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An analytical solution for the temperature profiles during injection molding, 
including dissipation effects 

K. M.B. Jansen and J. van Dam 

Department of Polymer Technology, Delft University of Technology, Delft, The Netherlands 

Abstract: An analytical solution is obtained for the stationary temperature pro- 
file in a polymeric melt flowing into a cold cavity, which also takes into account 
viscous heating effects. The solution is valid for the injection stage of the 
molding process. Although the analytical solution is only possible after making 
several (at first sight) rather stringent assumptions, the calculated temperature 
field turns out to give a fair agreement with a numerical, more realistic ap- 
proach. Approximate functions were derived for both the dissipation-indepen- 
dent and the dissipation-dependent parts which greatly facilitate the temperature 
calculations. In particular, a closed-form expression is derived for the position 
where the maximum temperature occurs and for the thickness of the solidified 
layer. 

The expression for the temperature field is a special case of the solution of the 
diffusion equation with variable coefficients and a source term. 
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~z = Vz/(Vz) + D 
= x / D  ~ _ ~  
= 1 - ~  
= z / L  

-D 

1. Introduction 

Injection molding is a widely used cyclic process by 
which the raw polymer material is shaped into a prod- 
uct of the desired form. During this process the solid 
polymer is melted, forming a hot liquid which is in- 
jected into a cold mold. In the mold the melt is cooled 
and solidified. After the filling stage, some additional 
melt is injected as a compensation for the thermal 
shrinkage of the solidifying polymer. 

The combined effect of flow and cooling results in 
an orientation distribution which varies downwards 
from the product surface to the core (Wales 1972). 
This orientation distribution influences the mechani- 
cal and optical properties of the product. Since the 
relaxation times of the oriented polymer molecules 
strongly depend on the temperature, a detailed 
knowledge of the temperature profiles is crucial for a 
good understanding of the relaxation processes. 

In this paper the temperature development is 
studied with an emphasis on the region near the mold 
walls where the largest orientation levels are created. 
As the trend in industry today is to molding at 
moderate to high injection speeds, only those situa- 
tions are considered where the ratio of heat convec- 
tion to heat conduction is large (Gz> 50). 

A review of the solutions of the problems concern- 
ing the cooling of a flowing viscous melt is given by 
Pearson (1985). Perturbation solutions without the 
viscous dissipation effects were first obtained by 
L6v~que (1928) and Newman (1969). It is clear that in 
the case of large flow rates heating by dissipation can 
no longer be disregarded. A first term approximation 
of the viscous heating contribution was presented by 
Richardson (1979, 1983). However, this solution 
tends to give too high an estimate of the temperatures 
in situations where Gz=0(100) and the viscous 
dissipation is high (Br> 10), corresponding to com- 
mon injection molding conditions. In the present 
paper a more extended expression for the viscous 
dissipation part will be derived, the first term of 
which corresponds with Richardson's solution. The 
solution presented here agrees quite well with 
numerical solutions. It also converges to the solution 
Valid for the region far from the wall and is thus able 
to describe the maximum temperature due to viscous 
heating. 

Z=0 Z= k 
Fig. 1. Schematic representation of the mold 

2. Theory 

The description given here will be restricted to the 
most simple mold geometry, a long, thin rectangular 
cavity equipped with a film gate (see Fig. 1). As is 
shown by Richardson (1979), only minor changes are 
required to adapt the solution for a rectangular 
geometry to other geometries. Furthermore, solutions 
for film-gated cavities can be transformed into solu- 
tions for cavities with a point gate (Ryan and Chung 
1980). The effect of the solidifying layer on the veloci- 
ty profile will be disregarded. In general, this effect is 
small; if this is not the case the solution may easily be 
extended as indicated by Richardson (1983). 

In polymer melt flow the temperature distribution 
is influenced by the velocity distribution and vice ver- 
sa. As a consequence the momentum and energy 
equations are coupled and, due to mathematical com- 
plications, a complete solution can only be obtained 
by numerical simulation. However, an analytical 
solution which retains most of the relevant aspects 
can be obtained by making the following approx- 
imating assumptions: 

1) The flow is laminar and fully developed, which 
means the assumption of steady flow into a duct of 
rectangular cross-section which is long enough to 
be considered as open at its end. 

2) The height of the channel D is small with respect 
to its width, W, so that the flow in the cavity can 
be approximated by the flow between two flat 
plates. 

3) Melt front effects are neglected. 
4) Transient effects are neglected. 
5) Thermal properties are temperature independent. 
6) The viscosity obeys the power-law: 

(dvz~  v-1 
P = P0 ~ x l  and is temperature-independent. 

\ - - - -  / 

Here, p, v, v z, and P0 denote the viscosity, power- 
law index, axial velocity, and consistency index, 
respectively, 

7) Heat: conduction in the flow direction is neglected. 

Assumption 6) allows us to decouple the momentum 
and energy equations, which in our case read: 
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momentum: 

energy: 

- O('~z)+O~OVZ~ox OxJ = 0  (1) 

QCVz(X) OT ~. 02T (OUZ~ 2 
0 z =  ~ x  2 + p  \ 0 x /  (2) 

initial condition: T = T/ for z = 0 

boundary conditions: T =  T w at x = D 
and x = - D  (isothermal 
wall), 

where z denotes the axial coordinate, x the transverse 
coordinate, T the temperature, P the pressure, 2 the 
thermal conductivity, and pc the specific heat per 
volume. 

For convenience, we introduce the following 
dimensionless variables: 

T -  X Z Vz 7= = 2 ?. = vz 
T i - T w D L (v z) 

G z = (  3"vz'D2 , 

a.L 

B0 D2 
B r  = 

with 

;t ( r ~ -  rw)  

1 
m = - .  

- ,  -I (m + 1)/m 

Two integrations of (1) and application of the non- 
slip and symmetry conditions yields the velocity pro- 
file for power law fluids: 

vz = m + 2 (  1 -  Ixl m+l) • (3) 
m + l  

After introduction into Eq. (2), the energy equation 
reads in dimensionless form: 

rn+l 07= 027= 
mm+----~2Gz(1-+ 1 121 )0--~- 022 +Br[2[ m+a (4) 

initial condition: 7 = = 1 for g = 0, 

boundary condition: 7==0 at 2 =  _+1 . 

The solution of the energy equation can be split up in- 
to a part independent of Br, 7=A, and a part contain- 
ing all dissipation effects, Br. 7=s: 

7== 7=A + Br. 7= B , 

with initial conditions 7=A (Z = 0) = 1 , 
7=~(~ = o ) :  o 

and boundary conditions 7=A (2 = 0) = 0 , 
7=B(2= o) = o . 

Here, 2 denotes 1 - 12[. This can be expanded, giving 
for the energy Eq. (4): 

( m + 2 ) G z x [  1 - 1 m 2 + l - m ( m - 1 ) 2 2 - ' 2  6 "']O---To~ 

-------027= t- Br V 1 ~ ( m  ~ 1)2 
022 / 

+ - m ( m +  l ) 2 2 - . . .  . (5) 
2 

Equation (4) can be solved with the method described 
in the appendix. In our case, the solution can be writ- 
ten as a function of the following similarity parame- 
ters (see also the appendix): 

_ (m + 2) Gz23 
Z , e-~- 

9~ 

9g ) 1/3 2 

(m + 2) Gz Z 1/3 " 
(6) 

Applying the results derived in the appendix gives 
for the temperatures T A and TB: 

~m 
7=A = VA,0(Z)---i-ff VA, 1 (X) 

-- e 2 [K2 VA,zO(, ) + K 3 x Z  e - z ] (7A) 

7=B=ISe. 2VBOO(X) (m+ I) e3VB lO(X) 
2 ' 6 ' 

m ( m +  1) 84 UB, 20 (,y)~,~, 
18 

(m + 1)m(m - 1) eSvB,3o(~, ~,~, 
120 

(m+ l ) m ( m - l ) ( m - 2 )  e6VB,4O(X) . (7B) 
720 

This is, in fact, our final expression for the stationary 
temperature profiles including the viscous heating 
effect. The functions v(x) are defined as: 
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- ,  
VA,O(X) F(I/3~ ? ,Z 

F(4/3-----~ y , Z 

- 4,X ) 
vA'2(Z) F(4/3)F(5/3)X1/3e-X'M(~'3 

F ( 4 / 3 ) e - Z [ M ( ~  2 ) ] 
F(2/3)  ,~ ,Z - 2 2 7 -  1 

vB.00(X) _ F(5/3)  ,.1/3e_Z. ~r//5, 4 / .(4/3) z 1 , , ~  ~ , Z )  -- Z 2/3 

VB'a0(X) - F(4/3,1 ..Z1/3e-Z'M (2 ,  : , Z )  - Z  

UB,20(X) = Z 1/3 

F(8/3) ~/3 (~ 4, ) 
VB, aO(X)=F(4/3)X e - Z . M  ,~  Z - Z  5/3 

: vB,40 (%) F(4/3)  Z 

F(2/3)  m ( 1 0 - m )  3m 2 
K2 F2(4/3) 840 ' K3 200F(4/3)  

and 

F(4/3)  = 0.8930 , F(5/3)  = 0.9027 , 

M(a,b,z)= ~ a(a+l) . . . (a+n-1)Z"  
n=ob(b+ 1) . . . (b+n-  1)n! 

y(a,z) = 1xae-Z'M(1,a+ 1,Z) 
a 

denote two complete gamma functions, the Kummer 
function and the incomplete gamma function, respec- 
tively (see Abramowitz and Stegun 1972). 

Note the VA,1 and VB,10 can be expressed in terms 
of  vA,0. The first term of Eq. (7B) equals Richard- 
son's expression (1979) for the Br-dependent part of  
the solution. In Eq. (7 B), all VB, ki terms with i>  0 (as 
given in the appendix by Eq. (A20)) are neglected 
since the contribution of  their sum turns out to be 
small. In physical terms this means that, for the 
viscous dissipation contribution, a linear velocity dis- 
tribution in the convection part of  the energy equa- 

tion is assumed, whereas the source term is completely 
evaluated. 

3. Comparison with core flow solution 
and numerical calculations 

Core flow solution 
Near ~ =  1, Z will be large since Gz is large. 

Therefore, the temperature in the core will not differ 
largely from its initial state and the dependence on Z 
is small. If  the Z dependence is omitted, the solution 
of  Eq. (4) reads: 

~core(~,~) = ]p~ore + Br .  ~ore  = 

1 I Br2(1 - -  ~ ) m  + 1 
(8) 

(m+ 2~ [1-(1-~)m+ l } 
GZ \m  + 1/ 

In the limit of  ~ 1 Eq. (7) must yield Eq. (8). Indeed, 
using Eq. (A14) and ex 1/3 = ~, we obtain: 

T'(e,, Z ~ 1/e 3) = 1 - O(e2z2e -z) 

+ BrYn(1 --3~) m + I  {1 +0(Z -1)} . 

Gz(m + 2)~ 
(9) 

Thus, the Br-dependent part of  Eq. (9) is the leading 
term of 7~ °re. 

Numerical calculations 
In order to further check the validity of  the 

analytical solution, a comparison is made with the 
numerical solution of  Eq. (4) which was obtained by 
a finite difference technique based on Saul'yevs itera- 
tion scheme (see Pearson and Richardson 1983). 

As a representative injection molding material PS 
DOW 678 is chosen with 2 = 0 . 1 3  [W/mK], 
a = 7.10 -s  [m2/s], P0 = 6700 [Pa.sl/0-m)], 
m = 2.81. In Table 1 all relevant injection molding 
conditions are summarized. 

Table 1. Injection molding parameters 

Figure L W 2D T i T w (vz) Gz Br Lit. 
[m] [m] [mm] [°C] [°C] [m/s] 

2 0.30 0.035 2.0 250 50 1.0 48 25.3 - 
3 0.30 0.035 2.0 250 50 3.6 171 144 a) 
4 0.20 0.050 2.0 256 56 1.15 82 30.8 b) 

a) Van Wijngaarden et al. 1992 
b Alles et al. 1986 
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Fig. 2. Comparison of analytically predicted and numerical- 
ly calculated dimensionless temperature profiles for 
z /L  = 0.25, Gz = 48, Br = 25.3, and m = 2.81. The solid, 
dotted, and dashed lines represent the analytical, core flow, 
and the numerical solution of Eq. (4), respectively 

In Fig. 2 the solution (7A, B) is compared with the 
numerical solution of Eq. (4) for a rather low Gz 
value of 48 and several axial positions. Near the mold 
wall, as well as in the mid-plane, the numerical and 
analytical solutions coincide, whereas the core flow 
solution joins both numerical and analytical solutions 
for 2 > 0.6. The analytical solution underestimates the 
maximum temperature by about 1°70. Still better 
predictions can be obtained for larger Gz numbers 
and smaller g and Br values. We thus conclude the Eq. 
(7) is an accurate solution of the simplified model 
used. 

More realistic models (Van Wijngaarden et al. 
1982; Flaman 1990; Alles et al. 1986) also include 
unsteady effects, in particular, that flow is stopped 
when the mold is filled. These models use different, 
temperature-dependent constitutive equations. How- 
ever, as will be shown below, near the duct entrance 
the temperatures predicted by those models agree sur- 
prisingly well with the model used in this paper. 

The molding conditions as used by Van Wijn- 
gaarden et al. (1982) differ f rom those in Fig. 2. by a 
higher injection speed of  3.6 m/s .  An extended ver- 
sion of  their model was used by Flaman (1990) to 
calculate the temperatures indicated by the dashed 
line in Fig. 3. As can be seen f rom this figure, he 
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Fig. 3. Comparison of the dimensionless temperature pro- 
files at the end of filling, predicted by the analytical approx- 
imation and the model used by Flaman 1990. The dimen- 
sionless quantities are: z /L  = 0.25, Gz = 171, Br = 144, and 
m = 2.81. The solid, dotted, and dashed lines represent the 
analytical, core flow, and numerical predictions, respec- 
tively 
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Fig. 4. Comparison of the dimensionless temperature pro- 
flies at the end of filling, predicted by the analytical approx- 
imation and the model used by Alles et al. 1986. The dimen- 
sionless quantities are: z /L  = 0.25, Gz = 82, Br = 30.8, and 
m =2.81 
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predicts an about 8070 higher maximum temperature, 
whereas near the wall his calculated temperatures lie 
beneath the solution Eq. (7). This is due to the 
presence of the solidified layer which shifts the area 
where most viscous dissipation occurs towards the 
core. Since the frozen-in layer also decreases the ef- 
fective cross-section, the velocity increases and more 
heat is dissipated. This will cause the viscosity to de- 
crease. As is well-known, shearing is concentrated 
where the viscosity is lowered. In this way, the higher 
maximum of the curve obtained with Flaman's meth- 
od can easily be explained. Alles et al. (1986) used ex- 
perimentally determined viscosities in their numerical 
model to describe the filling process. In Fig. 4, we 
replotted the temperatures they calculated and added 
our predictions. Here, a similar trend as in Fig. 3 is 
seen. However, since Br is much smaller now, less 
heat is generated, resulting in a thicker solidified layer 
and a larger shift of the maximum towards the core. 

4. Position of maximum temperature, solidified 
layer thiekness, and simplified expressions 

Position of  the maximum temperature 

An estimate of the position where the maximum 
temperature occurs, Xmax, will now be made. We start 
with the leading term of T A and the first three terms 
of T 8 for large Z: 

e S B r [ l  m ( m +  1)~] 7~mUA'o(X3/eS)+T £c - ( m + l ) - ~  2 " 

After differentiation with respect to .f and equating 
the derivative to zero, we find, as a first estimate of 
the position of the maximum, 

20 = e'~/ln (lO/e4Br) . 

Some improvement is gained by substituting 
22 = 20(1 +c~) and solving for ~. This results in a fi of 
about - 0 . i ,  while a direct comparison with 
numerical results leads to the same order of  correc- 
tion. Therefore, the position where the maximum 
temperature occurs is given by: 

Xmax = 0.9e" ~/ln (lO/e 4Br) . (10) 

The absolute error in Eq. (10) is smaller than 0.01 for 
e4Br<O.03. 

A simple expression of )?max for larger values of 
g/Gz and Br, is not yet found. 

Simplified expressions for the temperature profiles 

Evaluation of the relative importance of the dif- 
ferent order terms of T A and TB shows that, for 
Gz = 0(100), the contribution of the second-order 
term to TA is less than 0.01. Thus, for practical pur- 
poses a first-order approximation is sufficiently ac- 
curate. A good estimate of T~ can be obtained by 
considering only the first three terms, as given by 
(7B). To be more precise, an underestimation of at 
most lO-SBr.g is made for Gz = 0(100). 

In order to enhance calculation speed VA, o, VA,2, 
and V~,oo can be fitted by the following simple ex- 
pressions: 

tTA,oOf ) ~ 1 --(1 -- 1.18X1/s+O.44Z2/S)e -z 

(absolute error _<0.003) 

VA,2(X) =(0.71Z°'25+ 1.2z)e -z 

(absolute error < 0.01) (11) 

2 (1 - e - 6"7X)Z -I/3 ~B,00(Z) 
J 

(absolute error <0.01 for • >0.15) . 

Equation (8) gives the solution for large values of .f 
(2> 0.2), whereas Eq. (7) is especially suited for small 
2. This suggests to try a hybrid form which matches 
7~B for both small and large .f. Therefore, the trial 
function ( l - e x p [ - c 2 a e b ] ) ~  °re is expanded for 
small 2 and compared with Eq. (7 B). It then follows 
that the exponent becomes -4.522/e 2. However, a 
somewhat smaller value of c appears to result in a bet- 
ter estimation of  7~B over the whole .f-region. We 
therefore write: 

7~B= (1 - exp [ - 2.9.fZ/e21) • ~ore  

(absolute error < 2.10-4) . 

(12) 

Solidified layer thickness 

For some purposes, for example, for a determina- 
tion of  the position of the boundary of  the solidified 
layer, we need an expression for the isotherms. 
Therefore, we rewrite Eq. (7) as a series of ascending 
powers of .f with coefficients which depend on e. We 
then invert this series with the aid of the inversion 
equation listed by Abramowitz (1972) to obtain: 

m/e 
7 ~ ~ 1 0 F ~ 3 ) B r )  7~2 

.f(e, ~) = 
A A 3 
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Z 5 

Br(m+l)T36A 4 +0 (j~71 (13) 

where A is the first derivative of the temperature pro- 
file at the wall: 

A - - - 1  m~__Bre(1 ( m + l ) e ~  . (14) 
/(4/3) e 10 2 3 F ( 4 / 3 ) /  

The solidification isotherm determines both the posi- 
tion and the magnitude of the frozen-in orientation 
peak (Wales 1972; Janeschitz-Kriegl 1979). Near the 
wall the temperature profile is almost linear and the 
first term of Eq. (13) is sufficient to describe the 
solidified layer thickness, Xsol: 

*sol = T.~ , (15) 
A 

where 7~g denotes the dimensionless solidification 
temperature. In Fig. 5 the solidified layer thickness is 
given for the injection molding conditions of Fig. 3 
with 7~g = 0.25 (solid line). The dashed line indicates 
the layer thickness without the dissipation contribu- 
tion. It is clear that this contribution cannot be 
disregarded in our case. For the real case where flow 
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Fig. 5. Comparison of predicted, solidified layer thicknesses 
at the end of filling. The solid and dashed lines correspond 
to the conditions as used in Fig. 3 with Br = 144 and Br = O, 
respectively. The dotted line is the layer thickness as 
predicted by the penetration theory, i.e., with Gz = 0 and 
Br= 0 

stops when the mold is filled, it is interesting to know 
at which distance z from the entrance the analytical 
solution of this paper can no longer be considered as 
relevant. For this purpose also the predicted layer 
thickness of the penetration theory is shown. This line 
is obtained if only the residence time of the melt at the 
cold wall is taken into account, whereas convection is 
disregarded (see Janeschitz-Kriegl 1979). 

5. Pipe flow solution 

The method developed here for a rectangular mold 
can easily be extended to other geometries. As an ex- 
ample, a solution will be given for a cylindrical pipe. 
Let r denote the radial coordinate and z the axial 
coordinate in a circular pipe of radius R and length L. 
In this case, the dimensionless energy equation reads: 

m + 2~ 0 7 ~ 
GZ kin+ 1 /  (1 -rm+l) t:e 02-'--~'4--'10f 2 f --+Br'rm+lof 

(16) 

initial condition: 7 ~ = 1 for ~ = 0 

boundary condition 7 ~ = 0  at f---1 , 

where f =  r/R. The treatment is very similar to the 
case treated before. On closer inspection, it turns out 
that the results of the channel flow solution, Eq. (7), 
can be used to obtain the solution for pipe flow 
(Richardson 1979): 

~ p i p e  ~channe! P(l_VnO)_pa{l+m'~ 
' \ 4  

e - x  (17)  
F(4/3) 

The effect of the geometry on the TB part is confined 
to the VB, ki terms with i>_ 1, which in our approach 
are not taken into account. 

6. Conclusion 

An analytical solution is presented for calculating 
the temperature profiles occurring in common injec- 
tion molding circumstances. Situations with high in- 
jection speed, where the viscous heating is large, are 
also covered. A good agreement with the numerical 
solution for the region near the mold wall is found. 
Further, the solution is seen to converge to the asymp- 
totic solution of the core flow. 
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Comparisons with some more extensive numerical 
models, as given in the literature (Flaman 1990; Alles 
et al. 1986), show differences of the relative tempera- 
tures of, at most, 8°7o. These differences are thought 
to be due to the assumptions which are made, such as 
temperature-independent viscosity. 

The solution can be used to calculate the position of 
the maximum temperature and the solidification 
isotherms. Also, some approximate functions are 
derived to facilitate the calculation of the temperature 
field. Furthermore, an expression for the tempera- 
tures occurring in pipe flow are given. 

Appendix:  Perturbation so lut ion  
o f  the d i f fus ion  equat ion  

In this appendix a solution of the diffusion equa- 
tion: 

0T OZT 
f (x )  - - -  f-g(x) (A1) 

OZ 0X 2 

initial condition: T = h (x) for z = 0 

boundary conditions: T =  0 at x = 0 (A2) 

and: f (x )  = fo xn (1 + f i x + f 2  x2 + . . . )  

g ( x )  = go + gl x + g2x2 + . . . 

h(x) = ho+ hlx  + hzx2 + . . .  

is sought for small x. For convenience, the g(x) part 
will be separated from the partial differential equa- 
tion by introducing T =  TA + TB, where T A is the 
solution of the homogeneous equation. T A satisfies 
the boundary and initial conditions (A2). T B is the 
solution of (A 1) with T B (x = 0) = 0 and 
TB(z = 0 )=  0 as boundary and initial conditions, 
respectively. 

A similarity solution is tried by introducing the pa- 
rameters e and Z, so that TA can be expanded in a 
series of powers of the small parameter e: 

(.(n+2)2z~ i/(n+2) ( x )  "+2_ fo xn+z 

e----- Z // , Z ~  (n+2)Zz ' 

TA= ~ e k ' d A , j y )  • (A3) 
k = 0  

After performing all substitutions and equating equal 
powers of e, an inhomogeneous Kummer differential 
equation (Abramowitz and Stegun 1972) results for 
each tgA, k: 

) , \-ff--~+2 +x {~A,k--n+zdA,k 

= - - 2 f i x  i/("+2) ZO A ,k_ i  n+2OA,k_ ( A 4 )  
i = 1  

with 0A,k(0 ) = 0 , dA,k(Z~oo) = hkz k/(n+2) , 

where " stands for differentiation with respect to Z. 
Note that the introduction of Z implies that the ini- 

tial situation is not only reached for small values of z, 
but also for large x. 

For k = 0 the inhomogeneous part of Eq. (A4) 
equals zero and the solution of dn,o(Z) is easily ob- 
tained: 

, - ~, z , ( A S )  

where y (a, Z) denotes the incomplete gamma function 
defined as 

Z 
y(a,z)  = ~ t ~- 1 e - td t  . 

0 

For k >  0, the inhomogeneous part of Eq. (A4) turns 
out to be of the form Kzqe-Z .  Buchholz (1953) pro- 
ves that the differential equation 

Z{9"+ (b + z ) d - a d  = Kxq e -z  

has the particular solution: 

K Z q +  1 e - x  
~part - 

(q+b)(q+ 1) 

• 2Fz(1,q+a+b+ 1 ; q + b +  1 ,q+2 ;Z)  , (A6) 

where 2F2 (1, a; b, c; Z) is a generalized hypergeometric 
function defined as 2Fz(1,a;b,c;x) 

= ~ ~ (a)kzk and (a)k denotes Pochammer's 
k=0 (b)k(c)k'  

symbol: (a)k = a(a+ 1 ) . . .  ( a + k -  1). 
Using this solution together with the homogeneous 

solutions, we can calculate the next two terms of TA: 

&A I (Z)=  f lh°  VA l ( z ) + h l z  1/(n+2) 
' n + 4  ' 

(A7) 



600 Rheologica Acta, Vol. 31, No. 6 (1992) 

where K2 = 

~A,2(X) = ( h 2 - K 2 ) V A , Z l ( Z ) + K 2 V A , 2 2 ( Z )  

-K3Z(n+5)/(n+2)e - z  , 

3 F 3 F 2 

2(n + F 1 F 4 6). (n~+2) (~+2)  

ho 

L 2(n+4)  

(A8) 

= 
( n  + 4~2-F ( n - ~ )  

2 \ n  + 2'/ 

VA,I(Z) = Z 1/(n+2) 1 F (n+ 3, 
[1 1..(n+3~" \-£--~+2 Z)] 

\n + 2/ 

2r ) 
UA, 21 (/~) = Z1/(n+Z)e-X 

.M(n+4_,n+3 ) 
\ n + 2  n--~ ' z  

( ' )  F +2 
n + 2 z(n+5)/(n+2) e 

F 2 VA'zz(Z' / . ( 3 + 2  ) ( n + 2  + 2 )  

"zF2(l 'n-~ +2; 3-~+2' 2--~-+2;Z~ n + 2  ] 

The contribution of Ts can be found in a manner 
similar to the calculation of T A. The asymptotic solu- 
tion for large values of x, T~ ~ can be obtained by let- 
ting OTB/Ox in Eq. (A 1) vanish: 

TaB s (X ~ co,Z) - g(x)"Z (A9) 
f(x) 

The introduction of Z according to Eq. (A 3) implies 
that this solution has also to apply for small values of 

z. In this case the right-hand side of Eq. (A9) 
vanishes, which is consistent with the initial condi- 
tion. Further, a slightly different perturbation series is 

introduced: TB=e2~  ekdB, k(Z). This results in 
k = 0  

the following set of differential equations: 

( n + l + z  ~ k + 2  
ZO'B,k+\n+ 2 '/ OB, k---~+ 2dB, k 

k 
_ gk . (k-n)/(n+2)_ E f i x  l/(n+2) 

(n +-2) 5 z i = 1 

k - i + 2  _ 
• ZdB'k-1 n ~  tYB'k-il ' (AIO) / 

with 

~B,k(Z = o) = o ,  

e 2 ~ ekdB, k(X~c~,e=0)=TaBS(X,0)=0.  (Al l )  
k = 0  

In fact, the initial condition turns out to be such that 
each dB, k vanishes for large Z. 

The homogeneous solutions are similar to those of 
dA,k, whereas the particular solution can be con- 
sidered to consist of two parts, one resulting from the 
first term and the other from the last term on the 
right-hand side of (A 10). The first part can easily be 
found. As can be verified by substitution, this reads: 

t~B, part 1 (Z )  = gk )~ (k + 2)/(n + 2) 
(k+ 1)(k+2) 

Applying the initial and boundary condition now 
yields: 

dB, kO(Z) -- gk VB, kO(Z ) , (A12) 
(k+ 1)(k+2) 

where 

(k+2) \~+2/X~/(.+2)e_ x 

v~,ko(Z)= r(_~+2) 

k + 2 n + 3 ~ (k + 2)/(n + 2) 
"M 2 + 1' V 5+ 2' x / -  X (A 13) 
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VB'kO(X-~°°) = \ n + 2 /  \n+2/  (a14) 

The particular solution due to the last term of (A9) 
can be found by expanding the riB, e_ 1 solutions in 
powers of X, multiplied by exp ( - Z ) .  Using (A 6), this 
results in a particular solution consisting of a series of 
2F2(1,a;b,c;z) functions, which will be denoted as G~i0C): 

VB, ki(X) = - 
[ / zll(n+2)e-Z 

(k-q-2 ""1-3 ) ~ki(~)] 
" M \ n + 2 +  1' ~ + 2 ' Z  Ski J 

i > 0  , (A20) 

Gki(Z)~- x(i+n+ 3)/(n+ 2) e - z" 
r=0 

(.k-i+2~ r F //1, k + i + 2  i i+1 ) 
~--~+~ ) rX 2 2~ x ;~---~ +r+2; - -+r+2 ,n+2  n + 2 + r + 2 ; X  

( n + 3 ~  rI(i+_n+_2 r ) ( i+n+3+r)  
\n+2Jr \ n + 2  ~k- ~-2+ 2 

(A 15) 

In order to apply the initial conditions, we must know 
the asymptotic behavior of Gki. This turns out to be: 

Gki(Z--+ oo) = S k i , ) ( ,  (k + 2)/(n + 2) , (A 16) 

with 

Ski = 

r ( i + n + 2 ~ r  +_n+_3~ 
n + 2 ;  ( / n + 2  // 

r(k_+i+2 ~2) 
\ n + 2  

k--i+2, i+n  +2, i + n +  3. 
"3F2 \ n + 2  n+-2 " n + 2  ' 

n+32, k+i+2 ) ~2; 1 . (A17) 
n+ n + 2  

Thus, the final expression for T B becomes: 

TB = ~ /@+2 
k=0 

1 k+ 1~-k+2) VB'k0(X)+i=l ~ tqB'ki(X) ' 
(A18) 

where 

OB, kiO~ ) = Cki'Ski'UB, ki(X ) , for i > 0  (A19) 

and 

\ / Ck i = figk-i. 
(n+2) 2 ( n + 3 ~  

F \ n + 2 J  

A ckn o wledgem en t 
The numerical calculations leading to Fig. 3, were per- 

formed by A. A. M. Flaman of the Philips Research Labora- 
tories, The Netherlands. 
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