tiling can be 
continued all over, the plane with the projected pattern they have to lay one 
more full ring around that star already constructed. They learn by counter- 
examples that constructing only the star of one vertex is not sufficient, e.g., 
there is no tessellation with the star (3 4 3 12) at each vertex, though one 
vertex can have this star (Figure 24). 

Fig. 24 
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Third Lesson 

No. 3 continued. Find out and verify that any triangle and any quadrilateral 

generates a tessellation in the above sense. Students tessellate with a non- 
convex quadrilateral. Why does the procedure not work for n-gons with n > 4 

in general? (The angles turn out to be important.) 

4. Proof of the fact that the sum of the interior angles of an n-gon is 
( n - 2 ) . 1 8 0  ~ and that the interior angle of  the regular n-gon is ( n - - 2 ) "  

180~ Students make out the list of  the angles of the n-gons for n = 3, 

4 . . . .  , 12 and some larger n (up to n = 1000). They see that the angle tends 

to 180 ~ as n tends to infinity. The list (up to 12) will be used in the following 

lessons. 

Fourth Lesson 
3 3 

5. Symbolize the stars with cyclic n-tuples, e.g., 4 3 4 for (3 3 4 3 4). A 

tessellation is Archimedean, if and only if its vertices all have the same star. 

Find all Archimedean tessellations! They can be divided into classes according 

to the number of polygons in a star. If  there are 6 polygons, then these must 

be 6 triangles. For the remaining cases 5, 4, and 3, the students form groups, 

each working on one case. It is not so important that the students find all the 

possibilities on their own. They should understand that there is a finite number 

and that there are ways to find these possibilities, which are accessible to them. 

So we helped a lot, especially the groups with case 3 by demonstrating the 

proposition: if a star has 3 (and not more) polygons and one has an odd 
number of vertices, then the two others must have an equal number. 

Fifth Lesson 

No. 5 continued. The groups report. 

6. A plane star cannot consist of 3 regular pentagons (cf. Figure 21), because 
they leave a gap (of 36~ Fold them at the two separating edges and turn the 

two free pentagons upwards until they meet. Thus a star has been formed 
which is not planar. Students visualize that a continuation with more pentagons 
leads to a spherical form. They are given the construction plan (cf. Figure 21): 
make 2 bowls, each with one pentagon as the base and the wall consisting of 
5 pentagons, and fit them together. The students make sure that all the vertices 
have the same star, transfer the concept of Arckimedean tessellation to solids, 

5 
and apply the same symbolism, here 5 5 for (5 5 5). 
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Sixth Lesson 

7. Find all the Archimedean solids which use only one kind of polygon. 

Could one take hexagons or n-gons with even more vertices? No, because 
each star of a solid must have (at least) three polygons, and the polygons 

arranged around a vertex in the plane must leave a gap. So take 3 triangles 
or 3 quadrilaterals for one star. The corresponding 'bowls' are the complete 

solid (3 3 3), or they leave only one face for the top (4 4 4). There are two 

more possibilities: 4 or 5 triangles for one star. Make two 4- (or 5-) sided 
pyramids, stick them together, and obtain (3 3 3 3) (or (3 3 3 3 3)). Checking 
the stars the students realize that the solid they call (3 3 3 3 3) also has stars 
(3 3 3 3), hence is not Archimedean (one can recognize the shortcoming 

already by the asymmetric form). They obtain the right form by extending 
one pyramid with triangles or by constructing according to the plan in 
Figure 21. These 5 solids constitute a special class of Archimedean solids, 
called Platonic solids (there are also plane Platonic tessellations, but their 
being special is not so important); their customary names are given but the 
students need not use them. 

Seventh Lesson 

8. Find a relationship between the approximation to the sphere and the 
gaps in the plane: the smaller the gap, the better the sphere, as the edges are 
less sharp. How can the gap be diminished? Allow different kinds of regular 
polygons. But still the sum of the angles at one vertex must be less than 360 ~ , 
and, of course, all the stars must be the same. The students look for collections 
of polygons which, arranged around a vertex in the plane, leave a gap as small 
as possible. By teamwork, some of the suggestions are partially or completely 
realized as Archimedean solids. The students learn that there is no Archimedean 

solid (3 10 12), which would have a very small gap, namely 6 ~ For that they 
verify that the proposition about plane tessellations given in the fourth lesson 

also holds for solids. Furthermore, the example of the prism (4 4 1000) shows 
that a small gap does not guarantee a good sphere. 

Eighth Lesson 

9. How can all Archimedean solids be found? The same method as with plane 
tessellations: the case of 6 polygons in a star cannot occur, and the cases 5, 4, 
and 3 can be investigated as before. The students do not actually make these 
investigations. They are given pictures of all the Archimedean solids, compare 
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them with each other using the criteria from the first lesson, and decide that 

( 5 6 6 ) is the best football. 

10. Discussion about how to make (3 8 8) out of a massive cube. The new 
edges are not half as long as the old ones. Are there other Archimedean solids 

which can be made from the cube? Where does (5 6 6) originate from? 
Students name objects of everyday life which have the form of an Archi- 

medean solid: 
- die (cube (4 4 4)); 
- ball for babies which must not roll too well (dodecahedron (5 5 5)); 
- swimming pool (prism (4 4 n)), however: the n-gons need not be regular 

and the 4-gons can be non-square rectangles; 
- truncated die for better rolling (truncated cube (3 8 8)), however: the 

edges need not all have the same length; 
- beverage packaging (tetrahedron (3 3 3)): with the net of the tetrahedron 

the plane, and even a parallel strip can be tessellated. In practice the third 
version of Figure 25 is taken which yields only one seam in each vertex 
and therefore tight packaging (for details cf. [19] ), again: the edges need 

not have one length. 

J < 
< 
/ J  

Fig. 25. 

11. Questions for the test (taken later): 

(a) 

(b) 

(c) 

Describe the surface of the leather football used nowadays, and 

give arguments. 
Name objects from the world around you which are Archimedean 
solids. Denote them with symbols. Find reasons for their forms. 
Why is (5 6 6) a better football than (3 8 8) or (3 3 3 3 3)? 
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(d) Complete the list. (List with sums of  angles for polygons and angles 

of  regular polygons, with some omissions.) 

(e) Draw (3 6 3 6). 
(f)  Give a customary name for (4 4 4). 

(g) Why is this solid not Archimedean? (Drawing of  a 4-sided pyramid.) 
(h) Decide, if this is Archimedean or not. If  you think 'yes' ,  give the 

symbol. If  you think 'no ' ,  explain why (Drawings of  (3 3 3 4 4), of  

a tessellation with non-rectangular rhomboids, and of a tessellation 

with varying stars.) 
(i) How can you decide without drawing that (3 12 12) is plane and 

(3 10 10) solid? 
(j) (3 4 6 x) is a plane Archimedean tessellation. Calculate x. 
(k) What gap is left, when a rectangular triangle, hexagon and nonagon 

are arranged around a vertex in the plane? 

(I) Why is there no plane or solid Archimedean tessellation o f (3  8 10)? 

Question (1) was not included in the test. The discussions in (a) and in (c) 

were often superficial and not detailed. In (b) some students denoted the cube 

with (4 4 4 4). In (e) some students drew tessellations with stars of  (3 6 3 6) 

and (3 3 6 6) or drew only a strip and no full star at all. In (f) some gave 

'Platonic solid'. In (g) some thought it was Archimedean. In (tl) many thought 

the tessellation with rhomboids was Archimedean. 

Pddagogische Hochschule Neuss 
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