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Abstract." The gist of extended irreversible thermodynamics and generalized 
hydrodynamics is presented within the context of rheology of complex molecules 
(e.g., polymers) in this paper. Then, the constitutive equation for stress developed 
for polyatomic fluids in a previous paper is applied to rheology of polymeric 
fluids. This constitutive equation is fully consistent with the thermodynamic 
laws. It is shown that the collision bracket integrals appearing in the constitutive 
equation can be recast in terms of friction tensors of beads and equilibrium 
force-force correlation functions if the momentum relaxation is much faster than 
the configuration relaxation and there exist such relaxation times. The force- 
force correlation functions reduce to those related to the mean square radius of 
gyration of the polymer if the Hookean model is taken for forces. By treating 
the recast collision bracket integrals in the constitutive equation as empirical pa- 
rameters, we analyze some experimental data on shear rate and elongation rate 
dependence of polymeric melts and obtain excellent agreement with experiment. 
We show that the empirical parameters can be related to the zero shear rate 
viscosity and the ratio of the secondary to the primary normal stress coefficient. 
Therefore, for the plane Couette flow geometry considered in the paper, the con- 
stitutive equation is completely specified by the limiting material functions at 
zero shear rate and relaxation times. 
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1. Introduction 

Macroscopic processes in matter  must be subject to 
thermodynamic laws and any rational development of  
theory of  macroscopic processes should be founded 
on such laws. As a science of flow in matter,  rheology 
should not be an exception, but a survey of literature 
in the field would quickly reveal that the mainstream 
efforts [ 1 - 3 ]  in the field have been carried on 
without paying due attention to the question since 
rheology is developed pretty much detached f rom the 
discipline of  thermodynamics.  There, however, has 
been in the past a theory of Coleman et al. [4] in 
which viscous phenomena are looked at f rom the 
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standpoint of  rational thermodynamics.  More recent- 
ly, there is a movement  [5, 6] to extend linear irrever- 
sible thermodynamics to nonlinear regimes. The theo- 
ry is known as extended irreversible thermodynamics 
(EIT) and it provides a logical f ramework in which to 
examine rheology fully subject to the thermodynamic 
principles. In EIT  constitutive equations for stress, 
heat flux and diffusion fluxes are empirically postu- 
lated subject to the second law of thermodynamics.  
Being empirical, they do not provide molecular repre- 
sentations of  various parameters appearing in them 
and the theory based on them consequently loses the 
important  connection with molecular constitutions of  
the substances examined, which is essential to under- 
standing macroscopic behavior of  the substances. Re- 
cently, one of us (BCE) has reported [7, 8] on a kinet- 
ic theory of dense polyatomic fluids as a generaliza- 
tion of the generalized Boltzmann equation for dense 
simple fluids [9]. The kinetic equation is irreversible 
under a relatively general condition and forms the sta- 
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tistical mechanical basis for irreversible thermody- 
namics. It is shown possible to derive from the kinetic 
equation various constitutive equations necessary for 
constructing a theory of extended irreversible thermo- 
dynamics for dense polyatomic fluids. In this paper 
those constitutive equations are applied to polymeric 
liquids, and some formal relations are obtained for 
collision bracket integrals appearing in them to lay 
foundations for statistical mechanical studies of rhe- 
ology of polymers. We remark that the kinetic equa- 
tion referred to in this paper is not a Kirkwood diffu- 
sion equation for polymers [10], which is often re- 
ferred to as a kinetic equation in theology of polymer- 
ic fluids. The latter equation contains phenomenolog- 
ical parameters in the form of friction coefficients. 
The kinetic equation, namely, the generalized Boltz- 
mann equation does not have such parameters. We 
have shown in a previous paper [8] that the Kirkwood 
diffusion equation is contained in the kinetic theory 
on which the present paper is based. The kinetic equa- 
tion used here is qualitatively different from the Liou- 
ville equation employed in the phase space kinetic the- 
ory of Bird et al. [1]. An important difference is that 
the generalized Boltzmann equation is irreversible 
since it breaks the time reversal invariance, whereas 
the Liouville equation does not. Another important 
difference is in the dissipation term [see (18) and (22) 
below] in the constitutive equations which the phase 
space kinetic theory does not have since the Liouville 
equation does not have a collision term that accounts 
for collisional dissipation of energy. These differences 
are crucial points of departure in the phase space ki- 
netic theory and the present kinetic theory that deter- 
mine whether the thermodynamic laws may be incor- 
porated into the theory of rheology or not, and 
whether the differential constitutive equations exist or 
not in a way consistent with the thermodynamic laws. 

On the basis of the assumption that the momentum 
relaxation is much faster than the configuration relax- 
ation, it is possible to show that the collision bracket 
integrals appearing in the constitutive equation can be 
expressed in terms of friction tensors of beads, 
equilibrium force-force correlation functions, and the 
ratio of momentum and configuration relaxation 
times. The collision bracket integrals so calculated are 
second-rank tensors which will be called material ten- 
sors and contract with the stress tensors of various 
species in the polymeric liquids. Since the material 
tensors are not isotropic in general, the constitutive 
equation is generally anisotropic. To test the utility of 
the constitutive equation calculated, it will then be 
made semiempirical and applied to study strain rate 
dependences of elongation and shearing phenomena 

in polymeric fluids. In fact, it will be shown that 
elongation viscosity, shear viscosity, and normal 
stress coefficients can collectively and in mutually 
consistent fashion determine the constitutive equation 
for stress for a given material. We analyze the shear 
rate dependence of viscosity, primary normal stress 
coefficient and unidirectional elongation viscosity for 
some polymer melts and obtain excellent agreement 
with experiment. 

This paper is organized as follows: In Section 2 ex- 
tended irreversible thermodynamics and generalized 
hydrodynamics are briefly reviewed in order to pre- 
sent the gist of the ideas and the essential equations 
involved in the subjects. Then, stress and diffusion 
flux evolution equations, namely, the constitutive 
equations for stress and diffusion fluxes for polymers 
are presented along with the associated entropy pro- 
duction and approximate solutions to the consistency 
conditions. In Section 4 the collision bracket integrals 
appearing in the stress and diffusion flux evolution 
equations are cast into forms that include more readi- 
ly recognizable quantities such as friction tensors, etc. 
The end result of the calculations made in this section 
is a stress evolution equation containing friction ten- 
sots and a quantity closely related to the mean square 
radius of gyration, both of which may be treated as 
empirical parameters. If they are treated as such, then 
the stress evolution equation (i.e., the constitutive 
equation for stress) becomes semiempirical. The 
reader who is not interested in the statistical mechani- 
cal foundations of the stress evolution equation may 
skip Section 4 and proceed to Section 5 where a semi- 
empirical treatment is given of the stress evolution 
equation developed in Section 4. The semiempirical 
constitutive equation is applied to plane Couette flow 
and elongation flow and comparison is made with ex- 
periment in Section 5. In Section 6 formal comparison 
is made between the present constitutive equation and 
other ones existing in the literature, and concluding 
remarks are made. 

2. Extended irreversible thermodynamics 
and generalized hydrodynamics 

Linear irreversible thermodynamics [11] is founded 
on the pair of assumptions that the local equilibrium 
formula for entropy change remains valid - the local 
equilibrium hypothesis - and linear thermodynamic 
force-f lux relations hold for constitutive equations 
together with the Onsager reciprocal relations for 
phenomenological coefficients in the constitutive 
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equations. At the level of hydrodynamics, linear ir- 
reversible thermodynamics gives rise to classical 
hydrodynamic equations: Navier-Stokes, Fourier and 
diffusion equations together with the equation of con- 
tinuity. Therefore, it is correct to say that classical 
hydrodynamics is implied by linear irreversible ther- 
modynamics, and inasmuch as the latter is a theory 
holding near equilibrium as is well recognized, 
classical hydrodynamics may be regarded as a theory 
dealing with flow phenomena near equilibrium. The 
distance of the state of a system from equilibrium 
may be characterized by the magnitude of ther- 
modynamic forces which drive nonequilibrium pro- 
cesses, and when that magnitude is sufficiently large 
the system may be said to be far from equilibrium. 
We will generically call a system removed far  f rom 
equilibrium when the constitutive equations for 
stresses, heat flux, and diffusion fluxes (simply, 
fluxes) are required to be nonlinear with respect to the 
thermodynamic forces driving them. Unlike the linear 
thermodynamic force-f lux relations well known in 
linear irreversible thermodynamics, the constitutive 
equations in such a situation can in general be dif- 
ferential equations rather than algebraic equations 
and, furthermore, nonlinear. Such constitutive equa- 
tions, as we will see, give rise to hydrodynamic equa- 
tions which extend the classical hydrodynamic equa- 
tions, and we will call hydrodynamics described by 
the generalized form of equations generalized 
hydrodynamics. Extended irreversible thermodynam- 
ics is an outcome of the desire that the constitutive 
equations for fluxes and any other macroscopic ob- 
servables conform to the thermodynamic laws. There 
are different versions of EIT, the majority of which 
is usually phrased in the framework of linear theory, 
but a nonlinear version [12] is essential if EIT is to be 
useful for understanding natural phenomena occur- 
ring far from equilibrium, since the constitutive equa- 
tions must be, by necessity, nonlinear for such phe- 
nomena. 

The local equilibrium hypothesis of linear irreversi- 
ble thermodynamics assumes that the local entropy 
density 5: of a fluid is a function of conserved vari- 
ables such as the internal energy density g, mass densi- 
ty ~ or specific volume v, and concentrations or mass 
fractions c a, a = 1,2 . . . . .  r. The set ( ~  g, v, ca: a = 
1,2 . . . .  , r) is called the equilibrium Gibbs space. In 
EIT this equilibrium Gibbs space is extended to in- 
clude stress tensors P,, heat fluxes Qa, mass fluxes 
Ja, and other macroscopic variables appropriate and 
necessary for description of macroscopic phenomena 
of interest. These additional nonconserved variables 
will be denoted ¢~),  a =  1,2 . . . . .  r, a = 1,2 . . . . .  l, 

and the extended set ( ~  ~, v, ca, q~(~): a = 1,2 . . . .  ,r; 
a = 1,2 . . . . .  l) will be called nonequilibrium Gibbs 
space or, simply, Gibbs space. Then, the entropy den- 
sity ,w obeys the differential form [6, 12] 

TdSe= d g + p d v -  ~ fiadca 
a = l  

l 

X a @ d e  a , (1) 
a = l a = l  

where T is the temperature, p is the pressure, ga is the 
chemical potential per unit mass of species a, and 
¢ ~ ) =  ~(a)/Q. Since ~(a) and X(a ~) can be scalars, 
vectors or tensors, the symbol Q means taking an ap- 
propriate scalar product of the vectors or tensors in- 
volved. In the phenomenological theory the quantities 
T -1, p, g~, and X(~ a) must be determined by con- 
stitutive relations, such as the caloric equation o f  
state, equation of state, etc., which characterize the 
material of interest. Here the differentials are inter- 
preted as substantial derivatives in the frame moving 
at the fluid velocity u. Then, the evolution of 5: is de- 
scribed through the Gibbs equation, whose time vari- 
ation is determined by the balance equations for con- 
served variables and the constitutive equations for 
non-conserved variables. They are: 

dv 06 
9 - - = V . u  or - - = - V . Q u  ( v = l / Q ) ,  (2) 

dt St 

d 
O ~ c a = - V ' J a ,  (l<a_<r) , (3) 

du 
Q - - =  - V . P  , (4) 

dt 

d g  
6 - - =  - V . Q - P : V u  , (5) 

dt 

d ~(aa ) = Z(a~)+A~ ) 
e-g t 

(l <_a<_r,l <_a<_l) , 

(6) 

where 

P= ~ P~, (7a) 
a = l  

Q = ~ Qa, (7b) 
a = l  
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~(d): 
= [pa] (2) 

= traceless symmetric part of Pa , (8 a) 

~) = A ~- ~-Tr P a - P a  

= excess trace part of P~ , (Sb) 

t 

= Q a - h a J a  = net heat flux , (8c) 

rb(~4)= Ja , etc. 

= diffusion (mass) flux . (8 d) 

Here P~ is the stress tensor of  species a, Q~ its heat 
flux, p~ the partial pressure of species a and /~ the 
enthalpy of species a per unit mass. The terms Z(~ a) 
are defined in Table 1 for 1 _< a_< 4, and the terms 
A(~ ~), which are called the dissipative terms, should 
be determined such that the entropy production in the 
system is always positive in conformation with the 
second law of  thermodynamics. The entropy produc- 
tion is given by the formula [6, 9, 12] 

a =  T -~ E X~)<gA(a a) , (9) 
a=l a=l 

on which the local form of  the second law of  ther- 
modynamics demands that 

1 

S x(~°)GA(~°)~o, (lO) 
a = l  a = l  

Table l. Z~ a)# 

a = l  

a = 2  

a = 3  

a = 4  

d 1 (2) _ 2 [P~" Vu ](2) q_ [ V(a2)] (2) - V" q/(~0- 2 [Ja tu j  

2 . 2 . -V'~(~2)-TJ~ dtu - ~ P , .  Vu  + ~- V~2) : U 

- 7"qJ ~,(3) - J,~dtl~a- d t u ' (  Pa - pa U) 

- Q;. V u -  ~o~: Vu + G ~)- G ' V <  

- V . P + c a V . p - J a .  Vu+ V (4) 

# The notation is the same as in [8], to which the defini- 
tions of the symbols are referred. In the modified moment 
method on which the present theory is based, the higher 
moments q/(fl) and ~0(o a) are neglected when only the first 13 
moments plus diffusion fluxes are taken into consideration. 
Note that d t =-- d /d t .  

the equality holding only when X(~ a) = 0 for all a and 
a. The dissipative terms A ~) are generally nonlinear 
functions of X(~ a) or, ultimately, of  variables 
( v , T , % ~ ( ~ ) ) .  Thus, the condition (10) imposes a 
restriction on possible choice for the dissipative terms 
A(a a), and this restriction means that the flux evolu- 
tion equations (or the constitutive equations) (6) can- 
not be arbitrary, but must conform to condition (10) 
if the flux evolution is to be consistent with the second 
law of  thermodynamics. It can be also shown that the 
entropy flux J~ is given by the formula [6, 9, 12] 

Js= ~ ( O a - f i a J a ) / T + J s n  , (11) 
a = l  

where the nonclassical part Jsn of the entropy flux is 
defined by the equation [6] 

r l 

v.~s.+ r -~ E 2 Iz~(~) oxo(~) 
a = l  a = l  

+ qs(a)@ ~,(a)] = 0 (12) G A , a  " 

In (12) the thermodynamic forces Z~ ) are defined as 
follows: 

• ( 1 )  = _ [ V U ] ( 2 )  , ( 1 3 a )  

Z(a 2) = - V ' u  , (13b) 

Z(~ 3) : - V l n  T ,  (13c) 

x ~  ) : - V r &  + v ~ V p  , (13 d) 

where the subscript T to V means keeping T fixed and 
v a = l / o ~ .  Equations ( 1 3 a - d )  define the ther- 
modynamic force for shear, dilatation, heat conduc- 
tion and diffusion, respectively. The nonclassical en- 
tropy flux Jsn defined in (12) should vanish in the 
case of linear irreversible processes, since in that case 

~ Z a  = 0 . (14) 

and there cannot be a nonclassical current possible 
near equilibrium. The reason for this is that Z(~ ~) is 
proportional to y(~ ~) while X(~ ~) is proportional to 
-q~(a a) such that (14) holds. In the theological con- 
text, such a situation arises in the case of  the Maxwell 
fluid [13] if X(a 1) is taken as 

x(al) = - q~(al)/2pa . (15) 
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The set of evolution equations for thermodynamic 
state of a system in the Gibbs space is complete if the 
evolution equation for entropy density is added to the 
set (2)-(6).  Such an equation is obtained by 
substituting (2), (3), (5), and (6) into the extended 
Gibbs relation (1) and using the definitions of entropy 
production (9) and entropy flux (11) and (12): 

d 
0 - - 5  ~= - V ' J s + a  , (16) 

dt  

which is simply the entropy balance equation. When 
the set of evolution Eqs. (2)-(6) is appended with 
various constitutive relations such as the caloric equa- 
tion of state for T -1 or specific heat (Cv),  the equa- 
tion of state for p, and the equations for/~a and X ( f ) :  

Cv = Cv (g , v ,  c a , ¢ ( f  )) = C o ( T , v ,  c a , ¢ ( f  )) , OVa) 

c ~(a)~ (17b) P = P ( G , v ,  c a , ¢ ( f ) ) = P ( T ,  v, a, a , , 

fia = fia(W, v, Ca, c~ (a)) = f ia(T,  v, c a, ¢(a a)) , 
(17c) 

x ( : )  = v, ca, = v ,  ca,  

(17d) 

the formal mathematical structure of generalized 
hydrodynamics is complete and a fluid dynamic for- 
malism thus is in place for systems where nonlinear 
processes occur removed far from equilibrium. 

The formalism constructed up to this point is 
phenomenological since there is no reference to the 
molecular constitution of matter and statistical 
mechanical theory for the evolution Eqs. (2) - (6) and 
(16) and constitutive relations (17 a -  d) which contain 
material parameters. These equations can be given 
statistical mechanical foundations [8, 9] by means of 
the generalized Boltzmann equation for dense fluids, 
monatomic or polyatomic. 

3. Evolution equations for stress and diffusion 
fluxes of polymers 

The balance Eqs. (2)-(5)  for conserved variables 
and the constitutive Eqs. (6) for nonconserved vari- 
ables have been derived in a general setting from the 
generalized Boltzmann equation for dense polyatomic 
fluids in [8]. Here we shall take only the stress and dif- 
fusion flux evolution equations and cast them into ap- 
propriate forms necessary for studying rheology of 

polymeric liquids. This truncation of the Gibbs space 
is permissible under the assumptions that the fluid is 
incompressible and the temperature is maintained 
uniform so that there is no heat conduction. This sec- 
ond assumption is often too restrictive and sometimes 
unrealistic since there can be considerable viscous 
heating arising from flow of the substance, but it is 
taken to make analysis simpler than otherwise. There 
is, however, no problem to remove these assumptions 
and carry out a more general investigation. 

The polymers will be assumed to be monodisperse, 
but the polydispersity can be taken into account quite 
easily in the present formalism by simply increasing 
the number of independent species, since the for- 
malism is already for a mixture. 

3.1 Pre l iminary  

Before presenting the evolution equations, it is 
useful to define the notation used below. We will 
reserve italic lower case letters a, b, e, etc., for species, 
subscripts i , j , k ,  etc., for molecules of a species, and 
subscripts q , r , s , t ,  etc., for monomers in a species 
which are treated as if they are a single atom or a 
group. Thus, the set ( a i q )  stands for the qth 
monomer in the ith molecule (polymer) of species a. 
With this code for subscripts, we define the following: 

ra iq ;bk  s = rai  q -- r b k  s 

= relative distance between (a iq )  and ( b k s )  , 

I;ai q = draiq/dt  = velocity of (a iq)  , 

Vaiq; b ks 

= potential energy between (a iq )  and ( b k s )  , 

Faiq; b k s = -- ( O Vaiq; b ks /Oraiq;  b ks ) 

= force between (a iq )  and ( b k s )  , 

- 1  2 
F(2i)q; bks = -- (r aiq; bksO/Oraiq; bks) Vaiq; bks , 

cgaiq = ~'aiq--U = peculiar velocity of (a iq )  , 

h(O) = ~aiq ~aiq] (2) a~q m a q [  

+ -  ~ ~ [Faiq;bksraiq;bks] (2) , 
2 b ~ 1 k~b s~k 

(a iqCbks)  

h(4)  Taiq , atq -~ maq 

where maq is the mass of the qth monomer and [A ](2) 
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denotes the traceless symmetric part of  second rank 
tensor A: 

[A] (2) = -~(Q+A t ) - ~ - U T r A  , ( U =  unit tensor) . 

In what follows, we use the angular brackets O to 
denote integration over the phase space volume, 
F(N)(t) for the distribution function obeying the 
generalized Boltzmann equation and F(~ N) the equi- 
librium distribution function. 

3.2 Evolution (constitutive) equations and entropy 
production 

Since the fluid is assumed to be incompressible and 
non-heat-conducting, it is not necessary to consider 
the heat flux and the excess trace part A a of  the stress 
tensor, but only the traceless symmetric part H a =  
[Pa] (z) and the diffusion fluxes; see (8 a) and (8b) for 
the definitions of  the symbols. The reader is referred 
to [8] for statistical mechanical definitions of  various 
macroscopic variables appearing in (2) - (6). The sta- 
tistical-mechanically derived evolution equations for 
ffI~ = Ha/o and Ja are as follows: 

d 
o~ ~ H a = - 2 [./adtu] (2) - 2 [Pa "Vu] (2) 

+ [ (2) + A (2) , 

d ^  
O--~t 4 = - V . ( P a - c , p ) - P . V c a - J a .  Vu 

(4) (4) + V a +Aa , 

(18) 

(19) 

where 

d t u  = du/dt  , 

Ja = J . / ~  , 

V(2)= 2 E 2 2 [{Faiq;bksi;aiq;bks} 
iea qei b= 1 k~b sEk 

(aiq.Cbks) 

+ F(2)q; bksi;aiq; bks "raiq; bksraiq; bksraiq; bks] 

X • (rai q -- r )F  (N) (t)> , (20) 

I~  N~ r Nb 
V(4)= E 2 E 2 E Faiq;bks 

iea q~i b = l  keb s~k 
(aiq-~bks) 

× [~ (rai q -- r )  + 6~ (rbi q -- r)] F (N) (t)~ , (21 ) 
/ 

and to the first cumulant approximation and under 
the assumptions stated earlier in this section the 
dissipation terms are given by the formula 

A(a)=(gf l )  -I ~ [R(aaca)@X(a)qe(X ) . (22) 
C=] 

This is a highly nonlinear function of  fluxes which 
will be found essential for appropriate description of 
experimental data; see Section 5 below. The curly 
brackets {} in (20) mean symmetrizing the dyadic prod- 
uct, and other symbols are defined by the formulas 

g = (mr/2k s T)l/2/(n d) 2 , (23 a) 

fl = 1/kB T ,  (23 b) 

where mr denotes a mean reduced mass suitably 
defined, k B the Boltzmann constant, n the number 
density and d a mean size parameter for the mixture 
(e.g., the length of a monomer),  

qe (X) = sinh K/~c , (24 a) 

(aa) (a) K(x)= ~ x(£)@Rac @ X c  , 
a ~c=1 a (24b) 

and finally 

N~ N~ 

j~a qej kec sek 
(ajq ~ c ks) 

;T(N) *,(a) v(N) \ (24 b) X t l  ncks*'eq I • 

This is the collision bracket integral which contains 
the molecular information on the substance in ques- 
tion and gives the transport coefficient in terms of  
molecular parameters. In (25) i = V -  1 and T (N) is 
the N particle collision operator obeying the classical 
Lippmann-Schwinger equation [14-17]  described 
below. It must be noted that the constitutive Eqs. (18) 
and (19) are in a fixed reference frame, but they can 
be put into the corotating frame of  reference form if 
the method reported in a previous paper [18] on the 
subject is applied. One can also use the rules for- 
mulated there [18] to convert a fixed frame of  
reference form to the corotating form. It is important 
to note that we have neglected as a way of  closure the 
terms involving moments of  higher order than those 
corresponding to the first 13 moments in the con- 
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stitutive equations. One may approximate X(a a) such 
that 

X(~ 1) = - H a / 2  p~ , (26a) 

X ~  ) = - ga/ga , (26 b) 

which result when the consistency condition [8] is 
solved to the lowest order approximation. In this ap- 
proximation, •(X) becomes a quadratic function of  
H a and Ya and its square is simply proportional to the 
Rayleigh-Onsager dissipation function. In this con- 
nection it is worthwhile to note that the entropy pro- 
duction corresponding to the form A ~  ) as in (22) is 
[91 

a = kBg  - 1K sinh tc , (27) 

which becomes the linear irreversible thermodynamic 
form - the Rayleigh-Onsager dissipation function if 
the hyperbolic function is approximated with ~¢ to the 
lowest order. Note that J¢ is small near equilibrium 
where the fluxes are small in magnitude. We remark 
that o- is always positive as required by the second law 
of thermodynamics. 

The material properties of a substance manifest 
themselves in the collision bracket integrals ~(aa) 
which in the context of the present paper are related 
to shear viscosity and diffusion coefficients. 
Therefore, treating them as empirical parameters, we 
can make the theory semiempirical. This line of  ap- 
proach will be taken in Section 5. As a matter of  fact, 
putting the kinetic-theory-based constitutive equa- 
tions into forms that can be readily made semiem- 
pirical is one of the major  goals in this paper since 
that way the constitutive equations can eventually 
bridge experimental data to molecular pictures 
through the kinetic theory underlying them, namely, 
the constitutive equations. 

To see the significance of the constitutive Eqs. (18) 
and (19) and the meanings of the collision bracket in- 
tegrals in (22), let us linearize (18) and (19) with 
respect to fluxes with X(c a) defined by (26a, b) and 
take their steady state forms. Then we get the linear 
equations 

r 

R(a~c~):Hc/2P~= - 2 g f l p a [ V u l  (2) , (l_<a_<r),  
c = 1 (28 a) 

"\ac(44)'°c--~c - g f l c a p V l n c  a , ( l < a _ r )  , 
c = 1 (28 b) 

which are seen to be in the same forms as for linear 
constitutive relations in linear theory of transport 
processes. Therefore, the inverse of r~ (aa) is related " "  a C  

to the linear transport coefficient for process a,  
namely, shear viscosity and diffusion coefficients. In 
the next section we recast the constitutive Eq. (18) in- 
to a form that can be readily used semiempirically by 
assuming some parameters such as friction tensors, 
etc., as empirical parameters. The reader not in- 
terested in the statistical mechanical foundations of 
such a semiempirical constitutive equation may pass 
over Section 4 and proceed directly to Section 5 where 
a semiempirical treatment is given of the constitutive 
equation recast in a self-contained manner. 

4. Collision bracket integrals 

The collision bracket integrals can be calculated by 
means of a cluster expansion [19] in which the N par- 
ticle collision operator is expanded into a density 
series whose coefficients are made up with irreducible 
cluster collision operators of two, three particles, etc. 
Such an expansion yields transport coefficients in a 
density series similar to the virial expansion for 
pressure, but is not most suitable for dense polymeric 
liquids, except for dilute solutions. Here, we will ex- 
plore another approach which we believe is more 
suitable for dense polymeric liquids. 

To cast the evolution equations into more suitable 
forms and also to see their connection to the more 
conventional equations based on the Brownian mo- 
tion model in rheology of polymers, we would like to 
examine the collision bracket integrals and cast them 
in terms of  friction tensors that appear in the Brow- 
nian motion model [1, 20]. To begin with, let us recall 
that T (N) obeys the Lippmann-Schwinger equation 
[14 -  171 

T (N) (z)  = ~ (IN)_ ~.~ (IN) ~ o ( Z )  T(N)(z)  , (29a) 

where 50 ~N) is the interaction Liouville operator of  
the system, and 

N0(Z) = (Lf(0N)-Z) -1 , (Z= ie, e > 0 )  (29b) 

is the resolvent operator for N free particles. Here 
(o N) is the free Liouville operator of  the system con- 

sisting of N =  ~ c=r 1 N  c molecules where Nc is the 
number of molecules of  species c. The integral 
Eq. (29 a) for T (N) can be recast into the equivalent 
form 
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r(U)(z) = 4e {N)_ 4e {N) ~(z )  ~ {N) , (30) 

where N(z) is the full resolvent operator for the 
system defined by 

~(Z) = (50 (N)_z)-1 , (31) 

with S((N) = ~ (O N) + ~ ~N) denoting the full Liouville 
operator for the system. The equivalence of (29a) and 
(30) is well known in scattering theory [21]. Now, 
recalling that 5a~ N) is a differential operator of 
momentum and observing that the operation of ~ (~) 
gives rise to an odd function of momenta in the colli- 
sion integral (25) and thus yields a vanishing contribu- 
tion, we obtain 

N~ 
[R(aa) - i f l 2 g  ~ 2 2 ~ (a) ae = (h  ajq (~ (rajq - r ) 

jea qej k~c setc 
(ajq*eks)  

cp (N) ~ (a) F(N)\ (32) x 5# ~N) ~ ( z )  ~ .  ~ ,,~k~ ~ q ,  • 

This collision bracket integral will be recast into more 
suitable forms for studying the evolution of diffusion 
fluxes and stress. 

4.1 Collision bracket integrals f o r  diffusion f l u x  
evolution 

Since the interaction Liouville operator is given by 
the formula 

S ~ u) i i Na 
= 2 2  

a = I j~a q~j 
(0 V/Orajq)" (O/OPajq)  , (33) 

by performing integration by parts, we obtain from 
(32) in the case of a = 4 (i.e., diffusion) 

N~ N~ 
R(2 )= -iB g E E E E <a(r jq-r)F jq 

jea q~j kec sek 
(ajq #: c ks ) 

where 

x ~ (z)Fc~sF~Nq)) , 

r N~ 

F a i q =  2 2 2 Faiq;bjs ' 
b = 1 j~b s~j 

(aiq q: bjs) 

(34) 

(35) 

namely, the force on q E i of species a. The resolvent 
operator may be written as 

- i ~ (z) = ~ dt exp [ - i t (  5 ~(N) - z)] . (36) 
o 

Since the evolution operator e x p ( - i t 5  dN)) prop- 
agates the phases of the operand to those of time t, 
the collision bracket integral in (34) can be written in 
a more insightful form as follows: 

"'ac@(44)=f12g 2 2 2 ~ d t ( F a j q F c e s ( t ) ) e q  
j~a qej kec sek 0 

(ajq 4: cks) 

(37) 

where 

( ' "  "}eq = v - 1  ~ d x ( N ) ' '  " F(eUq ) • (38) 

Note that we have approximated the delta function in 
the long wavelength limit by the formula 

5(r)  = V -1 [1 + 0(V-1/3)1 (39) 

since the delta function is coarse-grained. In the form 
of (37) the collision bracket integral ~ (44) is seen to be " "  ~ /C  

related to the friction tensor defined by [22, 23] 

Gc = fl ~ dt(F~Fc(t))eq , (40) 
o 

where 

N~ 
F a= ~ ~ F~i q , (41) 

iea q6i 

and similarly for Fc. Thus we find [24] 

~(44) = t~g~ac (42) 
aC 

A completely molecular theory would require evalua- 
tion of friction tensors Gc in (40) by some statistical 
mechanical methods. Since the diffusion flux Ja can 
be written as 

4 = e . ( u . -  u )  , (43) 

where u a is the mean velocity of species a, the evolu- 
tion equation of the diffusion flux (19) can be written 
in the form 

d 
Q~ - -  (Ua - u)  = - V" ((Pa - caP) -- O~(Ua -- U )" VU 

at  

+ v .  [oa (ua - u )  (u .  - u) ]  - Ha .  Vca 
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-PVCa+ V (4)- ~ Cac'(Uc-U)qe , 
c = i (44) 

for which we have used the approximation (26b) for 
X(44) The first four underlined terms on the a " 

righthand side of  (44) are nonlinear contributions 
arising from hydrodynamic interactions of  species a 
when its surroundings flow at velocity u, subject to 

stress H applied. (Note that H = ~ IIc.) Equation 
c = l  

(44) is a macroscopic equation of motion for species 
a and, apart from the terms related to  the 
hydrodynamic interactions (i.e., those underlined by 
the broken line), is rather intimately related to the 
Brownian motion model in the existing theories of 
polymer solutions. To see this connection, let us put 
qe = 1, which holds near equilibrium where the fluxes 
are small in magnitude. If we, moreover, ignore the 
underlined terms in (44), then 

d e -g(ua-u) =-pVca+V  4>- 2  oc'(uc-u). 
c = ~ (45) 

We may treat u, p,  0a and ~ac as phenomenological 
parameters. The lefthand side of  this equation is the 
inertia term in the frame of  reference moving at 
velocity u, the first term on the righthand side, which 
may be written as 

- p V c .  = - caPV in c a = - p a y  In c a , (46) 

the diffusion term arising from the Brownian motion 
of  species a; the second term is the force on species a 
(see (21) for the definition of V(a4)), and the third 
term is the friction term. Equation (45) is thus com- 
parable, almost one to one, to the equation of motion 
(Langevin equation) for a polymer bead in the well 
known Brownian motion model [1, 20] 

mqfq = - C q ( l ; q  - U q )  - k B T 0--~- In ~ +  Fq , 

Drq 
(47) 

where mq is the mass, Uq is the fluid velocity at the 
location of the q th  bead, Fq is the force on the bead, 

is the configuration distribution function, and (q is 
the bead friction constant. The Langevin Eq. (47) is a 
molecular equation of motion, and a postulate, which 
contains macroscopic, phenomenological parameters 
such as the friction constant and the fluid velocity, 
and these parameters are not determined within the 
f ramework  o f  the theory o f  Brownian motion. The 

Langevin equation is easier to comprehend for par- 
ticles of a macroscopic size such as colloidal particles 
or pollens, but the applicability to molecules of  the 
notion of  macroscopic friction, the Einstein relation 
and the Stokes-Einstein relation is open to question, 
as often discussed in the literature [25]. Such a ques- 
tion would not arise in the case of (45) or (44) since 
these are macroscopic equations for the mean velocity 
of  a molecule: Eq. (45) says that the mean motion o f  
a molecule obeys approximately a Langevin equation. 
We consider this difference between two Langevin 
Eqs. (45) and (47) as being significant. 

The Einstein relation between the diffusion and 
friction terms is implied by (45) since it gives rise to 
a set of linear thermodynamic force-flux relations 
when 

d 
Oa --;7 (ua - u) ~ V(a 4) , (48) 

dt 

which means 

• ~ a c ' ( U c - U ) = - p V c  a , ( l _ a _ < r ) .  (49) 
C = I  

This relation defines the diffusion tensor which may 
be given in terms of the friction tensor as follows: 

D = k ,  T~ - 1 , (50) 

where 

= (51 )  

This relation establishes the Einstein relation between 
diffusion and friction tensors for polymeric fluids or 
polyatomic fluids in general and thereby makes it 
possible to connect the constitutive equation for stress 
in the present kinetic theory to the one in the Brown- 
ian motion model, as we will show later. The Einstein 
relation (50) was shown to hold for dense simple 
fluids in [24]. 

4.2 Coil&ion bracket integrals f o r  stress evolution 

The method used in Sect. 4.1 can be applied to 
calculate the collision bracket integrals for stress 
evolution. If a = 1 is taken in the general formula for 
~(aa) in (33) (i.e., for the traceless symmetric part of a ¢  

the stress) and integration by parts is performed, the 
stress counterpart of ~(44) is obtained: ~ a C  
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~(51)= (4flZg/V) ~ ~ ~ ~ dt 
i~a q6i kec s~k 0 

(aiq ~ cks) 

×([ ~iqFaiq](2)[ ~k~(t)F~ks(t)](2)F(~)). (52) 

To make further progress, we recast the integrand in 
(52) as follows: 

[ ~F](k2/[ T(t)F(t)]~)~ =- [ ~F]~Z] [ ~tFt](2 m) 

~ m F l F n  + ~ ~ m F k F n  

q - ~ k  t t t t ~'nFlFm + % ~nFkFm) 

(~mFpFn q- ~p ~nFpgrn)(~kl  

--~( ~ TtpFzFtp + ~ TtpFkFtp)Omn 

t t t + ~_ C(p ~ qFpFq(~kl(~mn , (53) 

where the Einstein summation convention is used for 
repeated indices standing for the cartesian com- 
ponents of  the vectors and cgt= T(t) ,  etc. There- 
fore, (53) indicates that the collision bracket integral 
~(~) consists of  momentum and force correlations. a c  

The force correlations are intimately related to the 
configuration distribution of  the system, and the con- 
figuration relaxes to its equilibrium form at a charac- 
teristic rate. If the fluid is dilute the configuration 
relaxation time should be comparable to the momen- 
tum relaxation time since both momentum and con- 
figuration equilibrium will be achieved by comparable 
numbers of  collisions for a dilute fluid. In other 
words, the configuration relaxation is as facile as the 
momentum relaxation in the case of  gases. However, 
if the fluid is dense (i.e., a liquid), the momentum 
relaxation will be much faster than the configuration 
relaxation. Therefore, the density of the fluid deter- 
mines the mode of evaluation used for the time cor- 
relation functions appearing in (52). 

Let us now observe that the equilibrium distribu- 
tion function F~ ul is factorizable into the momentum 
and configuration distribution function 

F (N) = F(mU)( ~)F~ N) (r) (54) eq 

and the momentum and configuration correlation 
function can be calculated separately with the cor- 
responding distribution function. Thus, we define 

( ~ Tt m )=  ( ~ Tm(t )) = ~ dp (N) T k Tm(t)F~)(T)  , 
(55) 

(FI Ft  ) =- (Ft F, ( t ) ) = V -1 ~ dr (N) Ft F, ( t ) F~N) ( r ) . 
(56) 

Therefore, when taken average, (53) becomes 

([ ~F]}:2~[ ~(t)F(t)](Zm)nF~ u)) 

= ¼ [( ~ qY(t))km (FF(t))l~ + ( ~ T(t))t~ (FF(t))k~ 

+ ( qY fg(t))k~ (FF(t))tm + ( g' cg(t))zn (FF(t))km ] 

_ 61_ [( cy ~'(t))pm (rr(t))p,  

+ ( ~ ~(t))pn (FF(t))nm ] C~k l 

-- ~ [( ~ cg(t))kp(FF(t))tp 

+ ( ~7 qY(t))zp(FF(t))kp] 8mn 

+ ~-( ~ ~(t))pq(FF(t))pqCYklOmn . (57)  

Let us assume that the momentum correlation func- 
tion relaxes with relaxation time ra: 

( ~iq ~ks(t)) = exp ( - t/Ta)( Taiq Tcc#~) 

_ 1 exp ( -  t/ra)( (ffaiq" ~aiq)UOacOikOqs - - T  

= (k B T/maq) exp ( -  t/ra) UOacOikC~qs • 
(58) 

By applying (58) to (57), we obtain the collision 
bracket integral R(~ 1) in the following form: 

~(~lcl):X~)= 4f12g ~ ~ maq 1 dtexp  ( - t / z a )  
iea qei 0 

× {[(,raiqFaiq(t)] (2)) "XO)]  (2) 

+ ~-(Faiq'Faiq(t))X(1)}Oac . (59)  

I f  we further assume that there exists a configuration 
relaxation time rf  such that 

(FaiqFaiq(t)) = exp ( - t/~cf) Gaiq , (60a) 

Gai q ~ (FaiqFai q) , (60b) 

where CTai q is an equilibrium force correlation func- 
tion, then from (59) follows the formula 
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N()~I):X~I) = 4f12g ~ ~ maq 1 (Za----~rY~ 
i~a q~i \ T  a 4- 7@/ 

x {[ G a iq ] (2)" X(a 1)] (2) 

+ ~-X(~ 1) Tr Gaiq}fiac . (61) 

Let us now define friction tensors in analogy to (40) 
as follows: 

OO 

~aiq = t ~ I dt (FaiqFai q ( t ))  , (62) 
o 

and evaluate them under the assumption (60). We 
then obtain 

Ca iq = t ~ Ga iq Tf . (63) 

As mentioned before, as the density increases, the 
configuration relaxation gets increasingly slower than 
the momentum correlation which relaxes faster with 
increasing density since the collisions become more 
frequent between the molecules, and hence, the force 
correlation function is expected to relax much more 
slowly compared with the momentum correlation 
function. That  is, as the density increases, the force 
correlation function relaxation time zf becomes much 
larger than the momentum correlation function relax- 
ation time %. Their density dependence therefore 
may be written as 

0 z a = r .  exp ( - ~ n )  , 

rf  : r} exp (v n) , 

0 where r a and r~ are the low density relaxation times 
and ~ and v are constant parameters. Here, we will 
take ~ = v as a model. Since % and ) are comparable 
at low densities, we may also take r~=  z} ~ z m. Then 
we find in the density regime of liquids 

zaV 
= r ,  = r 2 m / V  • 

r a + r f  

Since from (63) 

1/72f = fl~a-il: Gai q , 

we finally obtain from (61) the formula 

N(11):X~ 1) 4gfl 3z2 E E -1 -1 ac = (maq ~aiq: Gaiq) 
lea qEi 

gO) Tr Gaiq}(~ac. X {[[Gaiq] (2)" X(I)] (2) + T" -a  
(64) 

If  rf is calculated from (63) by taking trace, then 
there holds the relation 

~(31): X~ 1) = 4gfl 3 r2m E E (Tr Gaiq/maq Tr Caiq) 
i~a q~i 

X[[[Gtt atqJ' 1(2) "X(1)I(2) - I - a  J ~-1X(1)a Tr Gaiq}f~ac. 

(65) 

Either one of (64) and (65) is acceptable for our pur- 
pose, but we will use (64). To see the physical 
significance of Gaiq, let us assume that the polymer is 
a Hookean chain. Then Fai q is seen to be propor- 
tional to the distance between neighboring beads and 
therefore Gaiq is related to the mean square radius o f  
gyration. For this, we calculate Faiq more explicitly. 
According to the definition of Faiq (35), in the 
Hookean chain model 

Faiq = 2 Haraiq;ais + F'aiq , (66) 
s~i 

(s ~ q) 

where H a is the spring constant and F'ai q denotes the 
force due to other polymers and the solvent if the 
system is a solution: 

Fai  q = ~ Nb 
' 2 2 Faiq;bjs • 

b= 1 j~b s~j  
O.i) 

(67) 

Clearly, the Hookean term (i.e., the first term) on the 
righthand side of  (66), when substituted into Gaiq, 
would give rise to the equilibrium mean square radius 
of  gyration. This clearly means that the viscosity is in- 
timately related to the mean square radius of  gyration 
or the end-to-end distance. 

Returning to (64), we observe that, since the 
molecules of a species are identical, the subscript i 
may be dropped from the quantities in (64), and the 
sum over i may be replaced by the factor N a so as to 
write (64) in the form 
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~(2c~):X(~ ) = 4gfl3 rZ Na E (m2ql ~ql: G~q) 
q E a  

X fill'7. 1(2).~C(1)1(2)~ 1 y ( 1 )  . . . .  aq, " ' a  J -- g ~ . a  T r  Gaq}Oac 

4gf13 2 -1 - I  r m N a  ~ = ( m  aq ~aq Gaq)  
q e a  

)'( [C1aq'X(1)](2) (~ac , ( 6 8 )  

and similarly for (65). Here we have dropped the 
subscript i referring to molecule i s a from ~aiq and 
Gaiq since the sum over i is replaced with Na. The 
results obtained above for ~(~a) show that the viscosi- ~ a C  

ty is proportional to the friction tensor of beads and 
inversely proportional to approximately the square of 
the mean size of the polymer. 

We now consider the tensor V(~ 2) appearing in (18). 
This is a term that has been neglected in the previous 
semiempirical studies [261 of non-Newtonian viscosity 
on the ground that it belongs to the physically 
unmeasured set of macroscopic variables, which is 
complementary to the Gibbs variable set chosen com- 
patibly with the 13-moment method. Strictly speak- 
ing, no current experiment appears to measure such 
quantities, and the truncation scheme within the 
framework of 13 moments seems to justify the 
neglect. However, if we assume that beads are stretch- 
ed or compressed by flow of the medium under shear, 
then to an approximation it is possible to write [1, 20] 

. . 0  

raiq;bk s = l 'aiq;bks+ y 'raiq;bks , 

• o is the velocity when y 0, and where raiq;bk s = 

(69) 

~, = V u  . (70 )  

From the strict statistical mechanical viewpoint (69) is 
arguable and must be regarded as an assumption since 
it presumes that the particles are imbedded in a con- 
tinuum liquid which is sheared at shear rate ),. In a 
strictly statistical theory all the species should be put 
on an equal molecular footing. If  not, for example, 
the friction tensors appearing in (68) must be regarded 
as phenomenological quantities. The assumption (69) 
is commonly used in polymer solution theories [1, 20] 
and is not unreasonable, especially if the solvent is 
regarded as a continuum liquid and the velocity evolu- 
tion is decoupled from the constitutive equation for 
stress as will be done below. However, in the case of 
a single component polymer melt the notion of con- 
tinuum liquid for the solvent is not present, and the 
status of the assumption becomes a little murky. We 
note that the assumption is, nevertheless, used in the 

case of polymer melts as is evident from the literature; 
see [1] and [20]. On substitution of (69), V(f ) can be 
written as 

V(a 2) = 2y" Wa , (71) 

where 

wa-- 2 2 2 2 2 Ileaiq;bk, roiq;b ,l 
i~a q~i b = i k~b s~k 

(ajq c b ks ) 

+ F(2)iq; bgsraiq; bks "raiq; bksraiq; b ksraiq; bks] 

(rai q -  r )F (u) ( t))  . (72) × 5 
I 

This is the work done to stretch the molecules in the 
flow field, in excess of the equilibrium contribution. 
Note that the equilibrium velocity term at y = 0, 
therefore, does not contribute. In the isothermal con- 
dition this work must be equal to the Helmholtz work 
function, s~. Thus, we assert that 

Wa = - ~ U ,  

and therefore, 

V(2) = a - 2 s ~ y  = - 2 ~ [ V u ]  (2) (73) 

According to the extended Gibbs relation and also the 
kinetic theory underlying the present work, o~ must 
be a bilinear function of X(a 1) and ¢(1): 

4 = - X[al): ~b (a 1) (74) 

for the shear part in which we are interested here. The 
Xta 1), to the lowest order approximation, is given by 
(26a), and it would yield .~ in the form 

s~ = ~(al): ~b(al)/2pa = Ha: Ha/2pa . (75) 

This approximate form, however, is not sufficient for 
some nonlinear processes in complex liquids, and the 
solution in (26a) must be improved. Before pursuing 
this aim, we summarize the constitutive equation for 
stress Ha within the validity of (68): 

d 
~) ~ Ha = - 2 [d t u & ](2) _ 2 [Pa" Vu l (2) + 2 (X O) : Ha) 

a g  

x [Vu ] (2) + 4p 2 ff a- ~ [ ~a" X(~ 1)1 (z) qe (X) , 
(76) 
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where 

G l ~ a  2 2 2 = (fl rmNa/Pa) 2 maql(~aql:Gaq)Gaq , 
qea (77) 

~ being a suitably chosen mean value of ~aq- Equa- 
tion (77) defines the material tensor that we have 
alluded to in the Introduction. We may now treat 
these material tensors ~.21 ~ as empirical parameters 
and interpret rheological data with (76). The con- 
stitutive Eq. (76) is in a decoupled form since it is for 
species a only, whereas in the original Eq. (18) the 
stress tensors for different species are coupled. This 
decoupling is traceable to the relaxation time approx- 
imation (58) for the momentum correlation functions. 
This weakness can be removed if the collision bracket 
integrals are computed directly from (52); this is the 
price paid for a more physically transparent form for 
R(II) It must be noted that (76) is in a fixed frame of a O  " 

reference. If a corotating frame of reference is used 
and if the diffusion term is neglected to an approx- 
imation, then it takes the form 

d 
£t  Ha = - 2pa [Vu l (2) - 2 [H a" [Vu 1(2)1 (23 

- [~o,Hal + 2(X0) : Ha) [Vul (2) 

+ 4 p  ] ( a  1 [ ~ a  ~ " "~aJ(~(1)]J (2) "~le',-~ar~ ( j('(1)], , (7 8) 

where co is the vorticity tensor defined as 

e) = [Vu-  (Vu) t ] /2  , (79) 

[ o ) , r / o ]  = v ) ' r / a - / - / a ' ~  • (80) 

If the term containing the vorticity on the right 
member of (78) is transferred to the lefthand side of 
the equation, then the left member becomes the 
Jaumann derivative [18, 27] of Ha, and the con- 
stitutive equation becomes corotational. We will use 
this constitutive equation to study some aspects of 
non-Newtonian polymeric liquids by treating the ma- 
terial tensors ~ - l ~  a as phenomenological parame- 
ters. 

The X(a 1) in (78) should be determined from the 
consistency condition [8] which, in the case of shear 
alone, takes the form 

z(2):x(~)+/L:z = 0 , (81) 

where 

X ~ Z(a 1) = - [Vul (2) (82) 

Since Z(~ ~) is identified from (78) with the formula 

Z O) : 2pa z + 2 [Ha'z] (2) - [to, Hal - 20((1): Ha) X , 
(83)  

substitution into (81) yields an equation for X0): 

[2PaZ + 2 [//a'X] (2)- [e),Ila] - 2(XO): Ha) z I  : X(a 1) 

+ Ha: ) /=  0 . (84) 

We now look for X (~) in the form 

X (~) = f l I  a , (85) 

where f is a scalar function of H a. Substituting (85) 
into (84) and solving the quadratic equation for f 
resulting thereby, we obtain f as follows: 

f =  - 1/2paO (86) 

1 [ [ H a . z l ( 2 ) : H a - ~ [ e ) , H a l : H a  
~ = ~  l+  p37a: z 

2/7a://a- 1/2} 
+ 2 (87) 

Pa 

We have chosen the negative branch of the solution of 
the quadratic form. Therefore, in the asymptotic limit 
of large ItHa]] the factor ¢ is proportional to Ha 
and, thus, X(~ 1) exhibits a plateau independent of Ha, 
while X(2 ) in the limit of small II Ha lJ is linear with 
respect to 11Ha [I as in (26a). These two different 
limiting behaviors of X(a 1) suggest that the non- 
equilibrium part of the Helmholtz work function 
behaves differently at the two limits, namely, 

s¢~=Ha:Ha near ]l/-/all = 0 (88a) 

- ( / /a:Ha) 1/2 as [[Hal I--*oo (88b) 

If (26a) is used for X(~ t) and (78) is linearized with 
respect to [Vu] (z) or Ha, then it reduces to a Maxwell- 
type equation for stress evolution 

d 
~- Ha = - 2Pa [Vu 1(2) _ 2pa ~a- 1 [ • .  Ha ](2) . (89) 
c/t 
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It is perhaps worthwhile to point out that in this form 
the stress evolution equation is not necessarily 
isotropic unless the tensor ~a is isotropic, but it is 
not isotropic in the case of nonspherical fluids for 
which polymeric liquids are probably the most ex- 
treme examples. This equation generalizes the Max- 
well equation for stress in the sense that the tensor 
~a is not a constant times the unit tensor. If we 
assume that ¢~- 1 No = it ~- 1 U where it~ is a scalar with 
dimension of  time (e.g., relaxation time), then (89) 
becomes a Maxwell model for stress tensor Ha. A 
similar remark applies to the constitutive Eq. (78), 
which can be shown to reduce to some existing con- 
stitutive equations if some approximations are made 
and the material tensor is isotropic. 

5. Application: semiempirical treatment 
of the constitutive equation 

To make this section self-contained for those who 
are not interested in the statistical mechanical founda- 
tions, we reproduce the constitutive Eq. (78) which 
will be used semiempirically by treating the friction 
constants and Na therein as empirical parameters. 
Thus, we take the constitutive equation for the stress 
tensor as follows: 

d 
~--~tHa = - 2 p a [ V u l ( 2 ) - 2 [ H a . [ V u l ( 2 ) ]  (2) 

- [09,17 a ] + 2 ( X  (1) : H a) [Vu ](2) 

y(1 ) l (2 )n  (X(I ) ]  , +4PZa~a '[  ~ ' ' ' a  J ue ,  a , (90) 

where X(a ~) is given by (85) with the accompanying 
Eqs. (86) and (87); ~a is the mean friction constant 
for species a and Na is an empirical tensor coeffi- 
cient. These parameters Na and Ca in (90) can be in 
principle computed from their statistical mechanical 
formulas defined in the previous section. Their calcu- 
lation requires solution of a many particle problem 
for polymers of distributed configurations and, 
hence, is not trivial to perform; it would require fur- 
ther intensive theoretical work. However, in the 
meantime, it should be useful and, in fact, important 
to test if the stress and its shear rate dependence given 
by the constitutive Eq. (90) is sensible from the ex- 
perimental viewpoint. To this end we may treat the 
parameters as empirical ones and, by solving (90) 
suitably, obtain the stress tensors as a function of  
shear rate and other parameters to compare with ex- 
perimental data. Since the constitutive equations are 
derived from a kinetic equation, this approach is 

semiempirical. We will show that the parameters in 
(90) can be determined from the information on the 
zero - shear - rate data for a substance and, hence, 
the nonlinear behavior can be predicted entirely in 
terms of the limiting material functions - viscosity 
and normal stress coefficients - at the zero shear 
rate. 

In this paper, we consider two cases of flow: 1) 
plane Couette flow geometry where the flow is in the 
x direction while the velocity gradient is in the y direc- 
tion and the z direction is neutral; and 2) undirec- 
tional elongation in the x direction. We will assume 
the fluid is of  a single component.  

5.1 P lane  Coue t t e  f l o w  

We consider laminar flow of a polymeric liquid in 
the plane Couette flow geometry just mentioned. 
Then, the only nonvanishing velocity gradient is 
OUx/Oy, which we will denote by the shear rate y. 

y = OUx/Oy . (9/) 

This gives rise to the following: 

[Vu](2)  = 

0 

I:-'il 0 t O =  T 

0 

(92 a) 

(92b) 

in matrix representation. Since the fluid is assumed to 
be of a single component,  we will drop the subscript 
a for species from the variables and the parameters 
and use the following abbreviations to simplify the 
notation: 

t~ = ~ / ~  , (93a) 

X ~  X (1) = - H / 2 p  (b , (93 b) 

n = n ~ ,  N~ = n ~ - r / ~ ,  
N 2 = H y y  - F i z z  , (93 c) 

where ¢ is defined by (87). The three equations in 
(93 c) give the shear stress, the primary, and the sec- 
ondary normal stress difference defined according to 
the currently accepted convention, respectively. It is 
also convenient to define 
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~'21 = ~'~xx -- ~'2yy , ~'2 z = ff2yy -- ff~zz ' ~"~t = Tr  t2 . 
(94) 

Note that the tensor ~ is related to f o r c e -  force cor- 
relation functions and is symmetric. If different carte- 
sian components of the forces are statistically uncor- 
related, then the off-diagonal components of 
vanish. In this paper, we will consider this case only. 
For the plane Couette flow geometry in question there 
are three components of the stress tensor: /7 ,  N 1 and 
N2, and their evolution equations can be easily ob- 
tained from (90): 

d 
0 - - / 7 =  - p y - - ~ ( N l  + N2)Y 

dt  

- (p ~b)- 1 [~_(N12 + N  2 + N1N2) + / 7  2] y 

- p C s H q e / ¢  , (95 a) 

d ^ 

0-yN1  = 2 7 H -  2 p ( C i l N ,  + C12N2)qe/0 , (95b) 
dt 

d 
0 --:N2 = - 2 y / 7 -  2 p ( -  C21N1 + C22N2)qe/(/) , 

a t  (95 c) 

where the various coefficients are defined as follows: 

1 Cs = T(Y21 + 2 ~ 2 + 2 ~ t )  = Caxx+i2yy , (96a) 

1 Clz = -~ £21 = T ( O x x -  g2yy) , (96b) 

- -  1 = l ( f f ~ y y _  ff~Zg) (96 c) CZl - T ~ 2  

Cll  = +(ff2t-t- ff21+ ff~2) = 1 ( 2 f f 2 x x  + ff2yy) , (96d) 

C22 = J - (Ot-  f21 - Y22) = ~-(f2yy + 2Ozz ) , (96e) 

1 7 = H / o  , 1 V i = N i / o  , ( i = 1 , 2 )  . (97) 

Here the nonlinear factor qe is given as follows: 

qe = qe(l-I, N1,N2) 

= sinh x (H, N1, N2)/tc (H, N 1, ?42) , (98) 

with ~¢ given by the form 

I¢ = ( /3g /3 )1 /2 fb  -i [(/-21 + 2 [2 2 +  2 / 2 t ) H  2 

+ ~-(2 Y21 + g22 + 2g2t)N ) + 2(g2 t + Y21 - Y22)N1N2 

+ ~ (2 g2 t -  g21 - 2 ~2)N2] 1/2 , (99 a) 

1 2 (N 1 + 2 N2) 2 (N 1 +__2 N2) 

3p 3p // 

+ 2 1 
3p2 p2 J (99b) 

For the flow geometry in question the lefthand sides 
of  (95 a - c )  vanish at the steady state and the con- 
stitutive equations become coupled nonlinear 
algebraic equations: 

p y  +-~(N~ + N g y  

1 2 2 + (pq})-1 [ T ( N  1 + N 2 + N 1 N 2 ) + / 7 2 ]  y 

+ p C s H q e / ¢  = 0 , (100a) 

2 y H -  2p(C11NI + C12N2)qe/0 = 0 , (100b) 

2 y / 7 +  2 p ( -  C21N1 + C22N2)qe/(/) = 0 . (100C) 

When these coupled nonlinear algebraic equations are 
solved for H, N1 and N2, the nonlinear shear viscosi- 
ty and the primary and secondary normal stress coef- 
ficients can be determined as functions of y, p, C~, 
etc. In particular, we will show that C~, Cll, etc., can 
be given in terms of zero-shear-rate material functions 
and, thus, ( 1 0 0 a - c )  contain no other parameters ex- 
cept for ~, p,  T, g, and density. Before proceeding to 
do this, we examine the limiting behavior of  
( 1 0 0 a - c )  in the limit of  vanishing shear rate. Since 
/7, N1, and N2 become small as the shear rate 
diminishes in magnitude, we may set O and qe equal 
to unity and drop the second and the third term in 
(100a) which are nonlinear. Note that the normal 
stress differences are of second order in ~, and, hence, 
the first term in (100b, c) must be kept in the equa- 
tions. We then obtain from (100a - c) the set of  linear 
equations 

H = - r / o y  , 

C11N~ + C12N2 = - rloy2/P , 

-- C21NI + C22N2 = r l o y 2 / p  , 

(lOla) 

OOlb) 

(101 c) 

where 

~o = 1 /Cs  , (lo2) 

the Newtonian viscosity. Note that the shear s tress/7 
is decoupled from the rest of the set and, therefore, 
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t/0 is determined immediately. Solving (101b) and 
(101 c), we obtain the normal stress differences: 

N1 = _r/o ( .  C22 + C12 ~ ),2, (103 a) 
P kcllC22+ C12C21/ 

N2 = r/---q° ( Cl I -C 21  x]y 2 (103b) 
P Cl1C22+C12C21/ ' 

from which the normal stress coefficients are iden- 
tified: 

( 1 C22 + C12 [) ' (104a) T o = ~/o C1 
P C22+C12C21 

To = q_oo ( Cl1-C21 -~ . (104b) 
P \CllC22+CI2C21/ 

C = - 9 1 8 ( 2 + 0 ) + r 1 ° ( 1 - 8 ) ]  2 a~ (lO8c) 

Then, O 1 and ~Qt are given by the formulas 

f21 = 2 ( 1 + 2 8 ) ( 2 2 - 3 r 1 ° 1 ( 1 + 8 )  , (109a) 
1 - 8  

f2t= ~ 2 (2 0)O _r/ 1 - _ + _ , _ 2  (109b) 
1 - 8  

This shows that q0, T°, and 7/° determine the param-' 
eters Y2 l, 0 2, and g2 t and, consequently, the con- 
stitutive equations (95 a -  c), apart from a molecular 
parameter (i.e., a monomer size parameter) contained 
in the factor g appearing in K; see (99a) and 23 a). The 
unidirectional elongation data will further restrict 
them as we will show below. 

The T ° and T ° are the primary and the secondary 
normal stress coefficient at zero shear rate, respective- 
ly. These zero-shear-rate values of viscosity and nor- 
mal stress coefficients (material functions) in (102) 
and (104a, b) allow us to determine in terms of the 
three zero-shear-rate material functions the five pa- 
rameters C s, Cll,  C22, C12 and C21 which are given in 
terms of three parameters Ox~, Oyy and F2zz or, 
equivalently, Y2 l, ~22 and O t. 

Since there are three independent material func- 
tions t/0, T ° and T °, (102) and (104a, b) can be used 
to find (21, (22 and Y2 t in terms of 1/0, T ° and T °. It 
is easy to show the following quadratic form deter- 
mines them within a sign: 

Ay22 + BY22 + C = 0 , (lo5) 

where with abbreviations 

a~ = p T°/r/o , (106 a) 

a2 = P T°/r/o , (106b) 

8 = ~2/~1 , (107) 

00Sa) 

(108b) 

the coefficients are defined as follows: 

A =  -3 (1  +28)  2 , 

B = 3 ( 1 + 1 0 8 + 7 8 2 ) + 9 ( 1 - 8 )  , 
rlo ctl 

5.2 Unidirectional elongation 

Since we have considered a plane Couette flow, the 
appropriate elongation flow to consider is a unidirec- 
tional flow in the x direction. If  the elongation rate is 
denoted e, then the velocity components are ux = ex,  
uy = - ~ e y  and u z = - - ~ z .  This means that 

i ool Vu = ~-e~ " 1 , (llOa) 
1 

~o = 0 . (110b) 

The stress tensor is diagonal: o] 
o G 

(111) 

Moreover, since Hyy = Hzz by symmetry of the flow 
geometry, there is only one nonvanishing normal 
stress difference 

N 1 = H x x -  Hyy =-- N . 

In this case, we find 

/-/:/-/= { N  2 , 

;0o [ n . V u ]  (2) = - 1  o 

(112) 

(113 a) 

(l13b) 
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The evolution equation for N is then easily obtained 
from (78) in the following form: 

o_a2 
dt 

= - 3 p e  - ~ N -  ( p q ~ ) -  1 gN 2 

- (p/C) CeNqe(N) , (114) 

where 

Ce = 2 (/2t +/21 +/22) = 2/2xx +/2yy , (115) 

qe (N) = sinh K (N)/to (N) , (116 a) 

with K(N) given by the expression 

I~(N) = [(2flg)l/z/3dp](/21+/2t)l/ZN , (l16b) 

211 _N [( N)2+4N211/213p2j q~= I+3 / )+  l + ~ p  . (i16c) 

It is important to remark that since the steady state 
equation for N2 = Hyy-  Hzz is 

[ e - 2 P  (/2t-/2~-f22)qe] N2+2P /22Nl = O , 
3~ 3q) (117) 

the fact that N2 = 0 demands that 

/22 = 0 . (118) 

Therefore, if this condition did not hold, the coeffi- 
cient Ce should have read 

Ce = 32--(/2t + ~ 1  + / 2 2 )  • (119) 

This condition (118) necessary for unidirectional 
elongation, therefore, puts a further restriction on the 
constitutive Eqs. (95 a -  c) for shear experiment 
discussed on Sect. 5.1 and only two material parame- 
ters will be necessary to determine f2 t and/2j .  We will 
return to this question shortly. 

We observe that ~c (N) tends toward a constant in- 
dependent of N as IN[ --+ oo. This means that the asso- 
ciated entropy production, which is proportional to 
x sinh g, tends to a plateau value in the limit. 

At the steady state the normal stress difference is 
given by the algebraic equation 

g N +  ( p f b ) -  I g N  2 + ( P / O )  C e N q e  ( N )  = - 3pe . 

(120) 

The solution of this algebraic equation defines the 
elongation viscosity *1e through the relation 

N =  -*lee , (121) 

where *1e generally depends on g. As in the case of 
shear, it is useful to consider the vanishing ~ limit 
where (118) can be linearized. We put qe and q~ equal 
to unity in the limit of vanishing g and drop the 
nonlinear terms to obtain the linear equation 

CeN = - 3 e , (122) 

from which we obtain the zero-elongation-rate 
elongation viscosity t/°: 

.1o = 3/Ce . (123) 

It is experimentally known that 

.1o = 3 .1o , (124) 

where I/0 is the shear viscosity at zero shear rate. 
Therefore, it is useful to examine to what extent this 
relation is met by (102) that holds for the shear 
viscosity. Since with (118) C s = (2 /2 t+/20/3  = .1o I, 
we find 

.1o = 3.1o/( 1 +.10/21/3) • (125) 

Thus, the relation (124) holds rigorously in the 
vanishing limit of/21. Since from (109a) 

~1 = - 3 (1 + 0)/,lo(1 - O) , (126) 

we find 

.10 = 3 . 1 0 ( 0 - 1 ) / 2 0  (127) 

Note that 0 is negative and generally less than unity. 
Therefore, .1° e is generally larger than 3 r/0. If  0 = - 1, 
that is, if T0 = 0 - 711, then we have (124) identically 
satisfied. The reverse is also true: that is, if 
/21 = g22 = 0, then 0 = - 1. Therefore, one wonders if 
the relation (124) holds only in the cases where the 
condition 0 = - 1  holds, which is guaranteed if 

/2, =/22 = 0 . (128) 

The physical meaning of this condition is that the dif- 
ferences in the force-force correlations are equal in 
the primary and secondary directions. Presumably, 
this condition is, at least approximately, met by the 
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systems studied in many  cases, but it it possible that 
the condition may be broken in general if there is pre- 
sent a small term arising f rom an anisotropy of  force- 
force correlation functions making up the material 
tensor ~ :  for example, £)2 = 0, i.e., Oyy = Ozz, but 
£~1 = ~ x x -  £)yy ~: 0 although small, the consequence 
of  which is already seen in (127) or (126). 

To assess this situation f rom the angle of  the ex- 
isting phenomenological  theories, let us take a couple 
of  models well known in rheology: the corotational 
Maxwell and Jeffreys models [1]. Both models predict 
r/e ° = 3//0, but at the same time a fixed value of - 1/2 
for 0 = ~0 /~0 .  However,  for some materials the 
fixed ratio of  0 = - 1/2 is not satisfactory since the 
value of  0 may not necessarily be equal to - 1 / 2 .  
Therefore,  if one wishes to account for an experimen- 
tal 0 value different f rom - 1/2, one then will have to 
either abandon the model or suitably modify  it. Let us 
take the latter approach and see if a consistent picture 
emerges f rom a modified model. We take the corota- 
tional Jeffreys model [1] and make the scalar inverse 
relaxation time an anisotropic tensor A as follows: 

d - D 
Q - - H =  - 2 p y - 2 z  y -  [co,HI - p A  . H  

dt D t  ' 
(129) 

where •2 is a constant, D / D t  denotes the corotational 
(Jaumann) time derivative and A is a tensor: 

I! 1° °ol A =  A 2 
0 A 

(13o) 

Here, the diagonal components  stand for the xx ,  yy ,  
and z z  components  o f A .  I f A  1 = A2 = A3, then (129) 
becomes the corotational Jeffreys model in the pre- 
sent system of notation. As in the case of  the corota- 
tional Jeffreys and Maxwell models, (129) does not 
yield all the steady constitutive equations for stress 
components  (e.g., Hzz in the case of  plane Couette 
flow). Nevertheless, it is possible to determine the 
shear viscosity and the normal  stress coefficients. 
Especially, for the flow geometries considered here, 
we find the following zero-shear-rate material func- 
tions: 

//o = A ~-1 , (131 a) 

~to = / /0 (  1 _,~2AI)(A1 + A 2 ) / p A I A 2  , (131b) 

~0 = _//0(1 _ 2 2 A O ( 2 A i _ A 2 ) / p A 1 A  2 . (131c) 

Therefore, 

0 =  0 0 ~- ' t2 / t I* l  = - -  ( 2 - A 2 / A I ) / ( 1  + A21A1) • (•32) 

In the case of  A1 = A2 (i.e., an isotropic A) ,  we ob- 
tain 0 = - 1/2 as predicted [1] by the corotational Jef- 
freys model. The same model yields the zero- 
shear-rate elongation viscosity//0 in the form 

/7 e ° = 3//0/(2 - A2/A  1) , (133) 

which becomes //e ° =  3//0 if A 1 =A2,  i .e . ,  if 
0 = - 1/2. The same conclusion can be drawn in the 
case of  the corotational Maxwell model, namely, if 
22 = 0 in (129). Other models can be made similarly 
anisotropic by introducing an anisotropic stress relax- 
ation time tensor, and it should not come as a surprise 
if they yielded basically the same conclusion as above. 
The basic physics underlying an anisotropic inverse 
relaxation time or a material tensor O is that  each 
stress component  has a characteristic relaxation time, 
and different characteristic relaxation times are not 
necessarily equal to each other if the interaction 
forces are anisotropic, as is generally the case for 
polyatomics. This does not seem to be so unrealistic 
a view, and in this viewpoint and if one takes the opi- 
nion that the same constitutive equation must 
describe two different flow configurations for the 
same substance, e.g., plane Couette flow and elonga- 
tional flow as in the present section, then one is com- 
pelled to choose between the 0 value that is fixed at 
- 1 / 2 ,  and a violation of  the Trouton relation 

•//e ° = 3//0, since they are not simultaneously satisfied. 
We believe that experiments must resolve this ques- 
tion regarding the two limiting laws. 

5.3 Comparison with experiment 

A simple fluid version of  the present theory has 
been extensively tested [26] against shear flow data 
for a simple fluid and polymeric solutions. However,  
no comparison was made for polymer melts. The pre- 
sent extended formulat ion is intended to encompass a 
wider range of polymeric fluids in various flow con- 
figurations. In this section, to see the utility of  the 
constitutive Eqs. (100a) - (100c) and (120) developed, 
comparison is carried out for three different 
polymeric melts in steady shear and unidirectional 
flow experiments for viscosity and pr imary normal 
stress coefficients. For this purpose, we adjust the 
zero-shear-rate material functions to experimental 
values and solve the nonlinear constitutive equations 
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numerically.  In addi t ion to them, we define the 
following parameters  appearing in the factor  K: 

r = (fig~3) w2 , (134a) 

r e = p (3 flg/rlo)~/2 , (134 b) 

and adjust  them empirically. The r is used for  shear 
viscosity and normal  stress coefficients, while r e is 
used for  e longat ion viscosity. We remark that  r and 
re are not  independent  parameters  since one can be 
related to the other.  Therefore,  there are four  param-  
eters for  a set o f  four  (non-Newtonian)  material func- 
tions, r/e, ~/, TI and T 2 for  which the 7 and 
dependence is calculated. The results o f  calculation 
are presented in Figs. 1 -  3 for  some polymer  melts. 

We first consider the case [28] o f  shear flow of  a 
commercia l  polystyrene melt o f  molecular  weight M w  
= 240000. The relevant equations for this case are 
(100 a) - (100 c). The coefficients Cij are all fixed in 
terms of  zero-shear-rate material  functions,  namely,  
1/0, T o and T °, as described in Sect. 5.1. The only re- 
maining unknown  parameter  r is adjusted to 
r = 0.035 s. In  Fig. 1, we present comparisons  o f  ex- 
perimental  data  on the shear viscosity and the pr imary  
normal  stress coefficient o f  a polystyrene melt [281 
just  mentioned.  The values o f  the material  functions 
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Fig. 1. Shear viscosity (t/) and primary normal stress coeffi- 
cient (~1) vs shear rate (7) for a polystyrene melt. The 
open triangles and the open circles are experimental data by 
Laun et al. [28], and the solid curves are theoretical. 
r = 0.035 s, t/o = 1.259X 105 Pa s, ~° = 3.98 x 106 Pa s2, 
and ~vo = _ 7.94 x 104 Pa s 2. 
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Fig. 2. Elongation viscosity vs elongation rate for a high- 
density polyethylene melt. The data are from Mtinstedt and 
Middleman [29]. r = 18 s, ~/0 = 4953.12 Pa s, and 0 = - 1. 
The zero e elongation viscosity is equal to 3 t/0, as predicted 
by the Trouton relation. 

are: 1/0 = 1.26 x 105 Pa  s; T o = 3.98 x 106 Pa  s2; and 
T ° = - 7 .94×  104 Pa  s 2. The open  triangles and the 
open circles are the experimental data,  and the solid 
curves are theoretical.  Note  that  there are no data  re- 
por ted  for  the secondary  normal  stress coefficient for  
the melt. The agreement  is quite sat isfactory between 
theory  and experiment.  Laun  et al. [28] fitted their 
data  with an empirical constitutive equat ion with 18 
parameters  (nine relaxation times and a correspond-  
ing number  o f  weight factors).  In  the present ap- 
p roach  there are only four  parameters  - three zero 
shear rate material  functions and r. 

There are two experiments considered in the case of  
unidirectional extensional f low at constant  elongat ion 
rate. Calculations are carried out  on the basis o f  (120) 
with Ce fixed in terms of  the zero elongat ion rate 
viscosity satisfying the T rou ton  relation [cf. (124)]. 
Therefore ,  we are considering the case o f  0 = - 1 .  
The parameter  z is empirically adjusted.  In Fig. 2, we 
present compar i son  of  the theoretical prediction for  
e longat ion rate dependence o f  e longat ion viscosity 
with experimental data  reported by M0nstedt  and 
Middleman [29] on a high-density polyethylene 
(HDPE)  melt. The filled circles are the data  obtained 
by a bubble-collapse method  and the open circles are 
the data  acquired with a universal extensional 
rheometer .  With  the value o f  r e = 70 and Y/0 = 
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Fig. 3. Elongation viscosity vs elongation rate for un- 
crosslinked polyisobutylene. The experimental data are 
from Peng [30]. r = 70 s, r/0 = 2.72 x 108 Pa s, and 0 = -1 .  
The zero e elongation viscosity is equal to 3 ~/0, as predicted 
by the Trouton relation. 

4953.12 Pa s the theoretical prediction is shown to 
agree with experiment rather well. In Fig, 3, we pre- 
sent comparison for uncrosslinked polyisobutylene 
(the data were obtained by Peng [30]). In this case, 
re = 18 and r/0 = 2.72× 108 Pas .  Agreement between 
experiment and theory is suprisingly good. 

These comparisons of experimental data and 
theoretical predictions for shear rate or elongation 
rate dependence of material functions indicate that, 
when treated empirically, the constitutive equation 
for stress derived from kinetic theory provides a mo- 
lecular basis to study more deeply some questions of 
significance to rheology of polymers. The present 
study indicates that some important rheological mate- 
rial functions may possibly be represented by a single 
universal constitutive equation, provided that the 
limiting material functions (i.e., zero-shear-rate and 
zero-elongation-rate viscometric functions) are ap- 
propriately given by either an empirical means or a 
molecular theory. This optimistic expectation is based 
on the past studies made on the basis of similar con- 
stitutive equations for simple liquids [26b] and 
polymer solutions [26 a], which also show good agree- 
ment between theory and experiment. In essence, the 
previous studies show that there exist rheological cor- 
responding states [26a] for the materials examined. 
We emphasize that the nonlinear factor qe(X) is 

essential for good agreement between theory and ex- 
periment in the high y and e regime. 

6. Discussion and concluding remarks 

In this paper, we have shown that rheology can be 
phrased within the framework of extended irreversi- 
ble thermodynamics, generalized hydrodynamics, and 
kinetic theory of polymeric liquids and polyatomic 
liquids in general. The constitutive equations for dif- 
fusion fluxes and stresses are cast in a form more easi- 
ly amenable to physical interpretations and identifi- 
able with some constitutive equations derived from 
the Brownian motion model. In principle, the materi- 
al tensor in the constitutive equations can be calcu- 
lated by means of statistical mechanical methods, 
starting from the statistical definition given in the 
main text. This part of the program is open and re- 
quires further intensive efforts. However, one may 
make the theory semiempirical by treating the materi- 
al tensor as a set of empirical parameters, as we have 
done in Sect. 5. This can be a fruitful approach if one 
is willing to sacrifice one's urge to be completely mo- 
lecular, since it still can provide some powerful means 
to investigate various flow properties of interesting 
substances without completely forgetting some molec- 
ular aspects of the constitutive equations involved. 
The present theory certainly provides theoretical 
machineries for both lines of approach, molecular 
and semiempirical. 

We would like to remark that the treatment given 
to the constitutive equation to calculate the material 
functions is a kind of approximation, since the 
momentum balance equation is decoupled from the 
constitutive equation when a linear flow field is taken. 
This is the approach generally taken in rheology, but 
we would like to point out that it is not without limita- 
tions. Our study [31] in gas dynamics with the 
generalized hydrodynamic equations shows that ef- 
fective viscosities obtained from the solutions of the 
generalized hydrodynamic equations are not only 
local, but also not necessarily the same as the values 
obtained from the constitutive equations under the 
assumption of a linear velocity field, namely, the kind 
of approach taken in theology as mentioned above. 

The constitutive equation (90) is different from 
those appearing in the literature, such as Tanner's 
[32], the FENE-p model [33], that of Acierno et al. 
[34], and the Phan-Thien-Tanner equation [35]. Tan- 
her's constitutive equation is a modification of the 
Oldroyd B model [1] which can be obtained from a 
network theory. Its dissipation term corresponding to 
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A (1) in the present theory is linear. It is perhaps of in- 
terest to mention that the Oldroyd model can be ob- 
tained from the constitutive Eq. (18) by linearizing it 
with respect t o / 7  (see [26b]). The FENE-p model is 
based on a diffusion equation (a Fokker-Planck equa- 
tion) where the force is assumed to take a special form 
that prevents an infinite stretching of chains. This 
constitutive equation is different from the present 
one, not only in form, but also in its dynamical origin 
since it is based on a stochastic (Brownian motion) 
model. The constitutive equations of Acierno et al. 
and Phan-Thien et al. are based on a network theory, 
although there are considerable differences in form 
between them, owing to the fact that their treatments 
of  the segment creation rate term are different. Both 
constitutive equations, however, are empirical, since 
they contain not only empirical parameters, but also 
an empirical function postulated for the segment de- 
struction rate. It is worth noting that this postulated 
function, especially in the Phan-Thien-Tanner theory, 
makes the term that is equivalent to the dissipation 
term A (1) nonlinear in stress, although it appears to 
have nothing to do with the Rayleigh-Onsager dissipa- 
tion function to which the dissipation term in the pre- 
sent theory gives rise in the small shear limit. The net- 
work theory used by Acierno et al. and Phan-Thien et 
al. has one aspect in common with the present theory: 
that is, the presence of  creation and destruction rate 
terms for segments that remind us of the collision 
term in the generalized Boltzmann equation [8] under- 
lying the constitutive Eq. (90), since the latter ac- 
counts for molecular population changes accompany- 
ing the changes in mechanical states due to molecular 
interactions. Unfortunately, the network theory is not 
subjected to the thermodynamic principles and, as a 
consequence, it is not clear if the constitutive equa- 
tions obtained therein are consistent with the second 
law of thermodynamics. 

In conclusion, the results by the present semiem- 
pirical treatment of the constitutive Eq. (90) not only 
indicate that its phenomenological utility is as good as 
any existing constitutive equations despite less param- 
eters in it, but also are sufficiently encouraging as to 
warrant continued efforts to calculate parameters ap- 
pearing in it by using some molecular models, and 
thereby, to better understand the molecular basis of  
polymeric rheology in a manner consistent with the 
thermodynamic laws. The underlying statistical 
mechanical theory provides means to pursue such an 
aim. The parameters in the present constitutive equa- 
tion (90) can be completely determined by experimen- 
tal data on zero shear rate viscosity and normal stress 
coefficients. This feature is of considerable potential 

interest since the limiting laws at y = 0 determine the 
high shear rate and high elongation rate behavior of 
material functions. Therefore, the limiting law 
viscosity and normal stress coefficients are the 
ultimate material function necessary in rheology. 
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