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The generally accepted relationships of 
pandas [1-3], pinnipeds [4, 5], and 
other carnivores [5-7], as determined 
with traditional and molecular data, 
are evaluated with the protein se- 
quences of six different polypeptide 
types combined in an extended tandem 
aligment. Phylogenetic trees con- 
structed from the protein sequences by 
the maximum parsimony method [8, 9] 
do not refute the relationships of ter- 
restrial carnivore families, as developed 
from other evidence [5]. However, they 
do disagree with the commonly ac- 
cepted categorization of pandas [1-3] 
and pinnipeds [4, 5]. The most parsi- 
monious trees revealed by the parsimo- 
ny analysis suggest instead that the 
pandas (either separately or together) 
are closely related to the families Mus- 
telidae and Procyonidae, and that the 
pinnipeds are a monophyletic (rather 
than a diphyletic) group. 
Extant families in the mammalian 
order Carnivora are traditionally [6] 
divided into the superfamilies Feloidea 
(cats and allies) and Canoidea [Cani- 
dae (dogs and foxes), Mustelidae 
(badgers and minks), Odobenidae (wal- 
ruses), Otariidae (sea lions), Phocidae 
(true seals), Procyonidae (racoons), 
and Ursidae (bears)]. Within the Ca- 
noidea, the family Canidae is usually 
regarded as the sister group of the other 
members (which collectively form the 
superfamily Arctoidea of Tedford [5]. 
Traditional [6] and paleontological 
data [5] furthermore suggest that the 

arctoids may be further subdivided into 
two different clades, as represented by: 
the families Mustelidae, Phocidae, and 
Procyonidae; and the families Odobe- 
nidae, Otariidae, and Ursidae. Pinnipeds 
(the families Odobenidae, Otariidae, 
and Phocidae) are therefore diphyletic 
according to traditional evidence 
[4, 51. 

Molecular approaches have also been 
used to investigate the phylogenetic re- 
lationships of carnivores. In a recent 
analysis of different molecular and cy- 
tological data sets, O'Brien et al. [2] 
concluded that Ailuropoda melanoleuca 
(greater panda) is closely related to the 
family Ursidae, whereas Ailurusfulgens 
(lesser panda) may be allied to the fam- 
ily Procyonidae. However, their phylo- 
genies were based on few representa- 
tives of the order (two to three families) 
and on the assumption of a molecular 
clock (constant rate of evolution). In 
an unrelated study of pinnipeds, Sarich 
[10], using immunological distances, 
suggested that the families Otariidae 
and Phocidae are closely related, rather 
than distantly allied as proposed from 
traditional evidence [4, 5]. However, in 
both cases, molecular sequences were 
not considered in the analyses. 
In this study, a molecular phylogeny 
of carnivores is constructed from an 
enlarged body of protein sequence data 
by the maximum parsimony algorithm 
[8, 9, 11]. In the enlarged matrix, the 
order Carnivora is best represented by 
a- and t-hemoglobins and then by lens 
a-crystallin A, fibrinopeptides A and/ 
or B, myoglobin, and cytochrome c in 
that order. The ~- and t-hemoglobins 
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Fig. I .  Protein sequences of the ~- and t-hemoglobins from the greater panda (Ailuropoda 
melanoleuea) and the lesser panda (Ailurus fulgens). Only the variable positions of Ailuro- 
poda relative to Ailurus are shown. A, B, C... helical regions. AB, BC, CD... interhelical 
regions [18] 
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Fig. 2. One of the most parsimonious trees [nucleotide replacement (NR) score = 3553] 
supported by the amino acid sequences of the study group (carnivores) and outgroups 
(other gnathostomes) [8]. The abbreviations in parentheses correspond to amino acid se- 
quences available for each OTU [11], as follows: c~ c~-hemoglobin; /7 fl-hemoglobin; M 
myoglobin; L lens ~-crystallin A; C cytochrome c; and F fibrinopeptides A and/or B. 
Values next to branches represent link lengths which summarize the total number of nucleo- 
tide replacements along individual internodes [8, 9]. Families of carnivores in the tree 
reflect hybrid OTU's which were formed from the protein sequences of confamilial members 
[11], as follows: (1) family Mustelidae [Meles meles (European badger, 0~flMF)+ Mustela 
vison (eastern mink, LF)]; (2) family Phocidae [Haliehoerus grypus (gray seal, LF)+ Mir- 
ounga leonina (elephant seal, C) + Phoca vitulina (harbor seal, c~flM)]; (3) family Procyonidae 
[Bassariseus sp. (ring-tailed cat, L)+ Proeyon lotor (racoon, cq3)]; and (4) family Ursidae 
[Melursus ursinus (sloth bear, L) + Ursus arctos (grizzly bear, F) + U. maritimus (polar bear, 
e/7)]. This tree is rooted by outside reference to the outgroups (not shown) [19, 20]. Methods. 
The protein sequences of the 90 eutherian and other gnathostome OTU's used by Miyamoto 
and Goodman [11] were employed in the present analysis with the following exceptions: 
The ribonuclease sequences used by them were not included in the present study, since 
such data are still not available for carnivores [21]. However, their data matrix was updated 
with the c~- and/7-hemoglobins of seven carnivores [13, 22, 23]: [Ailuropoda melanoleuea 
(giant panda); Ailurus fulgens (lesser panda); Canis latrans (coyote); Felis catus (domestic 
cat); Leo pardus (amur-leopard); Urocyon eineroargenteus (gray fox); and Ursus maritimus 
(polar bear)] and by a supraspecific hybrid representing the order Psittaciformes [24]: 
[Ara ararauna (blue-and-yellow macaw, ~/7) + Melopsittacus undulatus (budgerigar, L)]. Phy- 
logenetic trees based on the modified sequence matrix were constructed from initial input 
cladograms by the maximum parsimony algorithm [8, 9]. In the analysis, the branching 
patterns of the outgroups were fixed in all input trees [except for the UPGMA and the 
distance Wagner dendrograms (see below)] according to the most parsimonious phylogeny 
reported by Miyamoto and Goodman [11]. The initial branching arrangements for the 
study group (carnivores) were obtained from several different traditional and molecular 
studies available in the literature [1-7], as well as from UPGMA and the distance Wagner 
clustering of pairwise minimum mutation distances [8, 9, 14-16, 20, 22, 25]. The point 
at which the outgroups joined the network of the study group (carnivores) was chosen 
as the root of each cladogram under consideration [19, 20] 

of  Ailuropoda and Ailurus are now in- 
cluded, as are several sequences of  
other carnivores not previously consid- 
ered (Figs. 1 and 2). More importantly, 
all living families in the order are now 
represented by at least one OTU (oper- 
ational taxonomic unit), except for the 
canoid family Odobenidae and feloid 

taxa Hyaenidae and Viverridae. Each 
carnivore OTU in the matrix is repre- 
sented by an average of  nearly 3.5 dif- 
ferent polypeptide chains. 
The c~- and fl-hemoglobins of  Ailuro- 
poda and Ailurus are considerably more 
similar to each other than to any other 
carnivore including Procyon lotor (ra- 

coon) [12] and Ursus maritimus (polar 
bear) [13]. The hemoglobins of  the two 
pandas differ at six amino acid posi- 
tions, which reflects a minimum muta- 
tion distance of  only seven [14] (Fig. 1). 
In contrast, the sequences of  Ailuro- 
poda and Ailurus differ from those of  
U. maritimus and P. lotor by minimum 
mutation distances of  11 and 18, re- 
spectively. Ailuropoda and Aiturus 
would be grouped together by phenetic 
methods using overall similarity (i.e., 
U P G M A )  [15]. 
Several most parsimonious trees, each 
with a nucleotide replacement (NR) 
score of  3553 are supported by the tan- 
demly aligned data [9, 16]. The alterna- 
tives revealed by the maximum parsi- 
mony method vary from the one shown 
in Fig. 2 by their arrangements of  pan- 
das and pinnipeds [Phocidae and Zalo- 
phus (sea lion)l, and by their positions 
of  Canidae [Canis familiaris (domestic 
dog), C. latrans (coyote), and Urocyon 
cineroargenteus (gray fox)] and Ursidae 
relative to each other. Ailurus is more 
closely related to the families Musteli- 
dae and Procyonidae than Ailuropoda, 
according to one other parsimonious 
solution. The position o f  pinnipeds 
varies such that they are represented 
in another reconstruction as the sister 
group of  all other canoids. One addi- 
tional parsimonious solution reverses 
the positions of  the families Canidae 
and Ursidae. In all cases, the congeners 
Canis familiaris and C. latrans and Leo 
leo (lion) and L. pardus (amur-leopard) 
unite to form separate monophyletic 
genera. 
The most  parsimonious trees con- 
structed from the protein sequence 
data do not support the relationships 
of  pandas and pinnipeds relative to 
other carnivores, as hypothesized from 
either traditional evidence or D N A  hy- 
bridizations [1-5] (Fig. 2). AiIuropoda 
and Ailurus are not closely related to 
the families Ursidae and Procyonidae, 
respectively, as generally accepted by 
other investigators. Instead, the most 
parsimonious solutions based on ami- 
no acid sequences suggest that Ailuro- 
poda, Ailurus, and the clade of  Musteli- 
dae/Procyonidae are best treated as 
separate lineages of  a tr ichotomy [17]. 
With respect to pinnipeds, the most 
parsimonious trees suggest that  the 
families Otariidae (Zalophus) and Pho- 
cidae are closely related, as hypothe- 
sized by Sarich [10] from immunologi- 
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ca1 distances. Therefore they do not  
support the more widely accepted hy- 
pothesis that the pinnipeds are diphy- 
letic [4, 5], rather than monophyletic. 
Clearly, the relationships of  both pan- 
das and pinnipeds warrant further 
cladistic analyses with additional pro- 
tein sequences. 
The relationships of  carnivores, as hy- 
pothesized from traditional evidence, 
are not otherwise refuted by the most 
parsimonious trees supported by pro- 
tein sequences (Fig. 2). Mustelidae and 
Procyonidae represent sister groups, 
according to the sequence data, which 
are allied to the families Canidae and 
Ursidae. The superfamily Feloidea (Fe- 
lidae) constitutes the distantly derived 
lineage of  Carnivora according to the 
molecular results. These higher-level 
relationships among terrestrial families 
are consistent with a cladogram of  Ted- 
ford [5], proposed from traditional an- 
atomical and paleontological evidence. 
The traditional arrangement of  these 
five families into the two superfamilies 
Canoidea (Canidae, Mustelidae, Pro- 
cyonidae, and Ursidae) and Feloidea 
(Felidae) [6] is therefore consistent 
with available amino acid sequence 
data. 
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Verdunstung. Von H. Schr6dter. Berlin- 
Heidelberg-New York-Tokyo : Sprin- 
ger 1985. 186 S., 17 Tab., D M  3 6 , - .  
Der Autor  legt hier - als Hochschultext 

- eine praxisgerechte Ubersicht fiber 
alle gebrfiuchlicheren bzw. ihm be- 
kanntgewordenen Verfahren vor, die 
die Verdunstung (potentiell wie aktuell, 
mit bzw. ohne Transpiration) durch 
Messung bzw. indirekte Rechenverfah- 

ren aus meteorologischen Gr6gen 
quantifizierbar machen. Er kommt  
als langj/ihriger Routinier - damit ei- 
nero Bedfirfnis von Hochschulangeh6- 
rigen (nicht nur Studenten), landwirt- 
schaftlichen, wasser- und kulturtech- 
nischen Praktikern entgegen. Es ist 
wahrscheinlich, dab es vom genannten 
Benfitzerkreis gesch/itzt wird, dab so 
gut wie keine theoretischen Kenntnisse 

vorausgesetzt werden. Wo dies aber 
n6tig erscheint (z.B. beim Durch- 
schauen der Dyer-Businger-Beziehun- 
gen, S. 77), wird auf  Originalarbeiten 
(im Beispiel: Roth, 1975) hingewiesen. 
Derartige Hinweise auf  Ableitungen 
von fundamentalen Formeln (z.B. der 
Penman-Formel,  S. 110-118) sind ffir 
eine anwendungsorientierte Pubtika- 
tion wohl die Ideall6sung. 
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