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Calculation of residual stresses in injection molded products 
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Abstract." Both flow- and thermally-induced residual stresses which arise during 
the injection molding of amorphous thermoplastic polymers are calculated in 
the filling and post-filling stage. To achieve this, a compressible version of the 
Leonov model is employed. Two techniques to calculate flow-induced residual 
stresses are investigated. First, a direct approach is developed where the pressure 
problem is formulated using the viscoelastic material model. Second, generalized 
Newtonian material behavior is assumed in formulating the pressure problem, 
and the resulting flow kinematics is used to calculate normal stresses employing 
the compressible Leonov model. The latter technique gives comparable results, 
while reducing the computational cost significantly. 
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Notation and symbols 

A c conjugate of tensor A 
A a deviatoric part of A 
(-) column 
( . ) r  transpose of  a column 
(-) matrix 
(:) material time derivative 
(')e elastic part of ( ' )  
(-)p plastic part of ( ' )  

Symbol description 

g 

2 
0 

Q 
v 

aT 
cp 
J 
N1 

coefficient of thermal expansion 
shear rate 
specific internal energy 
heat conduction coefficient 
relaxation time 
viscosity 
reduced time 
density 
specific volume 

time-temperature shift factor 
specific heat at constant pressure 
volume change factor 
first normal stress difference 

p pressure 
r internal heat source 

gradient operator with respect to current con- 
figuration 

~'0 gradient operator with respect to reference 
configuration 

h heat flux 
velocity 

£ position vector 

a Cauchy stress tensor 
z extra stress tensor 

D rate of strain tensor 
F deformation tensor 
B left Cauchy-Green tensor 
L velocity gradient tensor 

1. Introduction 

Injection molding is a commonly applied process- 
ing technology for plastics. In the past decade, atten- 
tion in numerical simulations of  the injection molding 
process has been focused on the filling stage. The key 
items in these calculations are the prediction of 
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pressure and temperature distributions and the prop- 
agation of the flow front in complex-shaped, thin- 
walled geometries. Numerous commercial codes are 
presently available, e.g., Boshouwers and v.d. Werf 
[1], Sitters [2], and Manzione [3]. 

More recently, the prediction of residual stresses 
(and molecular orientation) in injection molded prod- 
ucts has attracted attention. Knowledge of residual 
stresses is essential to predict dimensional and shape 
inaccuracies of a product. Roughly, there are two 
sources of residual stresses. First, due to the 
viscoelastic nature of the polymeric melt, normal 
stresses develop during the filling, packing, and 
holding stage. Usually, these so-called flow-induced 
stresses are relatively small. However, they give rise to 
large molecular orientations which effect the 
mechanical and optical (birefringence) behavior of a 
product. They also give rise to differences in (post-) 
shrinkage behavior in directions perpendicular and 
parallel to the flow direction. The second cause of 
residual stresses is the rapid increase in rigidity of the 
material as it passes through the glass transition point 
(or region). Across the product wall a highly non- 
uniform temperature distribution exists. Consequent- 
ly, each material point solidifies at a different time, 
leading to differential shrinkage causing thermally-in- 
duced stresses. 

Initial investigations by Isayev and Hieber [4] show 
the potential capabilities of the so-called Leonov 
model, first published by Leonov [5], to predict flow- 
induced residual stresses during the filling stage. 
Birefringence measurements of Wimberger-Friedl and 
Janeschitz-Kriegl [13] in Compact Discs indicate that 
molecular orientation is introduced not only during 
the filling, but also during the post-filling (packing 
and holding) stages of the injection molding process. 
The traditional incompressible version of the model 
as applied by Isayev and Hieber [4] is slightly 
modified to include compressibility effects, an essen- 
tial feature in the packing stage. By following 
Stickforth [6] and Simo [7], a kinematic split of the 
elastic deformation tensor into a volumetric and a 
deviatoric part is defined and a compressible version 
of the Leonov model is derived. As the model reduces 
to that of a linear viscoelastic medium for small 
deformations, only linear viscoelastic measurements 
are required to determine the material properties. 

Two approaches to calculate flow-induced residual 
stresses by means of the compressible Leonov model 
are investigated. Firstly, the viscoelastic material 
behavior is taken into account to derive the so-called 
pressure problem (Sitters [27]); this is called the direct 
approach. Secondly, an indirect method is developed 

where the pressure problem is derived by employing a 
generalized Newtonian model, while the resulting 
flow kinematics is used as input for the viscoelastic 
constitutive equation to calculate flow-induced 
residual stresses. The latter approach considerably 
reduces computational time. 

2. Governing equations 

The three-dimensional governing equations are: 

1) The continuity equation, representing the conser- 
vation of mass 

b ~ 
= + V . g =  0 , (2.1) 

where 0 represents the density (the inverse of the 
specific volume v), ~' is the gradient operator, and 

the velocity field. 

2) The momentum equation 

~ ' ~ r + o f =  Qb , (2.2) 

where a is the Cauchy stress tensor and f is the 
body force per unit mass. 

3) The energy equation 

#~ = o ' :D-~ ' . /~+Qr , (2.3) 

where e is the specific internal energy, D is the rate 
of strain tensor,/i the heat flux, and r an internal 
heat source. 

This set of equations cannot be solved as such: con- 
stitutive equations for the density, the Cauchy stress 
tensor, the specific internal energy, the heat flux, and 
the internal heat source must be given, accompanied 
by appropriate initial and boundary conditions. This 
is the object of the next chapter. 

However, some remarks can be made here. First, 
due to the extremely high viscosity of the material 
compared to the velocities, inertia effects are 
disregarded in the momentum equation. Body forces 
can be disregarded and no internal heat source is 
assumed to be present. Further, solving the full three- 
dimensional theory would be highly uneconomical, 
and would bypass the typical geometrical properties 
of the product, such as narrowness and weak cur- 
vature. With a few suitably chosen kinematical 
assumptions, a much more workable theory is 
derived. 
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3. Constitutive models 

3.1 The compress ible  L e o n o v  m o d e l  

Constitutive models are given to describe the ther- 
modynamic behavior of isotropic amorphous poly- 
mers. First, a model is presented to characterize the 
thermo-mechanical behavior. Thereafter, thermal 
properties are discussed briefly. 

At mechanical excitation, amorphous polymers 
show both a fast, rigid glass-like response and a slow, 
weak liquid-like response. When analyzing the injec- 
tion molding process, the liquid response dominates 
in the molten state, whereas the glassy response is 
relevant in the solidified state. 

In the molten state the polymer is subjected to large 
deformations. The mechanical behavior in shear 
dominated flows (as in injection molding) can be de- 
scribed reasonably well with the so-called Leonov 
model, as shown by, e.g., Upadyay et al. [8]. During 
the filling stage, compressibility effects may be 
disregarded, as opposed to the post-filling stage, 
where compressibility is one of the key phenomena. 

The basic kinematical assumptions of a compressi- 
ble version of the Leonov model are discussed briefly. 
The prime assumption made by Leonov [5] is that the 
deformation tensor F, relating the current to the 
reference configuration, can be decomposed multi- 
plicatively into an elastic (Fe), and a plastic (Fp) part: 
F = F e ' F p ;  see Leonov [5, 9] and Stickforth [6]. 
Secondly, it is assumed that the polymer cannot be 
given a (permanent) plastic volume change, i.e., 
Jp = det (Fp) = 1 and Je = det (Fe) = det (F) = J. So, 
all volumetric changes due to external loading must be 
elastic in nature. 

Following Simo [7], volumetric changes embedded 
in F~ are separated from the deviatoric responses by 
defining the kinematic split 

fie = J - l / 3 F e  • (3.1) 

The left Cauchy-Green strain tensors associated with 
F , F  e and Fe are 

B = F . F  c , B e = Fe'F~e , /~e = F e ' / T e  c • ( 3 . 2 )  

If  L = (~,o)e is the velocity gradient tensor, then 
L = /~ .F-1 .  It is common practice to decompose L 
additively into an elastic and a plastic part: 

L = L e + L p ,  L e = F e ' F e  l , 

L p = F e ' F p ' F e  1 . (3.3) 

This is nothing but a definition of Le and Lp,  pro- 
viding a tool to include relaxation in the constitutive 
model. These are used to define spin (W~) and defor- 
mation rate (Da) tensors 

La = Da + Wa , DCa = Da , 

W ~ = - W a  a = [ - l , e , p .  (3.4) 

In accordance with Leonov [5], Wp is chosen equal to 
the null tensor: Wp = 0. Finally, it can be shown that 

~e  = (L  d - D p ) ' l ~ e  + l~e ' (L  d C - O p )  • ( 3 . 5 )  

The Cauchy stress tensor a is split into an elastic 
part (ae), and a plastic part (ap): a = a e + a  p. First 
the elastic stresses are defined, then the plastic part is 
given. Thereafter the temperature dependence of the 
material parameters is discussed, and finally the 
linearized model is given. 

Elast ic  stresses." It is common practice to decompose 
ae into a hydrostatic and a deviatoric part: 
a e = - p I +  z e. In the single mode case z e, is chosen 
as "t "e r] - d  = - -  B e. However, such a choice gives poor cor- 

0 
respondence with experimental data. Therefore, the 
following extension to the multi-mode case is general- 
ly proposed. The elastic extra stress tensor r e is 
chosen as 

n 
Te = 2 r/k - d  

- -  Bek • (3.6) 
k=l  Ok 

For each mode k, the unimodular left Cauchy-Green 
tensor/iek is calculated from (3.5), hence a relation 
for Dpk needs to be given. By analogy with Leonov's 
[5] proposal, the following form is chosen: 

1 - d  
--  ( B e k -  a • (3.7) 

Substitution of (3.7) into (3.5) yields for each mode k 

~ek = L d" Bek + l~ek " L dc 1 
20k 

× (/~ek"/~ek--I-- 1 (tr (Bek) - tr (B ~ ))B~k) g 

3 (3.8) 

This expression is nothing but a definition of Bek. 
Note that, in contrast with the incompressible Leonov 
model, for plane flow tr (BeD~tr  ( / ~ ) .  
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A relation for the pressure p remains to be given. 
This is done implicitly by taking a suitable relation for 
the specific volume. The so-called Tait equation is a 
successful model for amorphous polymers (Zoller, 
[10]) and is given by 

v (13, T) = (ao+al (T -  Tg)) 

× ( 1 - 0 . 0 8 9 4  In (1 + B )  ) , (3.9) 

where Tg is the pressure-dependent glass transition 
temperature, i.e., Tg(p)= Tg(O)+sp, and B(T)= 
B 0 exp ( - B 1 T). 

Plastic stresses." The plastic part of  a is chosen as 

ap = 2 ~ ' ( T , p ) D  d . (3.10) 

Time-temperature superposition: Thermorheological- 
ly simple behavior is assumed, implying that 

~lk = a T ( T ) V l k O  , Ok = a T ( T ) O k O  , t l '  = a T ( T ) t l ' o  , 

(3.11) 

where aT is the shift factor and ~/k0 and 0k0 are the 
viscosity and relaxation time at a reference tempera- 
ture, say T 0. The shift factor is governed by the WLF 
equation if T>_ Tg, i.e., 

C~(T- To) 
log a r (T  ) - , (3.12) 

C2+ T -  T o 

while, below Tg 

aT(T) = aT(Tg) . (3.13) 

The reason for this last choice is that below Tg, relax- 
ation processes are extremely slow and hence take 
place at a time scale beyond current interest. 

Linearized model." In the solidified state, deforma- 
tions and rotations are small. In that case the above 
model reduces to a linear Maxwell model. Hence, 

n , t 
re= E zek, rek=~2rlk°e-(¢te-¢sk) D a ( s ) d s ,  

k= 1 o Oko (3.14) 
where 

q 1 
(qk = ~ - - d s  , q=  t,s . (3.15) 

o ar(s)Ok 

By linearizing ¢ = v tr(D) an explicit relation for the 
pressure p can be derived: 

t 

p( t )  = ~ (/3 T -  x tr (D ))ds , (3.16) 
o 

where 

f l = a x  , a = - -  and - . 
v K v 

(3.17) 

3.2 Thermal behavior 

To calculate the temperature distribution in the 
polymer, constitutive equations for the heat flux and 
the specific internal energy are given. 

Heat flux: The heat flux vector/~ is assumed to obey 
Fourier's law, that is 

h = - ~ ¢ T .  (3.18) 

Specific internal energy: If elastic effects upon the 
specific internal energy are disregarded it can be 
shown that (Sitters [2]) 

T OQ 
= cp i " - p v  tr (D) + --7 -7=P , (3.19) 

Q- 0 1  

where Cp is the specific heat at constant pressure. 

4. Injection molding theory 

4.1 Introduction 

In this section the set of balance equations and con- 
stitutive equations of the previous sections are 
simplified considerably by introducing a number 
of geometrical assumptions. Only narrow, weakly 
curved cavities are considered such that the thin film 
approximation holds (see Fig. 1). For generalized 
Newtonian material behavior this procedure is well 
described in, e.g., Sitters [2]. Here a viscoelastic mate- 
rial model is used. 

The concept of generalized Newtonian flow only 
holds for fully-developed flow situations. However, 
fully developed flow never occurs during injection 
molding. Yet, generalized Newtonian material 
behavior may be a good approximation in core 
regions, sufficiently far departed from sudden geo- 
metry changes (i.e., contractions) and the flow front, 
while the temperature needs to be sufficiently high. 
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let A be an arbitrary second order tensor and d some 
vector, then the components of  A, respectively d, with 
respect to O1 follow from A i j = A - ~ . g i ,  and 
a i = d ' g  i, respectively, with i = 1,2, 3. 

The channel height is denoted by hm, and the cur- 
rent product wall thickness by h c. 

3 

2 4 
: I 

Oo 

Fig. 1. Definition of the local basis Ot 

Near the solidified layers fully-developed flow is 
unlikely to occur, since relaxation processes slow 
down considerably as the temperature approaches the 
glass transition temperature. During post-filling the 
temperature drops in the entire channel. So, it may be 
expected that viscoelastic phenomena do affect the 
filling and post-filling stages. 

Incidentally, viscoelastic phenomena are definitely 
present at the gate where enormous elongational ef- 
fects take place. However, elongational flow is not 
considered in the lubrication theory. This is a serious 
shortcoming of most mold-filling analysis programs, 
because the overall pressure drop may be largely af- 
fected by the elongational effects at the gate. The 
solution to this problem is beyond the scope of  this 
paper. 

The mechanical and thermal description of the 
solid state is quite different from that of the molten 
state. A simple and effective membrane type of  struc- 
tural mechanics theory is used to describe the develop- 
ment of  thermally-induced residual stresses. 

In the liquid state the compressible Leonov model 
is used, with a set of  n relaxation times (Ok) and 
viscosities (r/k). In the solid state the linearized ver- 
sion, the generalized Maxwell model is used, with 
another set of  m relaxation times (Ok) and viscosities 

(Ok). 

Prel iminaries:  At each point xR of  the midplane R, a 
local orthonormal basis O1 = {gl,gz, g3} can be de- 
fined, such that gl and gz are tangential to R, and g3 
is normal to R, e.g., g3 = t~. As a global orthonormal 
basis O0 = {g0,d, g~ is defined. To transform quan- 
tities with respect to O 0 to O1, the rotation matrix Q 
is defined as Qij = 5"  go. Let YR identify a particle at 
the midplane R. The position vector of a particle 
along K that emanates from 2R is denoted by 2. Now, 

4.2  F l o w - i n d u c e d  res idual  stresses 

A s s u m p t i o n s :  

1) With respects to O1, it is assumed that the con- 
tribution of  the normal stresses can be disregarded 
in the momentum equation. This can be made 
plausible by noting that gradients in the thickness 
direction are far superior to the in-plane gradients. 

2) The pressure is independent of the g3 direction. 
3) The material is assumed to flow into the domain 

with a fully developed velocity profile. 
4) Fountain phenomena are not considered. 
5) Thermal conduction tangential to the midplane R 

is disregarded. 

Due to these assumptions, the momentum equation 
approximated by (with respect to O1) is 

8 
7 p  = r ,  (4. i) 

8x3 ~ 

P = P(Xl,X2) , (4.2) 

with 

  ;[Oox (4.3) 

The above approximation is often referred to as the 
thin film or lubrication theory. Employing the 
viscoelastic model (3.6), it follows from o" = o" e + O'p, 
a e = - p I +  T e and (3.10) that 

= r/' + re 3 7~i3 
8x3 

n r/ 

= E " k a f k : 6 ¢ ,  
k=l Ok 

i = 1,2 . (4.4) 

With respect to O1, the continuity equation (2.1) is 
written as 

~TI"~- 0V"--'~3 -- ~) , 1 IT=~ [V 1 V2] . (4.5) 
OX3 



Baaijens, Calculation of residual stresses in injection molded products 289 

From this the so-called pressure problem can be 
derived (see Appendix): 

PE  Given T(£ , t ) ,  find p(xl ,x2 , t )>_O such that 

S + • 
¢ ~O dh 

_ _ j dx3 V r ( S V P + ' r )  = - s -  ~ - ~ -  , p>-0 , (4.6) 

~ X ~ d x  3 S = - J z + J 2  ' g i= tl' , i = 0 , 1 , 2 ,  (4.7) 
J0 s- 

_fT= [f13 ~23] , 

s i i x3~ ' i3dx3  , Ti3 J1 rq s e _ ' i3  dx  3 + 
Jo S -  S -  tl' 

i = 1 , 2  . (4.8) 

In this, S is the so-called fluidity coefficient, and 
s + and s -  denote the locations of  the solidified lay- 
ers. In addition, f represents the contribution of  

s+ 
elastic effects, ~ ~/Q dx3 represents compressibility, 

s -  

a n d  d h / d t  accounts for mold elasticity. Note that for 
symmetric flow J1 = 0. The pressure p is not allowed 
to drop below zero, because as soon as p becomes 
zero the material loses contact with the mold. Ob- 
viously, boundary conditions need to be introduced in 
the definition of  PE, however, they are identical to 
the Newtonian case and can be found in, e.g., Sitters 
[2], they are briefly summarized here. At the gate 
either the flow rate or the pressure is prescribed. The 
pressure is assumed negligible at the flow front and no 
fluid may penetrate the solid walls of the mold. 

Equation (4.6) is taken as a starting point for the 
finite element implementation. Various aspects of this 
implementation can be found in, e.g., Sitters [2]. 

Problem PE defines the direct method, in the sense 
that viscoelastic material behavior is assumed at the 
onset of deriving the pressure problem. In the indirect 
method PE is simplified substantially by assuming 
generalized Newtonian material behavior. In that 
case, f = Q, and the viscosity r/' is replaced by the 
steady state viscosity of the incompressible Leonov 
model [5], see Section 4.4, Eq. (4.33). The resulting 
flow kinematics (velocity and shear rate field) are sup- 
plied to the viscoelastic constitutive equation to 
calculate (as a post-processing step) flow-induced 
residual stresses, giving remarkably good results, even 
in the post-filling stage. 

4.3 Thermal ly- induced residual stresses 

Thermally-induced residual stresses develop in the 
solidified layers. In this section the linearized model 
(3.14)-(3.17)  is reduced by taking a number of  
kinematic and dynamic assumptions into account. 
The reduced constitutive equation is then embedded 
in a membrane type of finite element. 

Assumpt ions :  

1) Displacements and rotations are small. 
2) Bending is unimportant.  This is reasonable because 

the in-plane deformations are small, the channel is 
only weakly curved and the out-of-plane 
displacements are severely restricted by the mold. 
Yet, as soon as the product is ejected from the 
mold bending is one of the key phenomena. 

3) The displacement field t~ is homogeneous in the 
normal direction, e.g., 

t~(Y) = fi(~R) • (4.9) 

So, if the solidified layers are separated by fluid, 
they both displace in the same manner: they are vir- 
tually coupled to each other. 

4) Due to the presence of  the mold, all normal dis- 
placements are assumed to be suppressed: 

~(~N)'fi = 0. (4.10) 

In fact, due to shrinkage a small clearance between 
product and mold may develop and hence small 
lateral displacements may occur. Yet, these are suf- 
ficiently small to be disregarded in a first approx- 
imation. 

5) With respect to 0 1, the shear strains el3 and e23 are 
disregarded. 

6) The normal stress 0-33 is homogeneous in the nor- 
mal direction. 

7) As long as a33 < 0 the material sticks to the mold. 
8) Solidification takes place at the glass-transition 

temperature, and flow-induced stresses do not 
relax after solidification. The flow-induced stress 
upon solidification is denoted rue. 

9) Mold elasticity is disregarded, i.e., d h / d t  = 0. 

R e d u c e d  const i tut ive equation: Since displacements in 
the solidified material are small, the linearized con- 
stitutive model (3.14)-(3.17)  can be used. Assume 
that at t = tn the stress state is known. Consider the 
state transition t n ~ t n + l, tn + 1 - tn = zl t. During this 
transition it is assumed that Tan d  D are constant. Let 
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A T = i " ( t n + O A t  and g = D A t .  
tensor at t = tn+l, a n+l, satisfies 

a n+l = 6 "+~ t r  (g ) I+2Gg d , 

The Cauchy stress 

(4.11) 

with 

I f  all the material has solidified in the normal  direc- 
tion, then the material may either stick to the walls or 
move tangential to the midplane R. I f  it sticks to the 
walls then e n = e22 = 0 and (due to assumption 3 and 

hm/2 

9) ~ a33 d x  3 = 0; so 
- hm/2 

m 

~ = - P s ( t n ) I +  ~ e-¢~tkr~(tn) hm/2 3 

-hm/2 0"33 4(~+ 3t? 
- f l A T I + T v e  , (4.12) 0-33 - , (4.16) 

hm/2 3 

tn+At 1 I - - d x 3  
~Atk = - - d s  , (4.13) - h m / 2 4 G +  3ff; 

t. ar(s)Ok 

(4.14) 

1 tn~ 1 1 tn+l 
S Kd , 

f l=-At  tn A t  t. 

m 1 tnfl OkOe_(¢t.+,,_~k) ds , 
O= E Oko k= 1 t n 

where Ps denotes the hydrostatic pressure in the solid 
state, as opposed to the pressure in the melt p.  Let at 
t = tg solidification take place, then 0"(tg) = - p ( t g ) l  
+ Tve(tg). So, the above updating scheme for 0" holds 
for t>tg. The constitutive equation (4.11) can be 
simplified considerably. Due to assumptions 6 and 7, 
the normal stress 0"33 can be determined by 
distinguishing between the situation where a fluid still 
exists and the situation where all the fluid has 
solidified in the x3-direction. 

Remark 4.1: The choice 0-(tg)= - p ( t g ) I +  rve(tg ) is 
controversial. It is not clear to what extent flow-in- 
duced residual stresses actually contribute to the stress 
state at temperatures significantly below the glass 
transition temperature. The existence of  normal 
stresses in a polymer melt is attributed to the mole- 
cule's ability to regain its most  preferred, unoriented, 
state. This is only possible at sufficiently high temper- 
atures. Therefore the above choice of  0-(tg) is ques- 
tionable, and an alternative seems to be: a u g ) =  
- p ( t g ) L  This last definition is used in practical 
calculations later on. However,  as rve(tg ) is very 
small compared to the final stress state at room tem- 
perature, the actual difference between the two alter- 
natives is very small. 

I f  a fluid phase still exists, then o-33 is obviously 
equal to the pressure in the melt 

0"33 = - P  • (4.15) 

Note that p_> 0. 

otherwise 0"33 = 0. 
In the above it is crucial to know whether or not the 

material still contacts the mold. The contact condi- 
tions are formulated as follows 

hm-hc<-O, 0"33~0, (hm-hc)0"33=O. (4.17) 

I f  either of  the first two conditions is violated during 
the solution process, the material still contacts the 
mold, whereas the third condition signifies that if and 
only if h m - h  c = 0 the normal stress 0"33 may be less 
than zero and vice versa. 

Finally, due to assumption 5 and the knowledge of 
0"33,e33 can be eliminated f rom (4.11), resulting in 

qn+l  = M e + ~  , (4.18) 

where 

q T =  [0-11 0-22 0-12] , (4.19) 

e- r =  Jail eZ2 2e12] , (4.20) 

E! M =  d 0 , (4.21) 
0 G 

F611 + b/a  (0"33 -- ~33)q 

g = [-[O'22 -I- b/a(0"330.12 - 0"33)t , (4.22) 

and 

b 2 
a = a - - -  , b = b - - -  

a 

- 2 G + 3 t ~  
b -  

3 

b 2 4 ( ~ + 3 ~  

a 3 

(4.23) 
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The definition of a and b may seem rather ad hoc, but 
they appear quite naturally when (4.11) is written in 
a form like (4.18). 

Membrane element: At a certain time, say t = t o the 
displacement field a(gR, tn) and the stress field 
o-(g, tn) are assumed to be known. During the state 
transition t~-~tn+ ~, the displacement field changes 
with Aa and it is determined by employing the finite 
element method with bi-linear quadrilateral mem- 
brane elements. 

Let the physical membrane domain be mapped on 
the unit cube by means of  the local coordinates ~, r/ 
and ( such that ~, t/, ~ e [ - 1, 11. The geometry and the 
displacement field are interpolated as 

4 

2 =  ~ Na(4, r l )ga,  (4.24) 
a = l  

4 
a a =  ~ Na(~,rl)Aa a . (4.25) 

a = t  

The strain-displacement matrix, see Hughes [14], is 
defined as 

B = I n t . . .  n 4 ]  , ( 4 . 2 6 )  

with 

Io °!l B-a = B 2  , B i  = = Q i j  . ( 4 . 2 7 )  
B, oxi ° 

As such B is arranged to be compatible with e in the 
sense that 

e= B_Au , Au r =  [Aur3 . . .Aur4] , (4.28) 

where A u a contains the components of  At~ at node a 
with respect to the local basis O1. 

The element stiffness matrix K e and the element 
force vector f e  are given by 

K~=[Kab] , f e = ~ a l  , a , b = l  . . . . .  4 , (4.29) 

where 

g a b  I T T ^ = O a B-a -MB_bQbdA , (4.30) 
A 

where A represents the area of the midplane of the 
element. The definition of  the material matrix 57I and 
the initial stress column ~ depends on whether or not 
the material contacts the mold. If  the material con- 
tacts the mold, then 

s -  hm/2  

M =  j Mdx3 + j M dx3 , 
- hm/2  s + 

s - hm/2  

~ =  l ~ dx3 + I ~ dx3 , 
- hm/2  s + 

(4.32) 

while otherwise the integration takes place over the 
entire material thickness, e.g., f rom - h m / 2  to hm/2. 

Remark 4.2: Formally, the integration from - h m / 2  
to hm/2 is inconsistent with assumptions made 
before. The linearized model is intended to the ap- 
plied in the solid state only, whereas in the molten 
state the non-linear model should be applied. How- 
ever, in practical situations deformations and defor- 
mation rates are small as soon as the material loses 
contact with the mold, since in that case most of the 
material has solidified already. That  means that in the 
melt the extra-stress contribution to the Cauchy stress 
tensor is negligible, no matter what model is applied. 
Note that in the melt rigidity is very low, and high 
strain rates are needed to cause substantial stress de- 
velopment. The shrinkage of  the melt, however, needs 
to be accounted for; integrating over the entire height 
is merely a way to do this. 

Remark 4.3: Note that as long as the material sticks 
to the wall, o -n+l can be calculated directly from 
(4.18) as e =  Q due to assumption 7. If frictional 
sliding between polymer and mold is allowed, this no 
longer holds. 

Remark 4.4: The constraint AtT. ti = 0 can be taken in- 
to account by a penalty function method. That is, the 
following term is added to the stiffness matrix 

(4.30): I eNa_nnrNbdA, where .nr= [~q.e ° fl.g2 ° 
A 

fi" e~l, and e a sufficiently large penalty parameter. 

4.4 Temperature equation 

With use of  (3.18) and (3.19), the energy equation 
(2.3) is written as 

QCpfF= ~ . ~ T + z : D  a T 0 9  . 
Q 8f; "p • 

flea S T T ^  = Q_aBagdA , (4.31) (4.33) 
A 
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To take dissipation into account without having to 
deal with viscoelastic phenomena, z in (4.9) is taken 
to represent the generalized Newtonian behavior of 
the material. Hence z =  200), T)D a, where ?) is the 

shear rate 0 ) = ~ ) .  The viscosity 0 is ob- 
tained from the steady state behavior of the incom- 
pressible Leonov model [5] at simple shear 

/7 

00), T) = r/ '+ ~ 2r/k 
k=l l + x k '  

x k = ]/(1 + 4~)202) . (4.33) 

Further, the conduction along the channel is dis- 
regarded due to the thinness of the cavity compared 
to its length. Hence with respect to 02, the tempera- 
ture problem to be solved is 

PT Given 17(£,t) and p(xl,xz, t), find T(£,t) such 
that 

+ 0 ))2 _ (4.34) 
0x3 \ 0x3,/ OT p " 

During the filling stage the contact temperature is 
prescribed at the product mold interface, thereafter 
the mold temperature is prescribed as a boundary 
condition. Obviously, a much better way to obtain the 
temperature boundary conditions is to simultaneously 
calculate the temperature distribution in the mold and 
product throughout the process, yet this is beyond the 
scope of this paper. 

5. Computational aspects 

In all cases the implicit Euler scheme is used for 
temporal discretization. At each time step, first the 
temperature and pressure equation are solved in- 
dependently, where coupling is enforced by the 
iterative scheme. That is, the sequence of problems to 
be solved at each time step is: P T - - , P E ~ P T ~ P E - - , . . .  
until convergence. The pressure problem PE is solved 
by employing the finite element method (FEM) with 
linear elements. The non-linearity of the resulting set 
of equations is dealt with in this section. The tempera- 
ture problem PT is solved with a finite difference 
(FD) scheme where the differential grid is centered at 
each element. Four computational aspects are dealt 
with in more detail: the solution of the pressure pro- 
blem PE, the method of characteristics to handle the 

material derivatives, the calculation of the shear rate 
in case of viscoelastic material behavior, and the 
calculation of Bek. 

Solution o f  the pressure problem: The system of Eqs. 
(4.6) is highly non-linear and is solved with a two-step 
procedure. A fully implicit scheme is used in the time 
domain. 

Step 1. An initial estimate for the pressure p, and 
associated properties such as velocity and shear rate 
fields, are found by solving for generalized Newto- 
nian material behavior. The viscosity is taken as the 
steady state viscosity of the incompressible Leonov 
model. Then PE reduces to 

PV Given T(£, t), find p(x~,x2, t) >_ 0 such that 

S + . 

7 r ( S g p ) = -  ~ ~dx3 - d h  , p>_O , (5.1) 
s 0 dt 

s+ 
~ = _ ~ + j 2 ,  Z = f Xi@dx3, i = 0 , 1 , 2 . ( 5 . 2 )  

J0 s - /7  

Equation (5.1) is solved with a Picard iteration 
scheme, assuming dh/dt  = 0 

f d x  3 fgi+ 1 + V T ( s i~Tp  i+ 
, , _  V /  

= -- ~ OkO dx310 i (5.3) 
, V /  ' 

:2 i  '+ 
= 2 j i  ' I - ~  j 0,1 ,2 , (5 .4)  

where the superscripts i and i + 1 respectively refer to 
the previous or the current iteration. 

Step 2. Given an estimate of the pressure, shear rate 
field, etc., by step 1, PE is finally solved with the 
Newton iteration process. Within the finite element 
context, the element stiffness matrices are determined 
by numerical differentiation. 

Method o f  characteristics: (Pironneau [11] and 
Morton et al. [12]). Consider the time interval 
t e [ t  n,tn+l], and let A t = t n + l - t n .  The time 
derivative p is approximated by 

p _ p(2, tn+ 1) -p(Sn, tn) , (5.5) 
At 

where ~¢n designates the position at time tn of the ma- 
terial particle currently located at 2. The material time 
derivatives of T and Bee are treated likewise. 
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Calculation of  the shear rate: To calculate/~ek, the 
shear rate must be known. Equation (A.2) constitutes 
a non-linear relation for the shear rate. It is solved 
pointwise with a secant-method, such that Bek and 
Ov/Ox3 are calculated simultaneously. 

Calculation of Be# The k ' th  mode unimodular elastic 
left Cauchy-Green strain tensor Bek is calculated 
from (3.8). A variable-order variable-time step 
backward difference scheme is used to integrate (3.8) 
over a certain time interval. During each time inter- 
val, say tn~tn+l, L is assumed to be constant and the 
initial value of [~ek is l~ek (Sn, tn)" 

6. Example 

As an example, polycarbonate (PC) is injected into 
a cavity of  80 x 50 × 2 mm (length, width, height), see 
Fig. 2. Along A a line gate is assumed. The material 
properties of PC in the case where a viscoelastic con- 
stitutive model is used are given in Table 1. 

Line gate 

Fig. 2. Sketch of the cavity, strip of 80.50.2 mm 

Table 1. Parameters for PC 

Parameters WLF equation: 
T O = 200 o C 
C 1 = -4.217 
C2= 94.95 °C 

Thermal properties: 

~p = 1.5 J/gK 
0 . 2 7  10  - 3  J/s mm K 

Visco-elastic properties: 
v/' = 0.003 0 MPas 
01 = l 0  -1  S 

0 2 = 10  - 2  S 
0 t = 10 -3 s 
01 = 10  -10 S 

Tait parameters: 
s = 0.51 °C/MPa 

solid 
a o = 868 
a 1 = 0.22 
B o = 395.4 
B a = 2.609 10 -3 

t h = 9.74 10  - 3  MPas 
r/2 = 6.75 10  - 3  MPas 
t/3 = 1.25 10  - 3  MPas 
01 = 894 10 -1° MPas 

melt 
868 mm3/g 

0.577 mm3/gK 
316.1 MPa 

4.078 10 -3 °C-I 

Processing conditions PC: The material is injected at 
an average velocity of  120mm/s  at 320°C. This 
velocity is maintained at A until the holding pressure 
of  50 MPa is reached. The holding pressure is main- 
tained at A until the elapsed time exceeds 4.0 s. At this 
time the gate is assumed to freeze off. Clearly, an ac- 
curate model of  gate freeze off  is not available yet, 
and it is unlikely that the pressure remains at 50 MPa 
in reality. The proper modeling of  the behavior in and 
near the gate is still an open question. As can be seen 
from the results later on, the period of time that the 
gate remains open determines, to a large extent, the 
amount of residual birefringence in the product. The 
mold has a temperature of  80 °C. 

Results for PC: Calculations are performed with both 
the viscoelastic and the viscous model. Figure 3 shows 
the calculated pressure history at x~ = 8 mm and 
x~ = 56 mm for the viscoelastic case. They virtually 
coincide with the results of the viscous model, which 
are not shown. During the filling of the mold, for t 
[0, tf= 0.67] s, the pressure gradually rises. Then a 
short compression stage follows where the pressure 
rapidly increases to 50 MPa. Hereafter, due to cool- 
ing, the pressure slowly drops. After solidification of  
the gate the pressure drops further until the product 
is ejected from the mold. 

Figures 4 to 8 show the evolution of  the first normal 
stress difference N 1, defined as N 1 = r~l - r e 33, for the 
viscoelastic (direct) case. N~ is shown at 5 times: at 
the end of the filling stage tf = 0.67 s, at the end of 
the compression stage t c = 0.71 s, and at t = 2.7, 3.2 
and 4.7 s. During the compression stage most of the 
flow-induced normal stresses relax because the flow 
rate is low and the temperature at the core of  the cavi- 

P r e s s u r e  (MPa) 
6O 

50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

40 .......... ~ - - x = 8 m m  .............................. 

30 .... 

2 4 6 8 10 

T i m e  (s) 

Fig. 3. Numerical pressure trace for PC, viscoelastic materi- 
al model 
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Fig. 4. N 1 at end of  filling stage, t = 0.67 s 
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Fig. 7. N~ at t = 3.21 s 
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Fig. 5. N~ at end of  compress ion stage 

~ ~  1.0 
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Fig. 8. N1 at t = 4.7 s 
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O Q o- 0 

rnel lenath f~_' , 0.0 . _~ r~idplar~ 
o"'~um) pistou~-e 

Fig. 6. N 1 at t = 2.7 s 
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0.12 Gate freeze-off~ 
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0.08 

0.08 

0,02 ~ ........................... ........................................................... 

0 - -  
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Time (s) 
Fig. 9. N,  his tory at  x = 8 ram,  at a distance of  0.35 m m  
f rom the  midplane  
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ty is still quite high, compare Figs. 4 and 5. This does 
not apply to regions close to the walls, because there 
the temperature has dropped below Tg and relaxation 
has virtually stopped. During the post-filling stage 
shear rates are several orders of  magnitude smaller 
than in the filling stage. However,  due to the decreas- 
ing temperature as time proceeds, small shear rates 
may  still introduce considerable normal  stresses, as is 
clearly demonstrated in Figs. 5 to 8. Figure 8 shows 
the final N1 distribution because at that time all ma- 
terial has solidified. After  about  t = 2.5 s the first nor- 
mal stress difference almost explodes to a very high 
value, indicating that packing times should be limited 
if minimal residual birefringence is required. This is 
clearly shown in Fig. 9, which shows the Nl-history 
at x = 8 m m  at a distance of  0.35 m m  from the mid- 
plane. 

These results can be compared with calculations ob- 
tained with the indirect method, where the kinematics 
of  the generalized Newtonian model is used to 
calculate flow-induced residual stresses with the com- 
pressible Leonov model. Figure 10 compares N 1 ob- 
tained with both techniques at x = 8 mm.  Qualitative- 
ly, the results are in very good agreement, while the 
computat ion time of  the indirect method is less than 
1/10 of the direct method.  This implies that the more 
cost-effective, indirect, method can be used as an in- 
dicator for molecular orientation, and hence as a 
method to assign anisotropic material properties to 
the model. 

Figures 11 to 19 show the evolution of  the thermal- 
ly-induced o'n. In the final time step the material is 
forced to cool down to the final uniform temperature 
of  20°C. This explains the wide difference between 
Figs. 18 and 19. Note that the stresses are positive at 
the edge, negative near the edge, and positive in the 

N1 (MPa) 
0.1 

0.08 

0.06 

0.04 

0.02 

0 
-1 -0.5 0 0.5 

Distance midplane (mm) 

Fig. 10. Comparison of N 1 at x I = 8 mm 

- -  Direct 

. . . .  Indirect 

6) 

CQ 
? 
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uuld len~+l..,, • o.o ,.~;dnlane (ram) 
~'" kr~rn) Distdnce"" ~ 

Fig. 11. Thermally induced stress at t = 0.67 s 
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75.0 . ~ 1.o 

Mould Jslgth ' "~istance midpJane (r~r~) 

Fig. 12. Thermally induced stress at t = 0,7 s 
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75.0 

Youtd Is 

! 
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Fig. 13. Thermally induced stress at t = 2.7 s 



296 Rheologica Acta, Vol. 30, No. 3 (1991) 

oo. d? 

/d.~] ~ --- 

5 | y / 

0.0 n E e  qd length (rare; Distd rllidPldnet~ °qd length (ra~) 0~istoric e ~idpldrne M" 
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Fig. 17. Thermally induced stress at t = 6.7 s 

'VOUd length (ra~) °~istance rn,dplarn~ ~ ,v,UUlcl length (mr-n) °~istance rnidpla.~ ~ 
Fig. 15. Thermally induced stress at t = 4.7 s 
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Fig. 16. Thermally induced stress at t = 5.7 s 

Fig. 18. Thermally induced stress at t = 7.7 s 
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Fig. 19. Thermally induced stress at t = 8.7 s 
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core. This stress distribution is markedly different 
from what is found in free quench experiments (see 
Wimberger-Friedl and Hendriks [15]). The difference 
is due to the pressure evolution in the molten part of  
the product: solidification takes place at elevated 
pressures. 

The effect of mold elasticity is shown in Fig. 20. 
The mold elasticity is modeled very crudely by 

dh dh dp 
dt dp dt 

(6.1) 

where dh/dp = 0.4 g m / M P a  is chosen. As is seen 
from Fig. 20, this small amount of  mold elasticity has 
a significant influence on the pressure history in the 
mold and, therefore, on the final thermally-induced 
stress state, as shown in Fig. 21. Note, however, that 
the thermally-induced stress theory does not include 
mold elasticity, so Fig. 21 must be handled with care. 
Essentially, assumption 9 of  Section 4.3 implies that ~- 

h m / 2  

~33 dx3 = 0. This assumption must be altered to /d" 
- h m / 2  

formally include mold elasticity into the thermally-in- 
duced stress theory. The current calculation only in- ~ ~_ 
eludes the effects of the change in pressure history. ~) 

Finally, Fig. 22 shows part of the temperature 
history of  a point at x~ = 8 mm at the midplane. It 
clearly demonstrates the effect of heat due to com- 

UJ 
o~ 

pression, a phenomenon that is not negligible. ~ o. ?- 
7. Conclusions 

The evolution of  both flow- and thermally induced 
stresses during injection molding in both the filling 
and the post-filling stage is investigated numerically. 

A compressible version of the Leonov model was 
developed and applied. 

The calculations show clearly that a substantial 
portion of the flow-induced residual stresses arise 
during the post-filling stage. This is in agreement with 
experimental data [13]. The indirect approach gives a 
good qualitative and a reasonable quantitative predic- 
tion of  flow-induced residual stresses when compared 
with the direct, viscoelastic approach. In this indirect 
method the pressure problem is derived with 
generalized Newtonian material behavior, and the 
resulting kinematics is supplied to the viscoelastic 
constitutive equation. This approach is a valuable 
tool to give a quick and fairly accurate indication of 
the molecular orientation in an injection molded 
product (provided that one assumes that flow-induced 
stresses are a measure of  molecular orientation). 

/ 
~ . 0  

'vtoUd length (~) o~istanc e midplane k'"" 

Fig. 21. Thermally induced stress at t = 8.7 s in case of mold 
elasticity 
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Fig. 20. Pressure history at x = 8 mm with and without 
mold elasticity 
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As yet, the effect of  the molecular orientation upon 
the material properties has not been taken into ac- 
count. This is mainly due to a lack of experimental 
data. But, indeed, the intention is to use the flow-in- 
duced stresses as a measure of  orientation such that 
anisotropic phenomena can be included in the calcula- 
tion of thermally-induced residual stresses. This is the 
topic of  ongoing investigations. 

It is shown that a small amount  of  mold elasticity 
has a marked effect on the pressure history in the 
mold. This is true even though the model of  mold 
elasticity that is applied is very crude. All currently 
available commercial analysis codes assume a rigid 
mold. Particularly at locations in the mold along the 
plane that separates two mold halfs, mold elasticity is 
a significant phenomenon.  It is not uncommon that 
molded parts are thicker than the initial cavity 
thickness. Typically, analysis codes tend to under- 
predict the pressure in the mold at such locations, due 
t o  the disregarding of mold elasticity, and henceforth 
underpredict the product thickness. Therefore, 
besides as thermal analysis of  the mold, a mechanical 
analysis of  the mold is also required. Thus, the entire 
system, i.e., mold and product,  should be analyzed 
thermomechanically.  

Appendix: Derivation of the pressure problem 

Substitution of  (4.4) into (4.1) gives 

(flt  Ol~ ..k ~eX~ , ~eT= [2.~3 T~3] . (A.1) 8 

Vp : ~)x----~ \ ~)x3 / 

Step 1. Integrating (A.I)  with respect to x3 yields 

(note that p = p (Xl, x2)) 

O v _  1 (x3Vp+c_re)  , (A.2) 
0x3 r/' 

where c is an integration constant column. 
Step 2. The velocity v is found by integrating (A.2) 

f rom s -  to x 3 

X3 0v !3 1 
v = f ---=dx3 = - -  ( x3VP+c- re )dx3  . (A.3) 
" s -  8 X 3  - r l '  ~ 

This holds because at x3 = s - v = Q. Because v = Q at 
x3 = s + as well, it follows that 

_ J 1  1 s+ Z e 
g= Jo V'P+Jos~ --~ 7dx3" (A.4) 

Step 3. Integrating the velocity with respect to 
x3 once more gives (after repeated use of  

~fg ,xdx:  f g -  ~f, xgdx).  

s+ ( ( T~ e 
s -~ Jo// Jos- rl 'dX3 

s+ X3T e 
+ J_ T a x 3  . (A.5) 

Step 4. Integration of  the continuity relation (4.5) 
f rom s -  to s +, the use of  (A.5) and the recognition 
that 

= s( 0 v__ L dx 3 = v3 (s +) - v3 (s -)  (A.6) dh 
dt s'- Ox3 

gives the final result. 
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