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A new constitutive model for fibre suspensions: flow past a sphere 
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Abstract: A new phenomenological constitutive equation for homogeneous 
suspensions of macrosized fibres is proposed. In the model, the local averaged 
orientation of the fibres is represented by a director field, which evolves in time 
in a manner similar to the rotation of a prolate spheroid. The stress is linear in 
the strain rate, but the viscosity is a fourth-order tensor that is directly related 
to the director field. In the limit of low-volume fractions of fibres, the model 
reduces properly to the leading terms of the constitutive equation for dilute 
suspensions of spheroids. The model has three parameters: the aspect ratio R of 
the fibres, the volume fraction ~, and A, which plays the role of the maximum- 
volume fraction of the fibres. Experimental shear data are used to estimate the 
parameter A, and the resulting model is used in a boundary-element program to 
study the flow past a sphere placed at the centre line of a cylinder for the whole 
range of volume fractions from 0.01 to near maximum volume fraction. The 
agreement with experimental data from Milliken et al. [1] is good. 
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1. Introduction 

The rheological behaviour of fibre suspensions has 
recently been a subject of interest owing to the in- 
creasing use of  composite materials. Most of  the 
rheological studies of  fibre suspensions were con- 
cerned with determining the effective shear viscosity 
as a function of  the volume fraction and the aspect 
ratio of  the fibres. Past  and recent progress was re- 
viewed in Brenner [2], Metzner [3] and Ganani and 
Powell [4]. In nearly all o f  the experimental works, 
the fibres are large and rigid so that the effects of  
fluid inertia and Brownian motion are negligible. In 
general, it was found that the flow is intrinsically 
unsteady and the suspension is anisotropic in that the 
"effective viscosity" (obtained usually by a time aver- 
age) depends to some extent on the flow system to 
which the fluid is subjected. In particular, the shear 
viscosity (obtained in a shear flow) is lower than the 
effective viscosity obtained from a falling sphere 
rheometry [1] at the same volume fraction. This an- 
isotropy can be due to several reasons, including a 
flow-induced migration of  the fibres, which renders 
the fluid inhomogeneous, and a local re-arrangement 

of  the microstructure. There is also the effect of  the 
initial orientation of  the fibres: an initial random 
orientation of  the fibres always yields the maximum 
effective viscosity (over an initial aligned orientation 
of  the fibres) in the falling-sphere rheometry [5]. In 
this sense, the fluid has a large span of  memory. How- 
ever, within a particular flow system (shear-flow or 
falling-sphere rheometry), the fluid behaves essential- 
ly like a Newtonian fluid with regard to the functional 
dependence on the shear rate (linear). The falling- 
sphere data [1] further showed that the dilute regime, 
as manifested by the proportionality between the 
specific viscosity and the volume fraction, extends to 
a volume fraction of  about 12.5% for a suspension of  
rods of  aspect ratio of  19.8. For volume fractions be- 
tween 12.5% and 23.15%, the specific viscositY in- 
creases with the cube of  the volume fraction. Data 
f rom Milliken et ai. [1] plus new evidence (unpub- 
lished data [6]) on the flow-induced migration in 
suspensions using the Nuclear Magnetic Resonance 
(NMR) technique support the falling-sphere rheo- 
metry as the only practical method of measuring the 
suspension viscosity without unduly disturbing the 
microstructure. 
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Theoretical progress in fibre suspensions has been 
slow. Early works [7, 8] assumed that the stress field 
remains unaltered by the presence of the fibres and 
calculated the fibre trajectory by following its Jef- 
fery's orbit [9]. As pointed out by Lipscomb et al. 
[10], such a calculation may be grossly in error, 
because the streamlines can be drastically altered even 
at fibre concentrations of less than 0.1070. An example 
is the 4:1 entry-flow problem, where the kinematics 
can change significantly from the Newtonian kine- 
matics [10]. This change is brought about by the pre- 
sence of the elongational flow along the centreline of 
the tube and the fact that a dilute suspension of fibres 
can sustain substantially larger tensile stresses than 
those in shear flow at a comparable deformational 
rate [11- 13]. The finite element calculations of the 
4:1 contraction-flow problem (Lipscomb et al. [10]), 
using a constitutive equation for a dilute suspension 
of prolate spheroids and the full-alignment assump- 
tion, showed excellent agreement with the experimen- 
tal data on suspensions of chopped-glass fibres of 
aspect ratio 276 and at volume fraction less than 
0.11 070. The constitutive equation used in [10] is of the 
form of the Transversely Isotropic Fluid (TIF) model 
of Ericksen [14]. The connection of the TIF model 
with a dilute suspension of ellipsoids has been eluci- 
dated by several authors (Giesekus [15], Hand [16], 
Cox and Brenner [17], Leal and Hinch [18, 19]). It is 
noted that there are only two parameters appearing in 
the model: the volume fraction ~ and the aspect ratio 
of the ellipsoids R. The same constitutive equation 
was used in a finite-element [20] and a boundary-ele- 
ment simulation of the flow past a sphere (Phan- 
Thien et al. [21]). 

It was found that the flow kinematics are intrin- 
sically unsteady [21], and that the prediction of the ef- 
fective viscosity (which is proportional to the time-av- 
eraged drag force on the sphere) agrees reasonably 
well with Milliken et al.'s data [1] at volume fractions 
less than 10°70. At higher volume fractions, the effec- 
tive specific viscosity was observed to increase with 
the cube of the volume fraction. The constitutive 
model, being a model for a dilute suspension, can on- 
ly predict that the specific viscosity is proportional to 
the volume fraction; the transition from linear to 
cubic behaviour in the specific viscosity vs the volume 
fraction is outside the scope of the dilute-suspension 
theory. 

The dilute constitutive theory, however, has several 
attractive features that have been observed experi- 
mentally with suspensions of rods. It is anisotropic, it 
is intrinsically unsteady in flows that have a shear 
component (e.g., shear flow, 4:1 contraction flow, 

flow past a sphere) and it has only two parameters (~ 
and R), which have precise physical meaning. It is the 
intention of this study to extend this theory to the 
semi-dilute regime so that the transition from linear to 
cubic behaviour referred to earlier can be predicted. 
The modification is based on the observation that the 
rotation of a spheroid in a three-dimensional cubic ar- 
ray subjected to a bulk shearing flow [22] is only 
weakly dependent on the volume fraction, for 0 < ~ < 
0.13. Thus, one can assume that the rotation of the 
spheroids is still given the Jeffery's solution up to a 
moderate volume fraction, at least, and modify the 
functional dependence of the parameters that appear 
in the TIF model so that the desired transition can be 
effected. We only insist that the modified constitutive 
equation goes to the correct limit at low-volume frac- 
tions. The new constitutive model has one additional 
parameter, A, which plays the role of the maximum- 
volume fraction. The shear flow data by Kitano et al. 
[23] on various fibre suspensions suggested that A 
decreases linearly with the aspect ratio R for a limited 
range of aspect ratios from 5 to 30; at the aspect ratio 
of 20, A = 0.27. The form of the constitutive equa- 
tion is precisely that proposed by Evans [24] and Dinh 
and Armstrong [25] using a mean-field of random 
orientation. 

The new constitutive equation was implemented in 
a boundary-element program, and the flow past a 
sphere placed at the centreline of a tube is studied 
next. Much of the interest in this flow has been 
generated from the possibility of measuring the effec- 
tive viscosity by observing the fall of precision spheres 
through the fluid of interest. The apparatus required 
is relatively simple to construct and the underlying 
theory for Newtonian fluids is well understood. When 
the fluid is non-Newtonian, the problem is con- 
siderably more complex and the final analysis 
depends on the particular fluid model adopted. The 
flow problem is incidentally a benchmark problem set 
in the Fifth Workshop on Numerical Methods in 
Non-Newtonian Flows [26 - 28]. 

Most of the theoretical studies of the non-Newto- 
nian flow past a sphere were based on perturbation 
and variational methods; a review of this is found in 
Acharya et al. [29]. Such results are limited to slightly 
non-Newtonian fluids or to inelastic generalized 
Newtonian fluids [30]. Numerical studies using finite 
difference [31, 32], finite element [33-36] and 
boundary element methods [21, 28, 37] have also been 
attempted. Most recent numerical works concentrated 
on the uniform flow of the Oldroyd-B fluid past a 
sphere placed at the centreline of a cylindrical tube 
[27, 28]. The quantity of interest to experimenters is 
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the drag coefficient Z defined by 

F 

Fu 

where F is the drag force on the sphere and FN is the 
corresponding drag force for a Newtonian fluid of the 
same viscosity. 

The new constitutive equation is similar in form to 
the TIF model, and thus we find no steady-state solu- 
tion to the flow past a sphere [21]. The effective 
reduced viscosity (~/r) obtained by time-averaging the 
drag force on the spheres and normalizing the result 
with respect to the Newtonian drag force agrees rea- 
sonably well with Milliken et al.'s data [1], using 
A = 0.27 as suggested by Kitano et al.'s data [23]. 
However, the plot of the specific viscosity (~sp = 
~/r-1) vs the volume fraction reveals that the non- 
linear transition occurs at a volume fraction of about 
7.5%. For this transition to occur at 12.5%, as ob- 
served by Milliken et al. [1], A has to be about 0.46. 
At high-volume fractions, a scaled problem is solved 
to supply an asymptotic formula for the reduced 
viscosity. It is found that the reduced viscosity 
predicted by the falling-sphere method can be con- 
siderably greater than the reduced shear viscosity; at 
the aspect ratio of R = 20, it can be seven times 
higher. The initial orientation of the fibres has a 
negligible effect on the averaged drag force on the 
sphere over a long time. Over a short time (t< 10), 
however, the averaged drag force is highest when the 
initial orientation of the fibres is randomized. 

2.  C o n s t i t u t i v e  e q u a t i o n  

2.1 The model  

The simplest properly invariant theory of 
anisotropic fluids is the Transversely Isotropic Fluid 
(TIF) model proposed by Ericksen [14]. In this model 
the microstructure of the fluid is characterised by a 
unit vector field p, which evolves in time according to 
a certain law. The stress generated by the microstruc- 
ture is a tensor-value function of this unit vector field 
and the strain rate tensor. 

Jeffery [9] considered the motion of a rigid 
spheroid suspended in a Newtonian fluid. He showed 
that the spheroid translates with the fluid velocity and 
rotates according to 

_ + R 2 - 1  
Dp W ' p  ~ D : p p p )  (1) 
Dt  R2+ 1 ( D ' p -  , 

where D ( . ) / D t  is the material derivative, W= 
( ( V u ) t - V u ) / 2  is the vorticity tensor, D = ((Vu)*+ 
V u ) / 2  is the strain-rate tensor, the * denotes the 
transpose operation, R is the aspect ratio of the 
spheroid as before andp is a unit vector along the ma- 
jor axis of the spheroid. Note that as p ' p  = 0, the 
magnitude of p is preserved in this time evolution. If 
p is initially a unit vector, then it remains a unit vector 
at all time. 

Giesekus [15], Hand [16], Cox and Brenner [17], 
Leal and Hinch [18, 19], Evans [24], amongst others, 
considered a dilute suspension of monosized rigid 
spheroids and obtained the volume-averaged stress 
using Jeffery's solution. They showed that the TIF 
model is appropriate continuum description of the 
suspension. In this case, the unit vector field p is 
simply the unit vector along the axis of the spheroid 
and the bulk stress generated by the microstructure is 
given by [18] 

S = 2 J l D + 2 r l ~ [ A ' D : p p p p + B ( D . p p + p p . D )  

+ C D  + dRFpp} , (2) 

where ~/is the viscosity of the solvent, ~ is the volume 
fraction, dR is the rotational diffusivity of the 
spheroids and A',  B, C, F are material constants 
depending on the aspect ratio of the microstructure. 
The asymptotic values of A ', B, C and F are tabulated 
in Table 1. 

Equation (2) should be further averaged with 
respect to the probability distribution of p. However, 
we are concerned with a dilute suspension of 
macrosized fibres (large aspect ratio) so that the dif- 
fusivity can be set to zero, and we feel free to write (p) 
interchangeably with p, where the angular brackets 
denote the ensemble average. Physically, p can be 
regarded as either the local orientation of an in- 
dividual fibre or the mean orientation of the fibres 
locally. The size of the fibres must, however, be con- 
siderably smaller than any relevant length scale of the 
problem for the suspension to be treated as a con- 
tinuum. It is interesting to note that Milliken et al. [1] 
found that falling spheres smaller than the length of 
the fibres give the same average viscosity as much 
larger spheres; that is, the continuum hypothesis 
holds at a length scale comparable to the length scale 
of the fibres. Furthermore, the implication of the 
dilute assumption for a suspension of fibres is that 
~bR2~ 1. However, Milliken et al.'s data [1] showed 
that the dilute regime extends to ~R 2 ~ 50. 
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Table 1. Asymptotic values of A', B, C and F 

Asymptotic limits A'  B C F 

R 2 61n2R-11 3R 2 
2 

2 (ln 2R - 1.5) R 2 

39-'--~552147 14155- 39----~5 fi2588 -5( 1 - 2 5 +  1 - 5 3 ) 2  7 3 / 95 

10 208 8 128 8 12 
- - + - - - 2  - -  +1 
3~R 91r z 3~zR 9~ 2 3~zR r~R 

R--* oo (rodlike) 

R = 1+5, fi.~l 
(near sphere) 

R--+0 (disklike) 

In 2R - 0.5 

Note that, from Eq. (1) 

D p p  

D t  
- W ' p p - p p "  W 

R 2 - 1  
+-- - ; - - - -  ( D ' p p  + p p  "D - 2 D  : p p p p  ) . 

R ~ + I  

This is identical to the constitutive equation adopted 
by Lipscomb et al. [10] for solving the 4: 1 entry-flow 
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Fig. 1. Angular velocity •y of a prolate spheroid in a cubic 
array arrangement under a bulk shearing flow in the x - z  
plane. The bulk shear rate is 1. The aspect ratio of the 
spheroid is 2. The curves labelled X, Y and Z are the results 
for spheroids aligned in the x, y and z direction, respective- 
ly. Jeffery's solution [9] shows that these angular velocities 
should be 0.2, 0.5 and 0.8, respectively, for the three cases 
mentioned above 

problem. As a consequence of  their closure assump- 
tion D:  ( p p p p )  = D : ( p p ) { p p )  (their Eq. (24)), their 
(pp> is equivalent t o p p  in our notation and, thus, the 
constitutive equation adopted in [10] and also in [20], 
although written in terms of  ~op>, is mathematically 
the same as the constitutive equation adopted in the 
boundary element study [21]. Note, however, that in 
the finite-element studies [10, 20], the fully alignment 
assumption was adopted. This assumption replaces p 
by u / l u ] ,  which is the equilibrium solution near a 
solid surface for fibres with infinite-aspect ratio. 

The TIF model, represented by Eqs. (1) and (2), is 
quite successful in describing certain qualitative 
features of suspensions. It predicts that both the shear 
stress and the first normal-stress difference are linear 
in the shear rate 9> in a simple shearing flow. In addi- 
tion, the stresses are functions of  ?t,  where t is the 
time. These features have been observed in ex- 
periments [38] with suspensions of  polystyrene 
spheres (diameters in the range 4 0 -  50 ~tm) in a sili- 
con oil. However, the stresses are periodic in time, 
which corresponds directly with the Jeffrey orbits ex- 
ecuted by spheroids [9] and has been observed in di- 
lute suspensions [39]. 

In a recent numerical simulation of  a simple shear- 
ing'flow past a cubic array of  prolate spheroids (of 
aspect ratio 2), we find that the rotation of  the spher- 
oids is only weakly dependent on the volume fraction, 
up to a volume fraction of  0.11 (the maximum volume 
fraction of  a cubic array of  prolate spheroids of 
aspect ratio 2 is ir/24 ~-0.13): Figure 1 shows this 
clearly. In this figure, the curves labelled X, Y and Z 
represent the angular velocity of  the spheroids aligned 
in the x, y and z direction, respectively. The bulk 
shearing flow takes place in the x - z  plane. Equation 
(1) predicts that the angular velocities in these three 
cases are 0.2, 0.5 and 0.8, respectively. Thus, it seems 
reasonable to assume that the spheroids rotate ac- 
cording to Eq. (1) up to moderate volume fractions. 
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To make the connection between the director field 
p and the stress tensor, we note that the dominant 
term in Eq. (2) at large aspect ratios is the term involv- 
ing A' .  However, this term is proportional to the 
volume fraction and no non-linear transition is possi- 
ble. We, therefore, assume that the stress is given by 

S = 2/7D + 2/7f(~,  R ) D  : p p p p  , (3) 

where f is a function, yet to be determined, of  the 
volume fraction and the aspect ratio. In the limit of  
vanishing volume fraction, this constitutive equation 
should reduce to the dominant terms of  Eq. (2). Thus, 
we require that 

R2~O 
lim f ( ~ ,  R)  = 
~-~0 2(In 2 R -  1.5) 

Our new phenomenological equation, as represent- 
ed by Eqs. (1 ) - (3 ) ,  is motivated by the constitutive 
equation of  dilute suspensions Of fibres; its usefulness 
should be judged by its ability to fit experimental 
data. Note that the form of  the constitutive equation 
is precisely that proposed by Evans [24] and Dinh and 
Armstrong [25]; the functional dependence o f f  on the 
volume fraction ~,  however, is determined by a 
mean-field assumption of  random orientation [40]. 

2.2 Simple shear f l o w  

To determine the functional form for the function 
f ( ~ , R ) ,  we consider the simple shearing flow with 
shear rate p. In this flow, p is periodic in time: 

Pl = (a cos a~ t + fl sin o9 t ) / P  , 

P2 -- _ /_ ( ,. (fl COS O9 t-- a sin cn t ) / P  , 

and 

P ~  

where a and fl are constants related to the initial values 
of  p, and the frequency co is given by 

2 
¢ 0 =  ( ( 2 - - ( ) ~ ) 2  , ( - - R 2 + 1  

which is proportional to the magnitude of  the shear 
rate. 

The instantaneous viscosity is defined by the ratio of 
the shear stress to the shear rate; it is given by 

/Tins =/7 [1 + 2f(q~,R)p2(t)p2(t))]  . 

Because p is a periodic function of  time, the instan- 
taneous viscosity is also a periodic function of time. 
We take the experimental approach of using the time- 
average value to define the effective viscosity: 

/Teff = /7 [1 -[- 2f(q~,R)(pZ(t)pZ(t)))] , 

where the angular brackets now denote the time aver- 
age. From the solutions for Pl (t) and p2(t), it is found 
that ( p 2 p ~  is proportional to 1/R 2. Thus, the reduc- 
ed viscosity is 

- - =  +c  f ( ¢ ' n )  (4) /7r ~- /Teff 1 R 2 ' 
/7 

where c is a constant. 
To obtain a specific functional form for f ,  we 

recourse to an empirical relation proposed by Kitano et 
al. [23]. These authors obtained shear viscosities of 
various suspensions of  inorganic fillers (glass fibres, 
carbon fibres, talc, precipitated- and natural-calcium 
carbonate powder) of aspect ratios in the range 6 - 28. 
They found that the empirical equation 

1 
~r - - 2  ' ( 5 )  

(1 ¢ / A  ) 

can be used to correlate their data, provided that the 
parameter A is fitted to the properties of the particular 
suspension at hand; A is basically the maximum 
volume fraction of  the suspension. A linear regression 
through their data (Fig. 2) shows that A can be approx- 
imated by the linear relation 

A = 0 . 5 3 - 0 . 0 1 3 R  , 5 < R < 3 0  . (6) 

If  we require that the predicted reduced viscosity has 
the same functional form as observed by Kitano et al. 
[23] at ¢ / A ~ 1 ,  and yet has the correct form in the 
limit of low-volume fraction, then a simple functional 
form for f is 

R2 ~(2  - qb/A) 

f ( ~ , R )  = 4 ( ln2R - 1.5)(1 - # / A )  2 " (7) 
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Fig. 2. Dependence of the maximum volume fraction A on 
the fibre aspect ratio. Data from Kitano et al. [22] 

10 

g... 

1 
0.01 

' ' ' ' ' ' ' 1  t V 

o Ganani and Powell 

7 • R=5 
v R=IO v 

[] R=25 

/ :!  ,d 
2 e  

~ ' l ~ -  i i i r i ~ l l  i i i r ~ i i 

0.1 

Fig. 3. Reduced viscosity in a simple shearing flow. Data 
(©) from Ganani and Powell [37] 

In summary, the proposed constitutive equation 
has a director field that evolves in time according to 
Jeffery's solution [Eq. (1)], a stress rule [Eq. (3)] that 
allows the calculation of  the stresses given p and the 
velocity gradient. The stress rule involves three pa- 
rameters: the volume fraction 4 ,  the aspect ratio R, 
and the maximum volume fraction A. The evolution 
equation of  the director field only involves the aspect 
ratio; it is not obvious how to build in the 4-  
dependence into this equation at this stage. The maxi- 
mum volume fraction is assumed to be given by 
Eq. (6) if the aspect ratio is between 5 and 30. There 
are no further adjustable parameters in the model, ex- 
cept the initial orientation of  the fibres. Note that the 
volume fraction only enters the governing equations 
through the stress rules. The time evolution of  the 
fibres' orientation is affected by the volume fraction 
indirectly via the kinematics. 

In the simple shearing flow, the time-averaged 
value of  2 z pip2 depends only weakly on the initial 
orientation of  the fibres for 5 < R < 30. The reduced 
shear viscosity can be shown to take the form 

r/r = 1 + k ~b (2 - cb/A) (8) 
( 1  - ~/A)2 ' 

where k is evaluated from the average of  2 2 PiP2 and 
the aspect ratio of  the fibres. It is found that k = 1.09, 

1.40, 2.10 and 2.46 for R = 5, 10, 20 and 25, respec- 
tively. The intrinsic viscosity of  the suspension is 

[#] = lim ~/r- 1 _ 2 k . 
q~--,0 

At the aspect ratio of 20, the intrinsic viscosity as 
measured in a simple shear flow is predicted to be 
about 4.2, which is considerably smaller than the 
value 28.5 as measured in falling-sphere rheometry 
[1]. 

The reduced shear viscosity is plotted in Fig. 3 for 
the four different aspect ratios. The shear-flow data 
from Ganani and Powell [41] for R = 25 are also in- 
cluded in Fig. 3. The agreement between the predic- 
tion and the experimental data is reasonable. In 
Fig. 4, the specific viscosity ~/sp = ~/r- 1 is plotted 
against the volume fraction. For the aspect ratio of  
20, the non-linear behaviour in the plot of  ~7sp vs ~b 
sets in at a volume fraction of  about 0.10. For 
4 < 0 . 1 0 ,  ~sp is proportional to the volume fraction, 
and with a limited number of data points between 
0.1 < ~ < 0.2, one can certainly fit a cubic relation to 
the ~/sp- ~ curve. This "transition" from linear to 
cubic behaviour for this model suspension is, of  
course, an artifact of  the method of  plotting, and has 
nothing to do with transition at microstructural level. 
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Fig. 4. Specific viscosity in a simple shearing flow. Data ( O ) 
from Ganani and Powell [37] 

The instantaneous normal stress differences are 
given by 

N1 = 2 r l ? f ( q ~ , R ) p l ( t ) p 2 ( t ) ( p 2 ( t ) - p 2 ( t ) )  , 

N 2 = - N  l , (9) 

where y is the shear rate. The time-average of  the nor- 
mal stress differences, however, is zero at all aspect 
ratios. It should be noted that this constitutive equa- 
tion is linear in the strain-rate tensor; all properties 
(such as drag force and stresses) should be linear in 
the strain rate. The strain rate can, therefore, be fac- 
tored out of  the numerical problem. 

The fact that the kinetics are periodic in time in the 
simple shearing flow suggests that there is no 
guarantee of  having a steady-state solution in com- 
plex flows, at least in those that have a shear flow 
component  in parts of  the flow domain. The 
numerical method adopted to solve the TIF or the 
new model must necessarily be a time-dependent 
method; furthermore, the time integration scheme 
must be robust enough to handle fast-varying stresses. 

2.3 Elongat ional  f l o w  

In a uniaxial elongational flow, in which the strain- 
rate tensor takes the form 

D = diag (2 G, - G, - G) , 

where G > 0  is the strain rate, it can be easily shown 
that 

l i m p ( t )  = [1,0,0} . 
p - - ~  o o  

The Trouton,  or elongational viscosity is given by 

~ =  3~/+2~/f(q~,R) . (10) 

The reduced Trouton viscosity is given precisely by 
Eq. (8), where 

R 2 
k -  

3 (ln 2R 2 -  1.5) 

At R = 25, k = 86.4, which is about 35 times greater 
than the corresponding value in shear flow. 

3. Flow past a sphere 

3.1 Prob lem f o r m a t i o n  

We consider next the flow generated by a sphere 
falling along the centreline of  a cylindrical tube con- 
taining the model suspension fluid. The radius of  the 
sphere is a, and the radius of  the tube is 2a  (these are 
the dimensions recommended by the Fifth Workshop 
in Numerical Methods in Non-Newtonian Flows). In 
a frame of  reference that translates with the sphere, 
the sphere is at rest and the tube wall is seen moving 
with a constant velocity (the failing speed U of  the 
sphere, but in the opposite direction of  the falling 
sphere). Henceforth,  all length scales are normalized 
with respect to a and velocities are normalized with 
respect to U; the time is therefore made dimensionless 
with respect to a /U.  Furthermore,  the fluid far away 
from the sphere is seen moving rigidly with the tube, 
and all associated stresses are zero there. The two 
equations we wish to solve are, 

V . u = O  and V . a = O ,  

subjected to the above-mentioned boundary condi- 
tions, in which u is the velocity field and a is the total 
stress field given by 

a =  - P I + S  , 

where P is the hydrodynamic pressure, 1 is the unit 
tensor and S is the "extra" Stress given by Eq. (3). 

The numerical method adopted is the boundary-ele- 
ment method (BEM), which has been described in 
several papers [37, 42] and needs not be repeated here 
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in detail. In essence, the method solves a series of 
linear problems, each with a known body force (the 
domain integrals of the extra non-Newtonian 
stresses), until convergence is achieved. The dif- 
ference between the previous BEM [37] and the pre- 
sent scheme is the constitutive equation chosen and 
the method for computing the extra stresses. Sugeng 
and Tanner [37] employed a streamline scheme, 
whereas a time-integration scheme similar to that used 
in [42] is employed here. 

A streamline scheme can be developed here by first 
defining a vector q, which evolves in time according 
to 

~1 = ~.O~.q , (11) 

where ~ i s  an 'effective' velocity gradient yet to be 
determined and the super dot denotes the material 
time derivative. Let p be the unit vector along q, i.e., 

p = - q  . ( 1 2 )  
q 

Thence 

O = q ' P  = q . .~ :PP  , 

and thus p evolves in time according to 

p = ~ . p -  ~ : p p p  . 

This is identical to (1) if the 'effective' velocity gra- 
dientt tensor is given by £ f = L - ~ D ,  where 
( = 2 / ( R 2 + 1 ) .  At infinite aspect ratio and in a 
homogeneous flow, Eq. (11) is the equation defining 
the velocity, and thus the solution for p is simply 
u / ] u  I . This is essentially the basis of  the full align- 
ment assumption. In an inhomogeneous flow and /or  
a finite-aspect ratio, the full alignment assumption 
will no longer provide a good solution to p.  We will 
not, therefore, adopt the full-alignment assumption 
here. 

Along a streamline, the material derivative is sim- 
ply the arc-length derivative. Thus, given the bound- 
ary conditions at the entry of  the flow domain and the 
kinematics, Eq. (11) can be integrated along the 
streamline. The unit-vector field p can be found from 
Eq. (12), and hence the stress tensor can be found 
from Eq. (2). This scheme was implemented in the 
current BEM. However, we found that it is not very 
robust, especially with a fine mesh when the kinemat- 
ics have yet to converge. In this case, streamline cross- 
ing may occur, leading to a divergence of  the numeri- 
cal results. 

The time integration scheme (fourth-order Runge 
Kutta), which is based on integrating Eq. (11) using 
available current information, is much more robust, 
and was adopted in this study. Another advantage of  
the time-integration method is its ability to cope with 
recirculatory-regions; actually there are none in this 
problem. 

We first test the numerical method for the un- 
bounded flow of  the Newtonian fluid past a sphere. 
In this case, the drag force on the sphere is simply 
6 n  rl Ua ,  where r/ is the fluid viscosity and U is the 
speed of  the sphere. The rate of  convergence is 
quadratic in the number of elements; with 360 
elements, we obtained the drag force on the sphere 
correct to five significant figures [21]. We have also 
carried out similar numerical experiments for the flow 
past oblate and prolate spheroids. In both cases, the 
aspect ratio of  the spheroids was varied from 2 to 
1000. In all cases, we obtain five significant figures in 
accuracy when the number of  boundary elements is 
about 300. 

Next, we test the robustness of  the time integration 
scheme in the simple shearing flow. Good agreement 
between the boundary element results and the exact 
results is obtained, even with a large time step of  0.05. 

We consider now the flow past a sphere placed at 
the centreline of  a tube. Different meshes with vary- 
ing degrees of  coarseness used in the study are listed 
in Table 2 and shown in Fig. 5 a - c ;  only the results 
f rom the finest mesh are reported here (mesh M 3). 
The half length of  the cylinder is chosen to be 6a and 
the ratio of  sphere-to-cylinder radius is 0.5. 

The boundary conditions are: 
- At the entry of  the flow domain (z = - 6 a )  plug 

flow conditions are applied, where the axial 
velocity u = U, the radial velocity v = 0. 

- Along the tube wall (r = a) u = U and v = 0. 
- Along the centreline (r = 0) symmetry boundary 

conditions apply, where v = 0 and the axial trac- 
tion tx = arz = O. 

-- On the surface of the sphere u = 0 = v. 
- At the outlet of  the flow domain (z = 6a),  the ax- 

ial traction is set to zero (no net force action on the 
fluid) and the radial velocity v = 0. 

Table 2. Summary of the boundary element meshes used for 
the calculations 

Name Boundary elements Domain cells Smallest 
BE length 

M 1 52 240 0.262 a 
M2 96 640 0.157a 
M3 132 1456 0.i05a 
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Fig. 5. Meshes for boundary-element calculations. Results 
reported in this paper are obtained with mesh M3: a) M 1, 
b) M2, c) M3 

In addition, all stress components  are set to zero and 
p is set to a known vector initially. We usually con- 
sider three cases: 

1) Di rec to rp  is initially aligned with the tube axis, or 
0 = 0, where 0 is the angle between p and the tube 
axis. 

2) Director p is initially perpendicular to the tube 
axis, or 0 = 90 °. 

3) Di rec torp  is initially randomized; 0 is chosen f rom 
a sequence of  pseudo-random numbers between 
- 1 8 0  ° and 180 °. 

3.2 Reduced viscosity 

When the wall effects are considered, the Stokes 
drag for the Newtonian fluid can be estimated f rom 
the value of  the unbounded case, using the Bohlin for- 
mula  (see, for example, [43]): 

Z = [ 1 - 2. i0444 (a/R)  + 2.08877 (a/R)3 

- 0.94813 (a/R)5 _ 1.372 (a/R)6 + 3.87 (a/R)S 

- 4.19(a/R)  ~°] - t , (13) 

where Z is the dimensionless drag force (with respect 
to Stokes drag 6nrl Ua). For the geometry under con- 
sideration, Eq. (13) predicts Z = 5.923. The theory of 
Habe rman  [43] predicts the value to be 5.970. Recent 
careful finite-element [27] and boundary-element [28] 
studies showed this value to be 5.943. Our numerical 
results give Z = 5.777, 5.900 and 5.919 f rom mesh 
M1,  M2 and M3, respectively, for the Newtonian 
case. 
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Fig. 6. Dimensionless drag force (normalized with respect to 
the Newtonian drag force, which is also obtained by the 
boundary-element method in the first iteration) as a func- 
tion of time at different volume fractions. R = 10, 0 = 90 
(fibres are initially perpendicular to the tube axis) 

For the TIF  model, we found that the flow is intrin- 
sically unsteady [21]. This model is a slight variation 
of  TIF,  and it is not surprising that we find the flow 
intrinsically unsteady. A plot of  the dimensionless 
drag force Z (with respect to the Newtonian value in 
the same geometry) vs time is given in Fig. 6 for the 
aspect ratio R = 10 and 0 = 90 °. The drag force ap- 
pears random in time, especially at high volume frac- 
tion. The reason for the random nature of  the drag 
force vs t ime was explained in [2]: in a simple shear 
flow, p is a periodic function with a frequency pro- 
portional to the magnitude of the shear rate, and so 
is the shear stress. In this problem, one has a spectrum 
of  shear rates f rom 0 to a maximum shear rate on the 
sphere's surface. The local traction on the sphere's 
surface is also a periodic function of  time, with a fre- 
quency that  depends on the local shear rate. The drag 
force on the sphere is the area integral of  the traction, 
and it should contain a spectrum of frequencies. It  is 
the broad-band frequency spectrum that  makes the 
plot of  the drag force against t ime appear random. 
Note that  there is an initial overshoot  in the drag force 
vs time, presumably due to the re-arrangement of  the 
fibres, followed by a fluctuation about  a mean value. 
The fluctuation increases with the volume fraction; at 

= 0.10 and R = 10, the fluctuation is about  7% of  
the mean value. This increases to about  11% at 

= 0.125. 
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Fig. 7. Reduced viscosity, obtained by taking time averages 
of the dimensionless-drag force, as a function of the volume 
fraction. Errors on the reduced viscosity can be estimated 
using the standard deviation of the time averages taken at 
different time intervals. In all cases 0 = 90. Data (©) from 
Milliken et al. [1] for well-stirred (randomized) suspensions 
blunt-ended rods and fibres of aspect ratio 19.8. Solid lines 
connecting the last numerical data point are not the lines of 
best fit through the data; they are the asymptotic results 
discussed in Sect. 3.3 
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Fig. 8. Same as in Fig. 7, but for the specific viscosity. Tran- 
sition from linear to cubic regime, as observed by Milliken 
et al. [1], can be mimiced by the theory using A = 0.46. 
Note that the transition suggested by the numerical results 
is an artifact of the method of plotting, and the limited 
range of volume fractions is considered. Had the asymptotic 
line extended beyond a volume fraction of 0.25, then the 
cubic behaviour was no longer present 

The dimensionless drag force with respect to the 
Newtonian value in the same flow geometry is, in 
fact, the flow resistance felt by the sphere, or simply 
the reduced instantaneous viscosity. To calculate the 
reduced viscosity, we simply take the time-averaged 
value of  the dimensionless drag, f rom t = 4 to t = 10 
for suspensions of  fibres of  aspect ratio less than 10. 
At higher aspect ratios, it is necessary to take the aver- 
age over a long time interval due to the large period 
of  the oscillation in p .  In the simple shear flow, the 
period of  oscillation in p is proport ional  to the aspect 
ratio at large aspect ratios (Sect. 2.2). We find the 
same behaviour in the flow past a sphere: the higher 
the aspect ratio, the higher is the period of  oscillation 
in p .  At R = 20, it is necessary to run the problem up 
to t = 40 in order to calculate the average drag force 
accurately. 

The results are summarized in Fig. 7, where the 
reduced viscosity is plotted against the volume frac- 
tion at three different aspect ratios. Plotted in the 
same figure are the falling-sphere data on suspensions 
of  blunt-ended rods and nylon fibres at aspect ratio 
19.8. It  is clear that  this theory agrees reasonably well 

with the experimental data. However,  with the maxi- 
m u m  volume fraction A =0.27 ,  the non-linear 
behaviour sets in at ~b ~ 0.075. With A = 0.46, a 
much better fit to the experimental results can be 
achieved. The transition f rom the linear to cubic 
behaviour can be better seen by plotting the specific 
viscosity thp= r / r - I  vs the volume fraction, as 
shown in Fig. 8. Subtracting 1 f rom r/r has the effect 
of  accentuating the linear regime, and, with a limited 
number  of  data points between 0.1 < ~ < 0.2, one can 
certainly fit a cubic relation to the ~/sp- q~ curve. The 
apparent  linear to cubic transition displayed by the 
numerical results is indeed an artifact of  the method 
of  plotting and the limited range of volume fraction 
considered. The solid lines connecting the numerical 
points at high volume fractions are not the continua- 
tion of  the lines of  best fit; they are in fact the asymp- 
totic results, which will be discussed next. 

3.3 Asymptotic solution 

Asymptotic solutions at high-volume fractions 
(~/A-~ 1) can be found by rewriting the extra stress as 
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S = rlf(q~ ,R ) ( fD  + 2D:PPPP) 

I f  we now normalize the stresses and the pressure with 
respect to rlf(C~,R), then the scaled problem cor- 
responds to a Newtonian viscosity of  l/f. At high 
volume fractions (~/A~ 1), l / f  goes to zero and the 
Newtonian-contributed stress (2/fD) is of  lower 
order than the fibre-contributed stress (2D:pppp) 
and can be neglected. Thus, in the scaled problem, 
only the aspect ratio of  the fibres enters the problem 
(via the evolution equation for p )  and not the volume 
fraction. This scaled problem can be solved to supply 
the scaled drag force acting on the sphere. The dimen- 
sional drag force on the sphere is this scaled drag 
force multiplied by f(~,R). In this manner, we find 
that the asymptotic formula for the reduced viscosity 
is given precisely by 

~ ( 2 -  q~/A ) 
~/r = k 

( 1  - q~/A)2 ' 

which is similar to the simple shear case, where k = 
2 .42_  0.05 for R = 5, 0 = 90 ° (initially the fibres are 
all aligned in the radial direction), k =  4.7_+0.1 for 
R = 1 0 ,  0 = 9 0  ° , and k=14.5_+0.1  for R---20, 
0 = 90 °. 

The errors on k are obtained from the standard 
deviations of  the time averages over different time in- 
tervals of  the dimensionless drag forces. Thus, the 
reduced viscosity at high-volume fraction, as mea- 
sured by the falling sphere, is considerably higher 
than that measured in the simple shear flow. At the 
aspect ratio of  20, the falling-sphere reduced viscosity 
is about  seven times higher than the simple shear-re- 
duced viscosity if ~ > 0.10. 

The intrinsic viscosity derived from the asymptotic 
results above for R = 20 is about 29. A linear-regres- 
sion analysis on the numerical data in the range of  
0.01 _< ~_<0.075 yields an intrinsic viscosity of  26, 
which is surprisingly close to the observed value of  
28.5 [I1. In the finite-element simulation [20], an in- 
trinsic viscosity of  the order 10 was predicted for the 
same aspect ratio of  20. The constitutive relation used 
in [20] differs f rom ours in two aspects: the functional 
form for f i s  different to ours, and a streamline track- 
ing scheme was used in [20]. The functional form for 
f is not a critical issue here at large aspect ratios and 
small volume fractions. The streamline scheme, how- 
ever, changes the character of  the flow from being in- 
trinsically unsteady to steady flow. It would be worth- 
while to perform a similar unsteady finite-element 

simulation. We have also implemented the full align- 
ment assumption in the boundary-element code using 
the present model. For the case of  R = 20, we find 
that the value of  k reduces from 14.5 to 7.1. This 
yields an intrinsic viscosity of  about 14.2, which is 
42% higher than the value found by the finite-element 
simulation [20]; this is due to the fact that our fric- 
tional resistance (R2/(ln2R-1.5)) is about 680/0 
higher than the frictional resistance used in the finite- 
element study (R2/ln2R) at the aspect ratio of  20. 
By forcing the fibres to align with the streamlines, the 
full alignment assumption clearly underestimates the 
drag force on the sphere, which leads to a reduced in- 
trinsic viscosity. 

The initial orientation of  the fibres also has a 
noticeable influence at high volume fraction and at 
short time ( t<  10), especially at large aspect ratios. 
Plotted in Fig. 9 is the value of  k as a function of  time 
for three different initial orientations of  the fibres of  
aspect ratio 20. It is clear from the figure that an ini- 
tial random suspension has the highest reduced 
viscosity if a short time average ( t<  10) of  k is taken. 
However, the long time averages of  k (10< t<40)  for 
the three initial orientations are not significantly dif- 
ferent from each other. When 0 = 0 we find the long 
time average of  k is 14.7 + 0.3; this value is 14.8 _+ 0.1 
when the initial orientation of the fibres is random. 
There are some limited experimental data [5], which 
suggest that the reduced viscosity of  an initially ran- 
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Fig. 9. k as a function of time for different initial orienta- 
tions of the fibres. At long time, the initial states of the 
fibres do not have a large effect on k 
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domized suspension at a volume fraction of  0.05 is 
about 50°70 higher than the corresponding value for 
an initially aligned (with the tube axis) suspension. 
The trend predicted by the theory is correct, but the 
theory cannot predict the magnitude of  the change in 
the reduced viscosity. Note that the fibres used in Mor 
and Graham's  experiments [5] are comparable in size 
to the falling sphere; their inertia may be a significant 
factor that needs to be considered. 

3.4 Kinematics 

The kinematics are different from Newtonian 
kinematics, especially at high volume fraction. Strict- 
ly speaking, there are no streamlines in this problem, 
because the kinematics are intrinsically unsteady. 
However, the "streamlines" serve as a useful device 
for comparing the results with the Newtonian solu- 
tion. We find that the non-Newtonian streamlines are 
slightly non-symmetric in contrast to the Newtonian 
streamlines. The asymmetry is seen most clearly when 
we plot contours of  the modified stream function 

g/1 = ~//-- ~--r 2 , 

as shown in Fig. 10; g/1 is the stream function that 
corresponds to the moving/falling sphere in a sta- 
t ionary cylinder. The fore-and-aft symmetry is no 
longer present in the non-Newtonian case. This is 
reminiscent of  the viscoelastic case, where a shift in 
the streamlines was found [32-37] .  

9 . 0  

8 . 0  

7 . 0  

6 . 0  

5 . 0  

4 . 0  

3 . 0  

2 . 0  

1 .0  

0 , 0  

m i 
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R = 2 0  • ~ 0 . 1 0  0 = 9 0  

-5 .0  - 2 . 5  0 . 0  2 . 5  

Similarly, the contours of  the axial and radial 
velocities are not symmetric about the plane x = 0. 
This symmetry also is not present in the viscoelastic 
flow [32 - 37]. At low volume fractions, however, the 
kinematics are similar to the Newtonian kinematics 
[211. 

The orientation of the microstructure along the 
tube is shown in Fig. 11 at time t = 40 for R = 20, 

= 0.10, but with different initial orientation of  the 
fibres. In this figure, p is represented by an arrow. It 
is most interesting to find that the evolution of  the 
microstructure can depend dramatically on the initial 
conditions of  p. However, at long times the fibres 
tend to align themselves with the tube axis in the 
downstream-wake region regardless of their initial 
configurations. The overall orientations of  the fibres 
at time t = 40 are quite similar, despite their different 
initial states. This explains why the average drag force 
on the sphere is only weakly dependent on the initial 
orientation of  the fibres over long time. The align- 
ment of the fibres behind the sphere has been ob- 
served [5] with semi-concentrated systems. The falling 
ball, therefore, may be used as a device to partially 
align fibres. A physical explanation of  this 
phenomenon is that the flow along the centreline in 
the downstream region of the sphere is extensional in 
nature, see, for example [28]. Such a flow is capable 
of  aligning the fibres well. Even if the fibres initially 
are randomly placed, they tend to re-arrange them- 
selves with the flow; the transition from dis-ordered 
to ordered states takes place in about 4 dimensionless 
time, especially for the fibres in front of  the sphere 
next to the tube wall. 
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! 2 Fig. 10. Contours of ~/1 = ~ - T r  . g/t 
is the stream function that corresponds 
to a moving sphere in a stationary cylin- 
der. The asymmetry is evident in the 
non-Newtonian case 
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Fig. 11. Orientation of the microstruc- 
ture at t = 40 for R = 20 and ~ = 0.10. 
Note that most of the fibres behind the 
sphere align with the tube axis. The 
fibres are also well-ordered in front of 
the sphere near the tube wall, especially 
in the case where the fibres' orientation 
is randomized initially. This may be due 
to the shear-flow component brought 
about by the presence of the wall 

4. Final remarks 

We proposed a new constitutive equation for 
suspensions of  rods of  aspect ratios from 5 to 30. The 
constitutive equation is of  the same functional form 
as the Transversely Isotropic Fluid (TIF) model of  
Ericksen [14]. A low-volume fractions, the new model 
reduces properly to the leading terms of  the con- 
stitutive equation for a dilute suspension of prolate 
spheroids [18]. There are three parameters in the 
model: the aspect ratio R, the volume fraction ~ and 
a parameter A, which plays the role of  the maximum 
volume fraction. The last parameter is estimated to be 
0.27, using the shear-flow data f rom Kitano et al. 
[22], and the resulting model is used to solve the flow 
past a sphere placed at the centreline of  a cylinder, us- 
ing a boundary-element method. 

Numerical results show that the flow is intrinsically 
unsteady, and the long time behaviour of the drag 
force depends only weakly on the initial configuration 
of  the microstructure. The reduced viscosity deduced 
f rom the drag force by a time average agree well with 
the experimental data of  MiUiken et al. [1]. At high- 
volume fractions, it is possible to solve a scaled prob- 
lem to supply the asymptotic formula for the reduced 
viscosity. The linear-to-cubic transition in the specific 
viscosity vs the volume fraction plot occurs at a 
volume fraction of  about 0.075 if A = 0.27. For  this 
to occur at ~ = 0.125, as observed by Milliken et al. 
[1], the maximum volume fraction should be about 
0.46. 

Furthermore,  we find that the kinematics are no 
longer Newtonian-like at high-volume fractions, and 
there may be thin boundary layers across which the 
orientation vector p flips its direction. The resolution 
of  these boundary layers makes it difficult to analyze 
complex flows of  suspensions. In the downstream 
region (i.e., behind the falling sphere) and over long 
time, the fibres align themselves along the tube axis in 
agreement with some experimental observation. 

An alternative approach is to solve this problem as 
a many-body problem, for example, by Stokesian dy- 
namic simulation [44]. This latter technique is still in 
its preliminary stage, and any other numerical 
schemes for solving many body problems are not 
viable alternatives for present-day computers. The 
continuum approach will yield useful results in the 
preseeable future. 
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