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Abstract This paper gives a quan- 
titative description of  the visco- 
elastic properties of  aqueous solu- 
tions of  entangled rod-shaped 
micelles. The experimental data are 
compared with the theoretical 
predictions of  a special constitutive 
equation which is based on the 
concept of  deformation-dependent 
tensorial mobility. In the regime of 
small deformations, shear stresses 
or shear rates, the dynamic features 
of  the viscoelastic solutions are 
characterized by the equations of  a 
simple Maxwell material. These 
phenomena are linked to the aver- 
age lifetime of  the micellar ag- 
gregates and the rheological proper- 
ties are controlled by kinetic pro- 
cesses. At these conditions one 
observes simple scaling laws and 
linear relations between all 
rheological quantities. At elevated 
values of  shear stresses or deforma- 
tions, however, this simple model 
fails and non-linear properties as 
normal stresses, stress overshoots or 
shear-thinning properties occur. All 
these phenomena can be described 
by a constitutive equation which 

was first proposed by H. Giesekus. 
The experimental results are in fair- 
ly good agreement with the 
theoretical predictions, and this 
model holds for a certain, well 
defined value of  the mobility factor 
a. This parameter describes the 
anisotropic character of  the particle 
motion. In transient and steady- 
state flow experiments we always 
observed a = 0.5. Especially at 
these conditions, the empirically 
observed Cox-Merz rule, the 
Yamamoto relation and both 
GleiBle mirror relations are 
automatically derived from the 
Giesekus model. The phenomena 
discussed in this paper are of 
general importance, and can be 
equally observed in different mate- 
rials, such as polymers or proteins. 
The viscoelastic surfactant solutions 
can, therefore, be used as simple 
model systems for studies of  fun- 
damental principles of  flow. 

Key words Viscoelastic surfactant 
solution - non-linear flow - 
Giesekus model 

Introduction 

Rheological constitutive equations proposed for visco- 
elastic materials are based upon the correlations between 
shear stress, shear rate, and the intrinsic parameters and 
functions of  the investigated material. The most simple 

constitutive equations were proposed by Hooke and New- 
ton several centuries ago and those defined by Voigt/Lord 
Kelvin and Maxwell some 130 years ago. These linear con- 
stitutive equations are defined by the linear relationship 
between shear stress and shear rate. 

Linear constitutive equations are limited to ideal 
elastic solids and viscous liquids or to combinations of 
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these two characteristic features. The correlation coeffi- 
cient between stress and deformation depends on the ap- 
plied model and is defined as viscosity, elasticity or visco- 
elasticity. The term viscoelasticity denotes the simulta- 
neous coexistence of viscous and elastic properties. One 
of the simplest models to describe viscoelastic properties 
is the Maxwell model. Unfortunately, all these models 
mentioned above are only valid in a small regime of the 
applied velocity gradient or other external forces. 

Leaving this well-defined regime, one will experimen- 
tally observe various non-linear flow properties. The 
phenomenon of non-linear response was discovered at the 
earliest stages of theological research. As soon as viscom- 
eters became available, many departures from Newtonian 
behavior were observed. The non-Newtonian behavior is 
of great practical interest and is intimately connected with 
orientation processes or structural changes that occur 
during flow. 

A theoretical description of these properties including 
the so-called elastic fluids is quite complex. Several 
theoretical approaches such as the generalized Newtonian 
model, the retarded motion model and models based 
upon integral and differential constitutive equations have 
been proposed (Bird et al., 1987; Larson, 1988). 

An outstanding model for viscoelastic liquids is the 
generalized Oldroyd-8-constant model (Oldroyd, 1958). 
This model is based upon the linear Maxwell model with 
additional assumptions and a correct tensorial develop- 
ment of all involved parameters. However, most of these 
models do not accurately fit to the experimental data 
(Bird et al,, 1987), Giesekus now developed an elegant 
and applicable model based on the Oldroyd model but us- 
ing a different method to describe the molecular drag 
coefficient (Giesekus, 1982). The basic Maxwell model 
was extended by a quadratic stress tensor and a mobility 
tensor to govern the non linearity in a more sophisticated 
way, as in the Oldroyd-8-constant model. The mobility 
tensor describes the anisotropic mechanical properties of 
rod-like aggregates under flow. Besides the relaxation 
time of the Maxwell model, Giesekus assumes a dimen- 
sionless mobility factor, a, that controls the relative 
mobility tensor in the regime between zero and unity. 

In general the constitutive equations are stated for 
simplification purposes in so-called one-mode cases. 
Here the complete motion is expressed by one single 
relaxation process that defines just one characteristic time 
constant called the relaxation time 2. For example, the 
one-mode Maxwell model shows a monoexponential 
stress decay after step function shear strain or shear rate 
experiments. This reducing of parameters is used because 
one-mode equations give discrete information on molecu- 
lar properties, such as diffusion or orientation mecha- 

nisms. In experiments monoexponential relaxation func- 
tions are very difficult to observe. For instance, polymer 
liquids always show a complex multi-mode behavior. This 
is due to the large number of possible molecular rear- 

rangements. As a consequence, direct comparison of the 
theoretical predictions and experimental results is not 
possible for solutions of entangled macromolecules. 

We propose a different way by comparing the con- 
stitutive equations with experimental results obtained 
from viscoelastic surfactant solutions. These systems are 
used as simple model systems for rheological studies 
because they exhibit interesting flow properties. Due to 
the limited life-time of the micellar aggregates monoex- 
ponential relaxation functions are often observed. The 
dynamic features of these solutions can be described us- 
ing the theoretical equations of an ideal Maxwell materi- 
al. Alternatively, a modified reptation theory can be used 
to describe the dynamic features (Rehage and Hoffmann, 
1991; Cates, 1987). However, in the regime of large veloci- 
ty gradients viscoelastic surfactant solutions exhibit the 
same type of non-linear flow properties as observed in 
polymer solutions. 

In this paper we use the one-mode Giesekus model to 
analytically describe non-linear viscoelastic flow proper- 
ties (Giesekus, 1982). From this theory it is possible to 
calculate steady state values of the shear viscosity and the 
first normal stress coefficient even at elevated shear rates. 
We then compare these equations with experimental data 
for surfactant solutions. A direct comparison between 
theory and experiment becomes possible due to the 
unique properties of surfactant solutions. In addition, we 
compare several semiempiric relations to the Giesekus 
model, such as the Cox-Merz rule (Cox and Merz, 1958), 
the Yamamoto relation (Bird et al., 1987) and both 
Gleil31e mirror relationships (Gleil31e, 1981). These equa- 
tions, although of empirical nature, allow us to calculate 
steady state values from transient experiments or vice 
versa. 

Maxwell model - Linear flow properties 

Linear viscoelastic properties of fluids can already be de- 
scribed by a combination of elastic and viscous elements. 
In all materials that exhibit this phenomenon the par- 
ticular response of a sample depends upon the time scale 
of observation. Under conditions where the experiment is 
comparatively slow, the sample will appear to be viscous 
rather than elastic. At very short times, however, the 
elastic response is the dominant response. The rheological 
properties of these linear viscoelastic samples are repre- 
sented by simple mechanical models. In the regime of 
linear stress-strain relations it is assumed that the elastic 
properties can be described by a Hookean spring while 
the viscous phenomena can be represented by a Newto- 
nian dashpot. The simplest model that can describe a 
viscoelastic surfactant solution is the Maxwell model. It 
consists of a spring and a dashpot connected in series as 
shown in Fig. 1 a. 
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rameters one usually expects non-linear properties. The 
storage modulus describes the elastic properties of the 
sample, and the loss modulus is proportional to the vis- 
cous resistance. It is convenient to express the periodically 
varying functions in terms of the complex modulus, 
G* (co, y), and the magnitude of the complex viscosity, 

1,7" 

O*(co, 7) = G'(co, y)+iG"(co, y) (4) 

The behavior of a Maxwell material under harmonic 
Fig. 1A, B Schematic representation of the Maxwell model. The 
elastic properties are given by the spring (relaxation modulus, Go) oscillations can be obtained from Eqs. (6) and (7) 
and the viscous properties are represented by the dashpot (zero co2~2 
shear viscosity, t/0). The right drawing gives some information on 
the dynamic properties of the storage and loss modulus G'(co, y) = Go l-l- co 2/t 2 (6) 

The elastic spring corresponds to a shear modulus, 
Go, and the dashpot represents the constant viscosity, ~/0. 
The dynamic properties and the desired material func- 
tions of the Maxwell element can be represented by the 
following linear differential equation 

r/o 0z 
z - t  - ~ / 9  ( 1 )  

G O 0t 

where ?) denotes the shear rate, z is the shear stress and t/ 
is the viscosity. Dynamic experiments are often per- 
formed to get information on the viscoelastic properties 
of a solution. In this case the shear strain, y, is varied pe- 
riodically with a sinusoidal alternation at an angular fre- 
quency co. The response of the sample to the periodic 
change consists of a sinusoidal shear stress that is made 
up of two different components. The first component is 
in-phase with the deformation while the second one is 
out-of-phase with the strain. 

From the phase angle, 5, and the amplitudes of the 
shear stress and of the shear strain it is possible to calcu- 
late the storage modulus, G'(co, y), and loss modulus, 
G"(CO, 7), from 

G' (co, y) = (-f12 (co' Y)-) cos 5 (2) 
\ 912 

G" (co' Y) = (f12 (co' 7)-) sin5 \ 912 (3) 

At low values of the deformation both dynamic mod- 
uli are only functions of the angular frequency (linear vis- 
coelastic response). Above a certain value these functions 
also depend on the deformation (non-linear viscoelastic 
response). If  a rheological function depends on two pa- 

co2 
G" (co, 7) - r/sco = Go - - -  (7) 

1 + CO2). 2 

where 1/s describes the solvent viscosity and 2 denotes the 
relaxation time of the one-mode material. In the regime 
of linear viscoelasticity the material functions do not de- 
pend upon the deformation; as a consequence they are 
only functions of the angular frequency. The normalized 
behavior of both dynamic moduli as a function of angu- 
lar frequency is shown in Fig. 1 b. 

In transient experiments the Maxwell material can also 
be described by monoexponential relaxation processes. 
Although the initial extension is infinitely fast, there is a 
time-dependent response of the viscoelastic material that 
can be measured to obtain the desired rheological func- 
tions. For the Maxwell fluid an applied stress always 
relaxes to zero after an infinitely long period of time. For 
example, in a relaxation test, a step function shear strain 
is applied to t = 0. The resulting relaxation modulus G(t) 
is time-dependent as shown in Eq. (8) 

G(t) = Go e(-t/z) (8) 

The Maxwell model describes the phenomenon of 
monoexponential stress relaxation and can hence be used 
to illustrate the dynamic properties of viscoelastic liquids. 
The simplicity of comparing the rheological data with the 
theoretical predictions of a Maxwell material is rather at- 
tractive. For example, the Maxwell model is in qualitative 
agreement with the dynamic properties of viscoelastic 
surfactant solutions as will be shown later in this paper. 
An excellent introduction and an extensive description of 

• linear viscoelastic response are given in the book of N. W. 
Tschoegl (Tschoegl, /989). 
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Giesekus model - Non-linear flow properties 

The Giesekus model is a relatively simple yet powerful 
way to predict non-linear flow properties. Starting from 
the general reptation theory, which was first introduced 
by de Gennes and later improved by Doi and Edwards, 
Giesekus followed an alternative concept of deformation- 
dependent tensorial mobility (de Gennes, 1979; Doi and 
Edwards, 1986). In the reptation model, the anisometric 
particles are described by the Kramers freely jointed 
bead-rod chain. By introducing a tensorial generalization 
of Stoke's law and by coupling the tensor drag coefficient 
and the orientation of the stiff rods between two neigh- 
boring beads, Curtiss and Bird succeeded in deriving sim- 
ilar equations to those derived from the reptation model 
(Curtiss and Bird, 1981). The Giesekus model is prin- 
cipally based on this fundamental idea but introduces a 
new tensorial drag coefficient coupled with the average 
state of deformation (Giesekus, 1982). Even in the first 
stage of the theory it became evident that this model is 
particularly successful at describing non-linear rheologi- 
cal properties such as stress overshoot in start-up experi- 
ments or non-vanishing second normal stress differences 
in stationary shear flow. In addition to that, a limiting 
shear stress was obtained at high values of the velocity 
gradient. As these features are often observed in solutions 
of entangled rod-shaped micelles, there is at least a 
qualitative agreement with the Giesekus model. 

In order to describe the anisotropic properties of the 
rod-shaped particles in shear and extensional flow a 
relative mobility tensor, fl, is introduced that depends on 
the average state of orientation. It is well known that rod- 
shaped micelles can be aligned by the orienting forces of 
a velocity gradient. As a consequence, the physical prop- 
erties of the streaming solutions have an anisotropic char- 
acter that becomes more and more pronounced with in- 
creasing shear rate. The non-linear response of the 
rheological functions is then a natural consequence of the 
orientation effects. The mobility tensor can be associated 
with both the diffusion process and the anisotropic 
hydrodynamic drag on the aggregates (Bird and Weast, 
1985). In a first approximation, Giesekus assumed a 
linear dependence between the mobility tensor and the 
configuration tensor, C. Such a description includes the 
orientation and deformation of the supermolecular net- 
work structure that is formed by the entangled aniso- 
metric particles. In the simplest case there is only one 
configuration tensor controlling the anisotropic mobility 
(Giesekus, 1982). Giesekus proposed the following linear 
relationship for such a simple situation 

fl = l + a ( C - 1 )  = ( l + a ) l + a C  (9) 

The dimensionless anisotropy factor, a, describes the 
anisotropic character of the particle mobility. It is easy to 
show that a attains values between zero and one. The 

limiting case a --0 corresponds to the isotropic motion 
and ultimately leads to an upper convected Maxwell ma- 
terial. In order to derive a deformation-dependent con- 
stitutive equation a neo-Hookean law connecting the ten- 
sor of external stresses and the configuration tensor is 
suggested 

r = 2Gy = G(C-1)  (10) 

In combination with this equation an upper convected 
Maxwell material was used to describe the viscoelastic 
properties of the entangled particles 

f i r + 2 - - =  c°r 2r/)) (11) 
dt 

In comparison with Eq. (1) it is easy to see that this 
formula represents the general form of a non-linear Max- 
well material. By combining Eqs. (9) and (11) Giesekus 
succeeded in deriving a constitutive law which takes into 
account effects of orientation and non-linear viscoelastic 
effects 

[l+a(C-1)i.(C-1)+,Z v___~. = 2r/9 (12) 
dt 

The Giesekus model now gives a detailed relation be- 
tween rheological parameters and the relative mobility 
tensor by inducing the anisotropy of a streaming solution. 
Equation (12) is used to analyze steady shear flow, start- 
up flow, and cessation of steady-state flow. This equation 
can be used to obtain information for both simple shear 
flow and extensional flow. We shall not go into further 
details here. The interested reader is referred to the exten- 
sive papers of H. Giesekus, where this procedure is de- 
scribed in more detail (Giesekus, 1982). 

Steady state shear flow 

For steady shear flow three Eqs. (13 - 15) can be derived 
from Eq. (12). These hold for the general case, where 
O__a_<l. 

[a (N 1 (0% 9) -2N2  (oo , 9))+ 1] r(oo, 9) 

= )~9(1 -N2(~ ,  9)) (13) 

[a(N1 (oo, 9 ) - 2 N 2  (oo, 9))+ 1]N1 (oo, 9) 

= 2,Z 9z( o°, 9) 

[1-aN2(oo,9)]N2(oo,9) = a r2(oo ,9 )  

(14) 

(15) 
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Transient flow 

For transient flow three coupled differential equations 
can easily be obtained from Eq. (12) by using derivations 
of the configuration tensor 

f(t, 9) + [a (N1 (t, Y)-2N2 (t, 9)) + 1] r(t, 9) 

= ) t9(1-N2 (t,)))) (16) 

N~(t,)))+[a(Na(t,9)-2Nz(t,9))+ l]N~(t,))) 
= 22))r(t ,9) (17) 

Nz(t,9)+[1-aNz(t,9)]Nz(t,9) = a'cZ(t,9) (18) 

Analytical solutions 

Some analytical solutions can be obtained when a = 0.5. 
For steady state shear flow one obtains for the shear 

stress, first and second normal stress difference, respec- 
tively 

Go (]//1+4~2))2 1 )  (oo,9) 

 o(1'A2  Nl(oo,))) = 2 \ - 7 - J  

(19) 

(20) 

N2(oo,9)  = Go(A- 1) (21) 

where A 2 is denoted by 

A 2 ]/1+4&2)) 2 -1  
- ( 2 2 )  

222)) 2 

Besides the rather trivial cases where a = 0 or a = 1, it 
is not easy to derive an analytical solution for any ar- 
bitrary value of the anisotropy factor. It is, however, 
possible to solve Eqs. (13) to (15) by using numerical ap- 
proximations. This is rather simple because there are 
three equations with the same number of unknown vari- 
ables. Numerical solutions can easily be obtained by the 
Bisection-Method, Newton's-Method, Regula-Falsi or the 
Secant-Method. We shall not go into further details at 
this point. The interested reader is referred to standard 
mathematics books where all these procedures are de- 
scribed in more detail. 

For dynamic processes, such as start-up flow or relaxa- 
tion after cessation of steady-state flow, one has to solve 
the entire set of three coupled differential equations given 
by Eqs. (19) to (21). Although it is possible to get 
analytical solutions for some special values of the mobili- 
ty factor, the corresponding equations are rather com- 
plicated and not practical to use. Again, it is rather simple 

to solve these non-linear differential equations by 
numerical computer programs for any arbitrary value of 
alpha. Thfs can be done by the Euler-Cauchy method or 
by Runge-Kutta computer programs. The same analysis 
was already done by Giesekus many years before, and his 
calculated values are in excellent agreement with our 
numerical solutions. An extensive discussion of the time- 
dependent shear stress and normal stress differences is 
summarized in several publications by H. Giesekus 
(Giesekus, 1982, 1984, 1985, 1986). 

Semiempirical relations 

There are several semiempirical relations that can be used 
to compare non-linear theological properties with linear 
viscoelastic functions. Although they are empirical in 
nature they allow us to calculate steady-state values from 
transient or oscillatory shear experiments. In addition, 
some rheological properties may be determined over 
many orders of magnitude using these relations. From the 
Giesekus model it is easy to calculate these relations and 
compare these predictions with experimental results. In 
this paper we investigate the Cox-Merz rule, the Yamamo- 
to relation, both Gleigle mirror relations and finally the 
so-called Laun rule. 

Cox.Merz rule 

It is often observed that the shear viscosity, 1/(c~, 9), coin- 
cides relatively well with the magnitude of the complex 
viscosity, I r/* ] (co, y), for equal values of shear rate, )), 
and frequency, co. This phenomenon is usually known as 
the Cox-Merz rule as shown in Eq. (23) 

for ))=co (23) 

It is evident that the Cox-Merz rule describes a rela- 
tionship between linear and non-linear viscoelastic prop- 
erties. This relationship seems to hold for solutions of en- 
tangled macromolecules. In the regime of small frequency 
and shear rate both viscosities become identical. In the 
region of high velocity gradients a small deviation is ob- 
served experimentally. The Giesekus model takes this 
behavior into account and agrees fairly well with ex- 
perimental data. Using the Giesekus model one obtains a 
modified shear viscosity r/(co,))) 

/'/(co,)))-- r/0 [¢1+4)t292+ 1] (24) 
222)) 2 

The Cox-Merz rule holds for an anisotropy factor 
a = 0.5. The magnitude of the complex viscosity is given 
by Eq. (25) 
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Fig. 2 Comparison of shear viscosity, r/(oo, 9), and magnitude of 
the complex viscosity, I*?* [ (co, 7), as functions of shear rate and 
frequency. The curves were calculated from Eqs. (24) and (25). It is 
interesting to note that the difference between both functions is 
rather small when plotting them in logarithmic scale 

I ~ * 1 ( ~ , ~ )  - ~0 (25)  
¢1 + O)2;t 2 

In Fig. 2 both viscosities are shown as function of  
shear rate and frequency. Although there is a small differ- 
ence in a linear plot it is more difficult to recognize this 
deviation on a logarithmic scale. In any case, the differ- 
ences between the shear viscosity and the magnitude of  
the complex viscosity are only small and a high precision 
is essential to compare theoretical results with experimen- 
tal data. 

Yamamoto relation 

The Yamamoto relation (Bird et al., 1987; Fischer and 
Rehage, 1994; Attan6 et al., 1985; Attan6 et al., 1988; 
Kissi et al., 1993) is often used to obtain the normal stress 
coefficient ~u 1 (oo, 7)YM from transient experiments after 
cessation of steady-state shear flow. According to Eq. (26) 
the first normal stress coefficient ku 1 (0% fOrM is calculat- 
ed from the shear stress decay function t / -  (t ,9) after 
cessation of  steady-state shear flow 

o o  

9g I (0% 7 ) r m  = 2 ~ 11 - (t, 7 ) d r  (26) 
0 

The shear stress decay function r / -  (t, 2) is calculated 
by dividing the shear stress by the shear rate as shown in 
Eq. (27) 

, / -  (t, 9)  - r(t,  9)  (27) 
9 

t = 0  t 

Fig. 3 Comparison of the normal stress coefficient, f'ln(~, ~))YM, 
and the stress decay coefficient, r/- (o% ~)), according to the Yama- 
moto relation 

In Fig. 3 this method is shown graphically. The Yama- 
moto relation can be used to obtain the stationary values 
of the first normal stress coefficient g*1(c~,9). This 
holds in the regimes of  linear and non-linear flow proper- 
ties. 

Glei61e mirror relations 

Both mirror relations introduced by GleiBle (GleiBle, 
1980; GleiBle, 1981; Kissi et al., •993; Fischer and Rehage, 
1994) were derived from experimental observations. The 
relations again give some correlations between linear and 
non-linear flow properties. As the expression "mirror 
relation" suggests, one obtains non-linear functions by 
reflecting an appropriate linear function on the vertical 
axis. The first Gleil31e relation correlates the shear stress 
growth coefficient, ,/÷ (t,9), that is measured in a step 
function shear rate to the steady-state value shear viscosi- 
ty, r / (~ ,9 ) .  To obtain this correlation one has to plot 
1/(oo,9) as a function of  1/9 as shown in Eq. (28) 

1 
r / + ( t , 9 ) = r / ( c ~ , 9 )  for t = - -  (28) 

9 

The second GleiSle relation correlates the first normal 
stress growth coefficient, ~ (t,9), to the steady-state 
value of  the normal stress coefficient, ~ ( ~ ,  9). Again, 
one has to plot ~1 ( ~ ,  9) as a function of 1/9 

1 
for t = - -  (29) 

9 

The great advantage of  these relationships is due to the 
simple correlation between the time-dependent and sta- 
tionary rheological functions. 
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Laun rule 

The first normal stress coefficient ~ul(oo,?) ) and the 
storage module G' (co, y) are related by the so-called Laun 
rule (Laun, 1986). It holds at low values of the angular 
frequency and the shear rate while at high shear rates 
large deviations occur. The relationship is given by 

lim (G'(o),0).~ l im(Nl (~ , ) ) )~  = = lim g~l (~ ,  ?)) 
2 / j - 0 \  2 / i+0 

(30) 

As it is always very difficult to get precise data for the 
first normal stress difference in the linear viscoelastic 
regime, the Laun rule allows one to calculate these values 
from the measurement of the storage modulus. This is an 
interesting procedure to get more information on the 
viscoelastic properties of the investigated sample. 

Viscoelastic surfactant solutions - 
Rheological model system 

Viscoelastic solutions are often formed by cationic sur- 
factants and special types of counterions. Aqueous solu- 
tions of these compounds are sometimes used as simple 
model systems for rheological studies because of their 
gel-like flow properties (H. Hoffmann, 1995; Appel and 
Porte, 1990; Rehage and Hoffmann, 1988; Berret et al., 
1993). Similar to solutions of entangled macromolecules 
the viscoelastic surfactant solutions may show complicat- 
ed rheological properties in the regime of large velocity 
gradients. One generally obtains stress overshoot in start- 
up flow experiments and shear-thinning behavior as well 
as first normal stress differences (Fischer and Rehage, 
1995; Kathory et al., 1993). 

In contrast to polymer solutions, entangled networks 
of rod-shaped micelles exhibit much simpler rheological 
behavior. At low concentrations, when the lengths of the 
rods are much smaller than their mean distance of separa- 
tion, there exists a sol state that is highly sensitive to shear 
forces. At higher surfactant concentrations, where the 
sizes of the rod-shaped micelles become comparable to 
their mean distance of separation, one observes gel for- 
mation and the solutions exhibit pronounced elastic 
properties. These elongated, rod-shaped micelles are 
strongly entangled. In comparison to solutions of macro- 
molecules, there is, however, one important difference. 
The anisometric aggregates of surface-active compounds 
are in thermal equilibrium with single monomers. The 
permanent exchange of surfactant molecules leads to 
reversible breakage and reforming of the aggregates 
which has important consequences on the stress relaxa- 
tion mechanism. This kinetic phenomenon leads to a 
finite lifetime of the anisometric micelles. In situations 

where the elongated micelles are breaking within the time 
scale of observation, the rheological properties are con- 
trolled by kinetic processes. It is only under these cir- 
cumstances that we obtain very simple scaling laws and 
linear relations between all rheological quantities. The 
dynamic features of these entangled micelles alternatively 
can be characterized by a modified reptation theory (de 
Gennes, 1979; Doi and Edwards, 1986; Cates, 1987; 
Turner and Cates, 1992; Cates, 1994). This theory in- 
volves the conventional reptation model for polymers and 
a special theory describing the reversible scission and 
recombination of micellar aggregates. In the fast breaking 
regime, where the average lifetime of the micelles is much 

. shorter than the timescale of reptation (/].BREAK'~,~REP) 
one obtains monoexponential stress relaxation functions. 
This phenomenon leads to the theoretical equations of 
the formerly discussed Maxwell model. According to the 
theory of M. Cates the relaxation time, 2, of the one- 
mode Maxwell fluid is now given by 

/~ = ¢~BREAK~REP (31) 

Different kinds of molecular motion, breaking mecha- 
nisms, and more detailed information concerning the 
kinetic time constants and their influence on the flow 
behavior have already been discussed in several papers 
(Cates and Candau, 1990; Rehage and Hoffmann, 1991; 
Tuner and Cates, 1992). 

Experiment 

The rheological experiments were performed using a 
Rheometrics Fluid Spectrometer RFS II (0.02 rad cone- 
plate geometry, 50 mm, T= 20°C). The investigated 
angular frequency range was 0.01 to 100 rad/s. The cone- 
plate geometry allows one to apply shear rates between 
0.05 and 5000s -1. The angular frequencies and shear 
rates cover the regimes of both linear and non-linear flow 
properties of the investigated solutions. To avoid evapora- 
tion, a special solvent trap was used during the experi- 
ments. 

For all rheological tests, solutions of 60mmol/L 
Cetyltrimethylammonium Bromide and 350mmol/L 
Sodium Salicylate (CTAB-NaSal 60-350) and 
100 mmol/L Cetylpyridinium Chloride and 250 mmol/L 
Sodium Salicylate (CPyC1-NaSal 100-250) were used. 

A systematic error of 3%, due to the inaccuracy of 
measuring time, normal forces and torque, is assumed to 
hold for all rate and frequency sweep experiments. Due to 
the electronic lag time of the torque transducer and the 
inertia of all mechanical parts a calibration was per- 
formed with Newtonian fluids of the same viscosity as the 
investigated surfactant solution. 



Results and discussion 

Oscillatory experiments 

We have systematically investigated the linear and non- 
linear rheological behavior of viscoelastic surfactant 
solutions in oscillatory shear flow, steady state shear flow, 
start-up flow and cessation of flow experiments. We com- 
pare the experimental data with the theoretical predic- 
tions of the Giesekus model. For comparison purposes we 
normalized all data by different methods not mentioned 
here in full detail (Fischer and Rehage, 1995; Fischer, 
1995). 

co [rad/s] 

drawn line corresponds to predictions for a Maxwell 
model (Eq. (8)) and gives the same relaxation time as ob- 
tained from the dynamic measurements. The zero shear 
viscosity, t/0, can be calculated from the magnitude of 
the complex viscosity, It/* [ (e), 7), at infinite small strains 
and frequencies. 

Steady-state shear flow 

From steady-state shear flow experiments one obtains the 
shear viscosity, t / (= ,  9)), and the first normal stress dif- 
ference, Ni(oo,~), as shown in Fig. 7. For comparison 
purposes we introduce several dimensionless variables: 

A typical strain-sweep experiment of viscoelastic surfac- 102 
tant solutions is plotted in Fig. 4. The linear viscoelastic 
regime is denoted by constant rheological properties as a 107 
function of the applied strain. It is easy to recognize that 
the supermolecular network structures can be stretched to 

1 0  0 

a limit of about 100%, before non-linear properties occur. 
This value is typical for the existence of rubber-like visco- 
elastic properties. 10-I 

In dynamic experiments the flow behavior is investi- 
gated as a function of angular frequency as shown in 1°-2 
Fig. 5. The experimental data can be qualitatively de- 
scribed by the relations for a Maxwell material given by 10-3 
Eqs. (6) and (7) (lines in Fig. 5). The relaxation time can 
be calculated from the intersection of G'(co, 7) and 10 .4 

10-3 
G"(co, 7). From the experimental data one obtains 2 = 
0.7+0.1 s and a relaxation modulus Go = 21.4_+ 1.3 Pa. 

The monoexponential stress decrease can also be ob- 
served from measurements of the relaxation modulus, 
G(t), as shown in Fig. 6. The relaxation modulus is mea- 
sured after applying a step function shear strain. The 
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Fig. 5 Dynamic properties (dots) as a function of angular frequen- 
cy, co, compared to the Maxwell model (lines: Eqs. (6) and (7)) 
(7 = 10°70, T =  20°C, CTAB-NaSal 60-350) 
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Fig.  4 Dynamic properties as a function of the deformation, 
7(o) = 10 rad/s, T =  20°C, CTAB-NaSal 60-350) 
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Fig. 6 Relaxation modulus (dots) as a function of time compared 
to the Maxwell model (lines) (y = 20%, T =  20°C, CTAB-NaSal 
60-350) 
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Fig. 7 Steady-state values of the shear stress, r(m,#), viscosity, 
1/(co, ?)), and first normal stress difference, N 1 (o% ;0), as a function 
of shear rate, ~) (T= 20 °C, CTAB-NaSal 60-350) 

The normalized shear rate, Z, is given by 2 ~' while the nor- 
malized frequency, ~, is given by 2(o. The investigated 
rheological functions are normalized by several methods 
not mentioned here. In general, all functions are divided 
by the plateau values which occur in the linear visco- 
elastic regime. In this way, the rheological functions are 
dimensionless and reduced to the value of  one at infinite- 
ly low shear rates or angular frequencies. For example, the 
shear viscosity is divided by the zero shear viscosity and 
the first normal stress coefficient is divided by 2%2.  A 
detailed treatment of this normalization process is given 
in several papers (Giesekus, 1982; Fischer, 1995). The nor- 

malized results of  frequency sweeps and steady-shear flow 
experiments with the theoretical predictions of the Giese- 
kus model are compared in Fig. 8. Relatively good agree- 
ment between experimental results and the theoretical 
predictions is only obtained when the anisotropy factor is 
0.5. It is interesting to note that at these conditions the 
Cox-Merz rule automatically is obtained from the Giese- 
kus model. In Fig. 9 we therefore compare the magnitude 
of  the complex viscosity, I ~/* [ (m, 2), with the steady-state 
shear viscosity, ~/(co, ~). Within the limits of  experimen- 
tal error we see very good agreement of the theoretical 
predictions of the Giesekus model and the experimental 
data. 

In Fig. 10 the first normal stress coefficient, 
~l (co, 7), obtained from rate sweep experiments, is com- 
pared to the first normal stress coefficient, ~1 (co, 7)YM, 
that was calculated from relaxation experiments after 
cessation of  steady-state shear flow as described by 
Eq. (26). A very good correlation of the Yamamoto rela- 
tion with the theoretical predictions of  the Giesekus 
model is obtained again by keeping the anisotropy factor 
a = 0.5. 

The first normal stress coefficient, ~1 (co, ~)), and the 
storage module, G'  (co, 7), are related by the Laun rule. As 
expected by the theories both functions coincide in the 
linear viscoelastic regime and deviate at elevated values of  
the shear rates. This is clearly shown in Fig. 11 where the 
normalized elasticity coefficient, G'/ (  2, and the normal- 
ized first normal stress coefficient, 7~1,(co,7), are com- 
pared to the theoretical predictions of the Giesekus 
model. 

Here it is worthwhile to mention an extended model to 
predict non-linear behavior that was recently developed 
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Fig. 8 Normalized shear viscosity, ~/n(oo,Z), and first normal 
stress coefficient, 7'~n(OO,Z), as a function of normalized shear 
rate, Z, compared to the theoretical predictions of the one-mode 
Giesekus model (lines) (T= 20°C, CTAB-NaSal 60-350) 
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Fig. 9 Normalized shear viscosity, rln(OO,Z), compared to the 
magnitude of the complex viscosity, [i/* I.((,7), as a function of 
normalized angular frequency, (, and shear rate, Z. The curves clear- 
ly show that the Cox-Merz rule is applicable in the limits mentioned 
in Eqs. (23) and (24) (T = 20 °C, CTAB-NaSal 60-350) 
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Fig. 10 Normalized first normal stress coefficient, ~t/ln(~,X)y M. 
Calculated from the Yamamoto relation and first normal stress 
coefficient, 7tln(O%Z), as a function of normalized shear rate, Z, 
compared to the theoretical prediction of the one-mode Giesekus 
model (line) ( T =  20°C, CTAB-NaSal 60-350) 
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Fig. 11 Normalized elasticity coefficient, G' / (2 ,  and first normal 
stress coefficient, Tl,(oo,)C), as a function of normalized angular 
frequency, (, and shear rate, Z, compared to the theoretical predic- 
tions of the one-mode Giesekus model (lines). It is evident that both 
curves show a constant plateau level in the linear viscoelastic regime 
(T = 20 °C, CTAB-NaSal 60-350) 

by Spenley and Cates (Spenley, 1994; Spenley et al., 1993). 
This model can be used to describe the shear and normal 
stress for unbreakable chains in the regime of  large shear 
rates (Cates et al., 1993; Cates, 1990). Further, this model 
is used to describe the spurt effect in viscoelastic surfac- 
tant solutions (Spenley et al., 1996; Callaghan et al., 
1996). It turns out that the theoretical predictions are in 
a fairly good agreement with experimental data only for 
a certain concentration regime of  surfactant solutions. 
Vice versa, the Giesekus model is valid only in another 

concentration regime. In this section we shortly outline 
where the theories are valid (Fischer and Rehage, 1996). 
As a consequence, one should keep in mind that two dif- 
ferent models might be necessary to explain the non- 
linear rheology of  surfactant solutions. 

The theory by Cates and Spenley is based upon the en- 
tanglement theory and introduced in particular a tensor- 
ial second moment of  the orientation distribution func- 
tion for the tube segments. Further, the micellar break 
and recombination process is taken into accounL In addi- 
tion to the modified reptation theory mentioned above 
two other assumptions must be fulfilled. First the shear 
rate must be much larger than the average lifetime, 
•BREAK, of  the rod-shaped micelles. Secondly, it is 
assumed that flow field does not influence the micellar 
aggregation process so the shear rate has no direct influ- 
ence on the micellar kinetics. As a consequence, the aver- 
age lifetime, ~BREAK, is independent of  the shear rate, ~) 
(Cates et al., 1993). 

This theory was compared to experimental data for 
100 m m o l /L  Cetylpyridin!um Chloride with 60 mmol /L  
Sodium Salicylate (Rehage and Hoffmann,  1991). The in- 
vestigated viscoelastic surfactant solution shows a maxi- 
mum shear stress at the beginning of the non-linear 
regime. This shear rate is denoted as ?)1- As the shear rate 
increases one obtains a constant but slightly unstable 
region in the shear stress. At very high shear rates, ?)2, a 
second upturn in the shear stress is indicated. In Fig. 12 
a recent rate sweep experiment of  this viscoelastic surfac- 
tant solution is shown. We have, in addition, plotted the 
first normal stress difference here. It is worthwhile to 
mention this because it shows a similar behavior to the 
shear stress. In addition by simply looking at the sample 
we observe that the solution turns from the former sam- 
ple to the more inhomogeneous structures at higher shear 
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Fig. 12 Shear stress, T(co, ))), viscosity, r/(oo, 2)), and first normal 
stress difference, Nl(oo,p), as a function of shear rate, 3) 
( T =  20°C, CPyC1-NaSal 100-60) 
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rates. In the regime of shear rates 91>5'>92 Cates 
predicts a shear-banding effect (spurt effect). The flow in- 
stability and the turnup of  shear stress can be described 
by the spurt effect (Spenley et al., 1996; Callaghan et al., 
1996). 

From recent data we can conclude that this behavior 
is restricted to a narrow regime of  the counterion concen- 
tration. The instable flow regime is indicated by the solid 
line in Fig. 13 where the zero shear viscosity, %, is plot- 
ted as a function of the counterion concentration (from 
Rehage and Hoffmann,  1991, Fig. 13). Leaving this 
region by increasing the counterion concentrations one 
obtains much simpler rheological data as shown in Fig. 7. 
From a counterion concentration of 200 mmol /L  and 
above we obtain smooth curves and no shear-banding ef- 
fect. This is exactly the concentration regime, where the 
Giesekus model holds. 

Some simple relationships between linear and non- 
linear theological properties are predicted by Cates at 
conditions, where the spurt effect occurs (Cates et al., 
1993). One correlation is based on the relationship be- 
tween the steady value of  the shear stress, TPlateau, in the 
regime 91>9>))2 and the plateau modulus obtained 
from dynamic experiments. The exact correlation is given 
in Eq. (32) 

"CPIateau -- 0.67 (32) 
Go 

Furthermore, the critical shear rate ))1 is related to the 
relaxation time 3~ by 

71 = 2.6 . (33) 

We tested both equations for several surfactant sys- 
tems (Fischer and Rehage, 1996). In Fig. 14 the ratio 
/:Plateau/G0 is plotted as function of the counterion con- 
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Fig. 13 Zero shear viscosity, t/0, of a solution of 100mmol/L 
Cetylpyridinium Chloride as function of added Sodium Salicylate 
concentration (from Rehage and Hoffmann, 1991) 
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Fig. 14 Ratio Z'Plateau/G 0 a s  a function of added Sodium Salicylate 
concentration (T = 20 °C, 100 mmol/L Cetylpyridinium Chloride) 
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Fig. 15 Critical shear rate 29~ as a function of added Sodium 
Salicylate concentration (T= 20°C, 100 mmol/L Cetylpyridinium 
Chloride) 

centration. The  solid line indicates the theoretical predic- 
tion of 0.67. It is easy to see that in the concentration 
regime between 50 and 85 mmol /L  Sodium Salicylate the 
experimental results approximately coincide with the 
theory, while at higher concentrations large deviations oc- 
cur. In Fig. 15 the ratio A)) 1 is plotted as a function of  
counterion concentration. Here the results show even 
more deviation, but one might state they are on the same 
order of magnitude as predicted by theory. By testing 
several surfactant solutions at different concentrations we 
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found only narrow regimes where both predictions seem 
to hold (Fischer and Rehage, 1996). 

At elevated values of  the counterion concentration, all 
these effects disappear and simpler theological properties 
can be obtained. From Eq. (24) it is easy to see that there 
is a plateau value of  the shear stress at high values of the 
velocity gradient. For the both surfactant solutions in- 
vestigated here the plateau value is equal to the zero-shear 
modulus Go. Such a behavior is shown in Fig. 7. By com- 
parison with measurements of  the relaxation modulus in 
Fig. 6 and with dynamic measurements in Fig. 5 it is easy 
to see that the plateau value of  the shear stress r = 22.0 Pa 
coincides pretty well with the zero shear modulus 
G(t) = 21.4Pa. It is also clear from Fig. 14 that this 
special behavior is only valid at counterion concentra- 
tions above 200 mmol /L .  

Transient experiments 

In transient tests a stepwise transition is used from one 
equilibrium state to another. In these experiments a cer- 
tain shear stress 3, a certain deformation y or a certain 
shear rate ~) is suddenly applied at t = 0 and then held 
constant thereafter. Although the initial extension is in- 
finitely fast, there is a certain time response of the visco- 
elastic material that can be measured to obtain the desired 
rheological functions. From these data, viscoelastic pa- 
rameters can be evaluated. 

Start-up flow 

In the start-up flow tests, a step function shear rate is ap- 
plied at t = 0. The resulting stress is time-dependent, and 
this quantity is measured after the deformation has oc- 
curred. In this case, the shear stress is measured as a func- 
tion of  time and the shear stress growth coefficient, 
r/+ (t, ?)), can be calculated by Eq. (34) 

t /+  (t, ~)) - z( t ,  ~)) (34) 

In viscoelastic solutions, the shear stress growth coeffi- 
cient is exponentially increasing. It is easy to show that 
the time derivative of  t/+ (t, ?)) gives the relaxation modu- 
lus 

c ( t , ~ , )  - d ~  + ( t ,~ )  (35) 
dt 

The normalized results of  transient start-up shear flow 
experiments and the predictions of the Giesekus model 
are compared in Figs. 16 to 19. In these experiments the 
applied steady shear rate is increased systematically from 
0.1 to 25 s-1. In the regime of  linear flow properties one 
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Fig. 16 Normalized stress growth coefficient, ~/+ (s,0), first nor- 
mal stress growth coefficient, ~vl+n (s, 0), reflected shear viscosity, 
~/(~,Z), and reflected first normal stress coefficient, ~ln(oo,z)  
(Gleil31e relation) as a function of the normalized time, s, compared 
to the theoretical predictions of the one-mode Giesekus model 
(lines) ( T =  20°C, CTAB-NaSal 60-350) 

observes a monoexponential increase of  the shear stress 
growth coefficient whose plateau value is equal to the 
zero shear viscosity. Due to the very small first normal 
stress difference in the regime of  linear viscoelastic 
response, as shown in Fig. 16, it is difficult to get precise 
experimental data for this theological property. At high 
values of  the shear rate, where non-linear flow properties 
occur, a complex behavior is observed. 

An overshoot in the shear stress and normal stress 
becomes increasingly significant with increasing the shear 
rate, as shown in Figs. 17 to 19. In comparison to the 
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Fig. 17 Normalized stress growth coefficient, t/+ (s,z), and first 
normal stress growth coefficient, ~u~(s,%), as a function of the 
normalized time, s, at a shear rate ))= 10s -1 compared to the 
theoretical predictions of the one-mode Giesekus model (lines) 
( T =  20°C, CPyC1-NaSal 100-250) 
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linear regime the steady-state values o f  bo th  functions are 
much  smaller. Very good  agreement between the ex- 
perimental  data  and the theoretical predictions o f  the 
Giesekus model  is obtained by keeping the anisotropy fac- 
tor, a = 0.5. In  Table 1 the relevant steady-state values are 
shown for bo th  investigated surfactant  solutions. For 
compar i son  purposes,  the theoretical values o f  the 
Giesekus model  are also summarized and it is evident that  
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Fig. 18 Normalized stress growth coefficient, I/+ (s,z), and first 
normal stress growth coefficient, 7~n(s,z), as a function of the 
normalized time, s, at a shear rate ~ = 25 s -~ compared to the 
theoretical predictions of the one-mode Giesekus model (lines) 
(T= 20°C, CPyC1-NaSal 100-250) 
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Fig. 19 Normalized stress growth coefficient, r/+ (s,;~), and first 
normal stress growth coefficient, g'~n(s,x), as a function of the 
normalized time, s, at a shear rate ))= 10s -a compared to the 
theoretical predictions of the one-mode Giesekus model (lines). The 
discrepancy between the theoretical data and the experimental ones 
near the maximum are due to the overload of the torque transducer 
(T = 20 °C, CTAB-NaSal 60-350) 

Table 1 Normalized steady-state values of the shear stress growth 
coefficient and the first normal stress growth coefficient for each 
investigated surfactant solution. The experimental results are com- 
pared to the theoretical predictions 

Systems & 
shear rate ~2 Is- II 

Normalized growth coefficients 

,1+(oo,O + W?,(oo,O + I7 Giesekus ~ir/1 Giesekus 

CTAB-NaSal 0.1 1.00+0.02 1.00 - 1.00 
60-350 10 0.14+0.02 0.14 0.05+0.01 0.05 

CPyC1-NaSal 10 0.73+0.02 0.73 0.65+0.05 0.63 
100-250 25 0.43+0.02 0.43 0.28+0.05 0.28 

all experiments can be interpreted in the f ramework o f  
these equations. 

In  addition, bo th  GleiBle mirror  relations are plotted 
in Fig. 16. Both  the steady-state shear viscosity and first 
normal  stress coefficient are treated as ment ioned in 
Eqs. (28) and (29) and are further  normal ized so that  
dimensionless functions result (Fischer, 1995). It is easy to 
recognize that  the first and second GleiBle mirror  rela- 
tions also hold for a = 0.5. 

Stress relaxation after cessation o f  flow 

In  another  transient test the constant  shear rate is sudden- 
ly reduced to zero. Again  the shear stress is measured as 
a funct ion o f  time. From this parameter  the shear stress 
decay coefficient, r / -  (t, ?)), can be calculated as shown in 
Eq. (27). The shear stress decay coefficient describes the 
stress relaxation after cessation o f  steadystate flow for 
viscoelastic samples. At  time zero the decay functions 
start at the steady-state value and relax to zero, as shown 
in Figs. 20 and 21. In  these experiments the applied steady 
shear rate is systematically increased f rom 5 to 15 s -1. 
Similar to start-up experiments, one obtains linear and 
non-l inear flow behavior  depending on the actual shear 
rate. The normalized results o f  these transient experi- 
ments are in reasonable agreement with the theoretical 
predictions o f  the Giesekus model  for an anisotropy fac- 
tor a = 0.5. 

S u m m a r y  

In  the preceding sections we have systematically investi- 
gated the non-l inear flow properties o f  viscoelastic sur- 
factant  solutions. It turns out  that  the experimental re- 
sults are in fairly g o o d  agreement with the theoretical 
prediction o f  the o n e - m o d e  Giesekus model.  This holds, 
however, only for an anisotropy factor  o f  a = 0.5. It is in- 
teresting to note that  at this exact condi t ion the Giesekus 
model  coincides with another  theory, which was first pro- 
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Fig. 20 Normalized stress decay coefficient, v~-(s,Z), and first 
normal stress decay coefficient, 7'~n(s,z), as a function of the 
normalized time, s, at a shear rate ~ = 15 s -~ compared to the 
theoretical predictions of the one-mode Giesekus model (lines) 
(T= 20°C, CPyC1-NaSal 100-250) 
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Fig. 21 Normalized stress decay coefficient, v n (s,z), and first 
normal stress decay coefficient, ~v ;-n (s, z ), as a function of the 
normalized time, s, at a shear rate 9)= 5 s -~ compared to the 
theoretical predictions of the one-mode Giesekus model (lines) 
(T = 20 °C, CTAB-NaSal 60-350) 

posed by Leonov (Leonov, 1987). This implies a general 
character of both types of theoretical approaches. For the 
special case where a = 0.5 some semiempirical laws such 
as the Cox-Merz rule, the Yamamoto relation, the GleiBle 
mirror relation and the Laun rule are automatically 
satisfied. In addition to this, a constant shear stress is ob- 
served at high values of the shear rate. In contrast to the 
theory of M. Cates, this phenomenon is not caused by an 
instable regime of flow. In conclusion, one might state 
that the successful application O f the one-mode Giesekus 
model is rather attractive. It is remarkable and surprising 
that many features can still be described by algebraic 
equations. The simple relationships between all 

rheological functions look particularly promising in view 
of the growing interest in theoretical work on complex li- 
quids. In the future, we would like to continue our work 
in extensional flow and look to more concentrated surfac- 
taut solutions. At least the molecular meaning of the 
mentioned results are not completely clear and some fur- 
ther investigation is necessary. 
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