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Abstract: A new method is proposed for the calculation of discrete retardation 
spectra from creep and recovery data. The calculation of the spectrum is not 
restricted to a special region of consistency, e.g., the terminal region. In a retarda- 
tion time window which has to correspond to the time window of the original 
data set a spectrum can always be calculated. A linear regression technique is ap- 
plied to the measured data in the iterative calculation of a spectrum with a 
logarithmically equidistant spacing of retardation times. In this way the number 
of retardation times is limited and problems with ill-posedness are avoided. In 
order to obtain only positive retardation strengths it is necessary to shift the set 
of prescribed logarithmically equidistant retardation times on the logarithmic 
time scale. It can be shown that there is a retardation time interval for this shift, 
in which the retardation times may be varied without obtaining negative retarda- 
tion strengths. While varying the retardation times in this interval the relative er- 
ror of description of the data passes through a distinct minimum. In this way 
a spectrum is obtained which best describes the input data. Generally, one retar- 
dation time per decade will be sufficient to describe the data within the limits 
of experimental error. In the case of noisy data, the method is shown to work 
just as well and leads to a smoothing of the original data set. The method may 
be used for the conversion of creep and recovery data to storage and loss com- 
pliance. The error connected with this procedure is discussed. 

Key words: Creep compliance - retardation spectrum - relaxation spectrum - 
linear viscoelastic theory 

Introduction 

When  characterizing the mechanical  properties o f  
polymeric  materials different  measur ing techniques 
are used. A torsional  pendulum,  for  example, yields 
the complex shear modulus  G* as a funct ion o f  
angular  f requency co, while creep measurements  in 
tors ion yield the creep compliance J as a funct ion o f  
creep time t. All measurements  apply to a well-defin- 
ed excitation (stress or  strain) which is a funct ion o f  
time. The observed response always combines the in- 
trinsic material  properties with the special characteris- 
tics o f  the excitation yielding the characteristic materi- 
al response funct ion for  this case. W h e n  trying to 
characterize the viscoelastic material  behavior  in a 

*) Dedicated to Prof. Dr. R. Bonart on the occasion of 
his retirement. 

very b road  range of  time or frequency,  i t  is necessary 
to combine  different measuring techniques yielding 
in format ion  in different time regimes. Thus the prob-  
lem arises to convert  viscoelastic response functions 
into each other.  In  this si tuation it is o f  c o m m o n  in- 
terest to know not  only the material  response on a 
special type o f  experiment,  but  to have a general func- 
t ion characterizing the material  response independent  
o f  the method  o f  excitation. 

Restricting ourselves to the range o f  small stress, 
the relation between strain y( t )  and stress o-(t) can be 
described by a single constitutive equat ion which is 
based on the Bol tzmann superposi t ion principle 
(Bol tzmann,  1874) using J(t)  as the only time depen- 
dent material  funct ion 

t 

y ( t ) =  ~ J ( t - ~ ) & ( ~ ) d ~  , (1) 
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where the dot indicates the derivative with respect to 
the argument. The integration is carried out over the 
history prior to the current time t. The evaluation of 
Eq. (1) yields for creep experiments (o = 0 for t<0 ;  

= o- 0 for t >_ 0) 

y( t )=ao.J( t  ) for t_>0 ,  (2) 

and for experiments under prescribed harmonic stress 
(o- = 0 for t<0 ;  o- = o0 cos cot for t>_0) in the steady 
state 

y (t) = a0 [J' (co) cos (co t) + J"  (co) sin (co t)] 
for t ~  oo (3) 

involving the storage and loss compliance J'(o)) and 
J"(co) respectively. The Boltzmann superposition 
principle allows a similar formulation for the condi- 
tions of prescribed strain involving the relaxation 
modulus G(t): 

t 

a ( t ) =  ~ G(t -~)p (~)d~ .  (4) 
- o o  

From the constitutive equations (1) and (4) it is possi- 
ble to derive exact equations for the conversion of one 
measured viscoelastic function into any other measur- 
able viscoelastic function, in shear. These equations 
are all integral transforms, which have to be evaluated 
over an infinite time or frequency regime extending 
from zero to infinity (Ferry, 1980). In practice the 
calculations often fail because of lack of information 
about the measured function to be transformed. 

In order to overcome the above-mentioned pro- 
blems, much work was done to establish easy to use 
approximation formulae to convert measured data 
from the frequency to the time domain and vice versa. 
If the method of conversion is sufficiently accurate 
and if the starting function is known with sufficient 
accuracy in a sufficiently wide time or frequency do- 
main, the course of all material functions characteriz- 
ing viscoelastic material behavior may be calculated 
from one experiment. For example, Schwarzl 
(Schwarzl, 1969, 1970, 1975) published a set of error- 
bound approximations for the interconversion of 
viscoelastic material functions, which are based on 
approximation of the kernel functions in the spectral 
representation of the mechanical properties, which 
will be mentioned in this paper. 

The characteristic material functions which are in- 
dependent of the method of excitation are the so call- 
ed spectra. The relaxation and retardation spectra 
g(r )  and j ( r )  are distribution functions for modulus 

and compliance respectively. They express the con- 
tribution to the measurable response in stress relaxa- 
tion or creep resulting from a relaxation or retarda- 
tion time interval between r and T + dr. It has to be 
noted that for reasons of physical interpretation all 
spectra have to have positive values only. The two 
spectra are interrelated; therefore it is sufficient to 
know one of them together with some viscoelastic 
constants. The spectra are related to the measurable 
response functions by Laplace, Stieltes or Fredholm 
integral equations of the first kind. From the relaxa- 
tion spectrum the modulus functions G (t), G' (co) and 
G"(co) may be calculated. The compliance functions 
J(t), J '  (co) and J" (co) are obtained from the retarda- 
tion spectrum. Using spectra for the representation of 
the viscoelastic response functions has some advan- 
tages. First, a spectrum is a material function which 
is independent of the way of excitation. Second, 
knowing the spectrum, all other viscoelastic functions 
may be predicted. Third, many molecular theories 
yield distributions of relaxation times and strengths. 

The advantages in using spectra are responsible for 
the broad interest in deriving approximations and 
algorithms for their calculation which can be found in 
literature. The difficulty with this task is that the 
determination of a spectrum has been recognized to 
constitute an illposed problem (Tanner, 1968; 
Friedrich and Hoffmann,  1983; Honerkamp, 1989). 
This means that for each set of experimental data a 
large number of different spectra can be found, each 
of them describing the data with the same accuracy. 
Therefore, the problem of calculating the spectrum 
from an experimentally obtained response function, 
does not seem to have a unique solution, but an (in- 
finite) number of  solutions, each of them fitting the 
original data equally well. There have been several at- 
tempts to overcome this difficulty. They all remove 
some degree of freedom from the system either by 
prescribing values for some of the parameters or by 
adding constraints to the calculation. 

Most of the methods published in the 1950s and 
1960s were set up to yield continuous spectra. Ferry 
and Williams (Ferry and Williams, 1952) proposed to 
assume the special form for the logarithmic spectra 
H ( r )  and L ( r )  in the shape of a wedge, containing 
some parameter values, which can be determined 
from the experimental response. This spectrum is 
modified in a second step by a correction term. 
Schwarzl and Staverman (Schwarzl and Staverman, 
1952) published approximations for the course of the 
continuous logarithmic spectra using derivatives of 
the experimentally accessible functions. The approx- 
imations of Tschoegl (Tschoegl, 1971) and Yasuda 
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(Yasuda and Ninomiya, 1966) use finite differences of 
the measured functions to evaluate the information 
about the course of L (-c) or H( r )  respectively. These 
(and other approximations) are nicely reviewed in a 
book by Tschoegl (Tschoegl, 1989). 

We will restrict ourselves to the problem of the 
calculation of a discrete retardation spectrum from 
creep curves. 

Basic equations 

The creep compliance J(t) can be calculated from 
the non-negative retardation spectrum j ( r )  by the 
equation 

J(t)=Jo+ ~ L('c)'[1-e-t/r]dlnz+t/rlo , (5) 

where J0 is the elastic compliance and r/0 the shear 
viscosity. In Eq. (5) L ( r ) =  r j (z)  denotes the non- 
negative logarithmic retardation spectrum as a func- 
tion of the retardation time z, L (r) is the contribution 
to the compliance from the retardation time interval 
between l n r  and l n r + d l n r .  If L( r ) ,  J0 and r/0 are 
known, the dynamic behavior under prescribed 
sinusoidal stress can be easily calculated 

1 
J ' ( c o ) = J o +  j L(z) - - d l n r  (6) 

- ~  I q- (.02T 2 

J"(co) 1 ~ 7 / 2 r 2  d ln  = + L( r )  r . 
a) t/0 -~ 1 

The experimental functions can be described with the 
same precision by a discrete retardation spectrum 
{Jk] rk}, which is a set of 2 N  positive constants ark and 
rk, by means of the equations 

N 

J(t) = Jo+ ~ J ~ . [ 1 - e - ' / ~ q  +t/rlo 
k = l  

N 1 
J'(co) = &+ ~ & 

k = ~  I + C 0 2 Z  2 

G ( t ) =  G~+ ~ H ( r ) . e - t / r d l n r  (11) 

5r 
G(t) = G~ + ~ Gk'e-t/ek . (12) 

k = l  

G~ will be zero for a viscoelastic fluid having a finite 
viscosity (1/~/0~e0). For a viscoelastic solid the 
viscosity is infinite and G= is a measure for the value 
of G(t) in the limit t-+ co. This value is connected to 
the network density in chemically or physically 
crosslinked networks. 

Equations (5) -  (7) and (11) are integral transforms 
(Tschoegl, 1989) and may be summarized by 

Yi(z) = X i ( r ) 'K i ( z , z )d lnr+ ~ Ci,. 'z n • 
- ~  . :  - J  03) 

In this relation Yi is a measurable viscoelastic func- 
tion (viz. J, J', J", G, G', G") which is a function of 
z (representing time t or angular frequency e)). Xi(r) 
is the corresponding logarithmic spectrum and 
Ki(z, r) is a characteristic kernel function. The addi- 
tional constants Ci, n depend on the excitation, too. 
Equation (13) can also be written using a discrete 
spectrum 

N 1 

Yi(z) = ~ Xi(zm)'Ki(Z, rm)+ ~ Ci, n'z n • (14) 
m = l  n =  - 1  

(7) Here, Xi(rm) denotes the value of the discrete spec- 
trum at the retardation or relaxation time r m. 

For physical reasons not only the spectrum, but 
also all constants in the Eqs. (13) and (14) should be 
non-negative. Functions, kernels, and constants are 
specified in Table 1. 

The calculation of a spectrum from a measured 
function Y/ is an inverse problem, which can be 

(8) found frequently in rheology. Inverse problems may 
have different complexity. So the Volterra integral 
relating G(t) and J(t) may be solved easily while the 

(9) integral transforms of the spectra are not easy to han- 
dle (Malkin, 1990). 

1 N 60 ~'k 
y"(co)= + ~ & (1o) 

( / ) / I  0 k = l  1 +coz r  2 " 

The equations involving the logarithmic relaxation 
spectrum H ( r ) =  rg( r )  or the discrete relaxation 
spectrum [Gklfk} are quite similar. We only mention 
the equations for the stress relaxation modulus G(t): 

Algorithm 

Before describing the proposed algorithm, which 
was first published in short at the X I  th International 
Conference on Rheology (Kaschta, 1992), we briefly 
discuss some methods to determine spectra, which 
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Table l. Kernel functions, additional constants and time 
functions in Eqs. (13) and (14) 

Viscoelastic function Kernel Ci,-1 Ci, o Ci, l 
E.(z) I¢,.(z, /7) 

J(t) 1 - exp ( -  t /r)  0 Jo 1/r/o 
J'(co) 1/(1 + c02r 2) 0 Jo 0 
J" (¢0) co/7/(1 @ (/)2172) 1//70 0 0 
G(t) exp ( -  #/7) 0 Goo 0 
G' ((J)) (.02/72/(1 + (D 2/72) 0 Goo 0 
G't(co) co/7/(1 q- 602/72) 0 0 0 

have been published in literature. The problem to be 
solved is the following: We have a set of  M measured 
data points f l , f 2  . . . .  , fM of a function f (in this 
special case the creep compliance) at the observation 
points (here the creep times) t 1, t 2 . . . .  t M. 

N _ t m / Z k  ] t m  
f ( tm)=- - J ( tm)=  Jo+ ~ J u [ 1 - e  -t 

k= ~ ~o 

for m = 1,2 . . . . .  M . (15) 

The theory supplies an explicit mathematical expres- 
sion for the function f (Eq. (15)) containing 2 N + 2  
parameters ao, a l ,  • • . ,  a 2 N +  1, v i z .  

a0 = J0, al--J1, a 2 = Y 2 , . . . , a N = J N  
(16) 

a N +  1 = -Cl, a N + 2  = "C 2 . . . . .  a 2 N  = "CN, a 2 N + I  = l / r / 0  . 

We are looking for mathematical or numerical tools 
to determine the unknown 2 N +  2 parameters, which 
fit the experimental response best. The number of pa- 
rameters in Eq. (15) is 2 N +  2. The number of  retarda- 
tion times, N, is open to choice. In general, 2 N +  2 is 
chosen to be significantly smaller than the number of 
measuring points M. 

Usually creep curves, plotted in a log-log plot, show 
a transition step attributable to the molecular process, 
which is to be described. If  the experimental window 
is wide enough the transition will start with a horizon- 
tal plateau and end up with either another horizontal 
plateau (in the case of no flow) or with a straight line 
of slope unity (in the case of flow). Under this condi- 
tion it will be possible to determine all parameters of 
Eq. (15) including a0 and a2N+l. In most cases, how- 
ever, the complete information will not be available. 
If  the first horizontal plateau is unknown, a0 has to 
be set to zero before the evaluation of  the other pa- 
rameters can be started. If no region of slope unity is 
accessible, a2N+l has to be set to zero. 

In most cases the system defined by Eqs. (15) and 
(16) will be overdetermined. A measure for the quality 
of the description of the data by the set of the 2 N +  2 
parameters has to be established. A measure which is 
often used is the mean square error F 

M 

F :  ~ [ f ( t i ) - f / l  z . (17) 
i = 1  

F is considered to be a function of the parameters 
ao, al . . . . .  a2N+~ and has to be minimized with 
respect to these parameters. This is leading to the con- 
ditions OF/Oai= 0 for i =  0,1 . . . . .  2 N +  1. If f is a 
linear function of the ai's the evaluation of these con- 
ditions yield a set of linear equations, which can be 
solved using numerical techniques for matrix inver- 
sion. If f is non-linear, as in the case of Eq. (8), a non- 
linear regression technique has to be used. 

Most methods proposed so far, linearize the pro- 
blem by predetermining (prescribing) those parame- 
ters, which make the problem non-linear, viz. the pa- 
rameters aN+ 1, aN+2, • • . ,  a2N. After this step, the re- 
maining problem of determining ao, al . . . .  ,aN, a2N+l 
is linear and may be easily solved; however, there is 
no guarantee that the obtained parameter values are 
positive. This has to be established by an appropriate 
procedure. 

The first method published for this purpose was the 
collocation method. In this approach, the values of 
the parameters aN+ 1, aN+ 2, • • • ,  a2N are predetermin- 
ed and the number of the remaining parameters is 
chosen equal to the number of data points, viz. 
N + 2  = M (or N +  1 = M ,  or N =  M, depending on 
the accessibility of the beginning plateau and/or  the 
flow region). Therefore, the system is no longer 
overdetermined and all data points used are exactly 
reproduced by the theoretical curve. 

The observation points t m are frequently chosen to 
be logarithmically equidistant. It was Schapery 
(Schapery, 1962), who chose the retardation times 
proportional to the position of the logarithmically 
equidistant observation times 

r ~ = a . t k = a . t l ' c  k-1 for k = 1 , 2  . . . . .  N ,  (18) 

a and c being constant. Now a set of N (N+ 1 or 
N +  2) linear equations is obtained, which can be solv- 
ed exactly. The main problem with the collocation 
method is that it only works successfully if the com- 
plete set of data is used for the collocation procedure 
and if the spacing of the collocation points is neither 
too large nor too close. If  one of these conditions is 
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violated, negative retardation strengths are obtained. 
The result of the collocation method naturally 
depends on the choice of the number of data points, 
their location, and on the value of the proportionality 
factor a. 

The so-called multidata method (Cost and Becker, 
1970) uses all M data points (M>>N) available to 
determine the N (N+ 1, N +  2) parameters. The system 
is now overdetermined and the condition (17) is used 
to fit the N (N+ 1 ,N+ 2) parameters. Apart  from the 
possibility of the occurrence of negative retardation 
strengths, there is another serious error involved in 
this procedure, which is often overlooked. The course 
of the measured creep compliance of polymers 
generally shows a very large change with creep time 
(usually orders of  magnitude). Therefore, the 
assumption underlying Eq. (17) viz. that the same ex- 
perimental error is connected with small and large 
values of the compliance is not justified. 

Baumg~irtel and Winter (Baumg~rtel and Winter, 
1989) published a method to evaluate discrete relaxa- 
tion spectra calculated simultaneously from G'(o)) 
and G"(co)-data, which also uses an iterative 
multidata method. Instead of condition (17) the 
relative error of  both G'(co) and G"(co) is used. The 
algorithm starts with an empirical choice of  the num- 
ber of modes per decade between 1 and 2. The num- 
ber of modes, which is normally too large, is reduced 
by the program by merging or eliminating un- 
necessary modes. One criterion for this process is the 
occurrence of negative relaxation strengths. 

The group of  Honerkamp (Elster et al. 1991, Elster 
and Honerkamp,  1991) proposed two different 
methods to overcome the ill-posedness of the pro- 
blem. They start with prescribing logarithmically 
equidistant values for the retardation times. For 
minimizing the error, they use a condition for the 
relative error similar to the expression K to be given 
later in Eq. (25). In order to avoid the occurrence of 
negative retardation strengths, an additional term is 
added to the relative error condition. In the case of 
Tikhonov's  regularization method (Elster et al., 
1991), this is the regularization parameter times a 
function of the spectrum to be determined. In the case 
of  the maximum entropy method (Elster and 
Honerkamp, 1991), the additional term is an expres- 
sion similar to the definition of  the entropy in statisti- 
cal thermodynamics. 

Emri and Tschoegl (Emri and Tschoegl, 1993) 
recently published an algorithm for the determination 
of discrete relaxation spectra from G(t),  which makes 
use of a special feature of the kernel function in the 
spectral representation of the viscoelastic response 

function. They conclude that a mode located at r only 
contributes significantly in a time interval between 
0 .34" r  and 1 .67"r  to the response function because 
of the exponential decay of the kernel of G(t).  
Therefore, they only use the data at observation times 
t m in that surrounding of r for the calculation of the 
relaxation strength corresponding to the relaxation 
time t. 

The method proposed by one of  us (Kaschta, 1991), 
is an iterative multidata method. We start with the 
assumption that the measuring times are logarithmi- 
cally equidistant, viz. 

t i = tl"c i-1 for i =  1,2 . . . .  M . (19) 

This corresponds to the selection of data points in our 
automatic creep technique, in which case c equals 2 
(Kaschta 1991). The assumption (19) is not crucial for 
the success of the method. The, algorithm will work 
equally well in the case of  measuring times, which are 
distributed in an irregular manner on the logarithmic 
time axis. 

The retardation times are prescribed as logarithmi- 
cally equidistant, too, but with a wider spacing than 
the measuring times: 

r i = "c 1 • b i -  ~ for i = 1,2 . . . .  N (20) 

with b > c. 
It is clear that the time window of  the experimental 

data [tl, tM] limits the time window in which the spec- 
trum is determinable. Therefore, we expect 

r l>-rl  and tN <-tM. (21) 

However, contributions to the spectrum can only be 
found in those regions where neither J0 nor r/0 carry 
the main information of the creep compliance. In 
those cases in which either J0 or r/0 or both contribute 
significantly to the creep compliance, the time win- 
dow of  the retardation times [~q, rN] might be signifi- 
cantly smaller than the time window for the measur- 
ing times. 

In order to decide whether the terms J0 and /or  t/rlo 
are to be considered in the description of an ex- 
perimentally determined creep function the latter 
should be inspected in double logarithmic representa- 
tion. Only if the experimental curve shows a signifi- 
cant horizontal regime at the short time tail of  the ex- 
perimental data does the term J0 have to be included 
in the algorithm; its value will be determined 
automatically by the procedure described later. The 
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viscosity term has to be included only if the ex- 
perimental curve significantly shows a straight region 
of double-logarithmic slope unity. The viscosity r/0 
will then be determined automatically also. 

After this decision, we start with a choice for the 
first retardation time zl 

z 1 = a . t  1 , (22) 

with a somewhat smaller but near to unity. 
If J0 does not contribute significantly to the data, 

the method proposed will automatically determine an 
optimum value for a (near to unity). If  there is a sig- 
nificant contribution of J0 to the data, but no viscous 
contribution, the proposed method will automatically 
shift a to larger values until an optimum value for a 
is obtained, which produces only positive values for 
the retardation strengths and minimizes the error. 
Further, the value of J0 will result from the method. 
In this and the former case, however, one has to en- 
sure that r N does not exceed t M significantly. For this 
purpose the additional condition 

N = Integer 
- log (Zmax/rl)- 

log (b) 
(23) 

is used. rma× is set equal to tM. Condition (23) 
together with (20) limits the number of modes and 
problems with ill-posedness are avoided. 

In the case in which t/rlo contributes significantly 
to the data, 2"ma x will be smaller than tin. An estimate 
for rm~x is obtained by determination of N0 and 
inspection of the difference J ( t ) -  t/rlo. If  this dif- 
ference is smaller than 10% of J ( t ) ,  the correspon- 
ding value of t is defined as rma x. In this case it will 
not be possible to determine those contributions of 
the retardation spectrum to the creep compliance 
which are masked by the flow term (e.g., the modes 
of the entanglement transition). 

Those contributions may be calculated if, instead 
of the creep compliance, the recoverable compliance 
JR(t) 

N 

JR( t )  = Jo+ ~, J k ' [ l - e  -t/~k] (24) 
k = l  

has been determined experimentally. In these cases 
the number of the longest retardation time might be 
further limited by the occurrence of negative values of 
the corresponding retardation strength. In the pro- 
cedure the longest retardation time has to be skipped 
until only positive retardation strengths remain. 

In our measurements, it is not the absolute ex- 
perimental error, but the relative experimental error, 
which is approximately independent of creep time, 
respectively the order of magnitude of the compliance 
measured. We therefore use instead of Eq. (17) the 
following measure for the quality of the description 
of the data by the set of parameters: 

M 

K=~ 
i = 1  

-f(ti--~)fi - 1] (25) 

Minimizing the sum of squares of relative errors K,  
with respect to the set of parameters to be determined 
[ai} = ao, al . . . .  aN, aZN+ 1, yields a set of linear equa- 
tions for the calculation of those parameters. 

In our method, after fixing the value of b, a starting 
value for a smaller than one is chosen and the set of  
parameters is calculated under the condition (23). 
Starting the algorithm, generally one or more of the 
parameters will be negative. Then a is substituted by 
a slightly larger value 

a ~ a . ( 1  +e)  , (26) 

with small e and the process is repeated, until all pa- 
rameters become positive for the first time. Then the 
sum of squares of relative errors K is calculated. The 
substitution (26) is continued, which will yield 
another set of positive parameters with a different 
value for K. Continuing this process, a set of positive 
parameters {ai}op t is found which minimizes the value 
of K. This set is used as the optimum description of 
the data. 

The method is illustrated in Fig. 1, where the course 
of the sum of squares of  relative errors, K, is shown 
as a function of the position of the first retardation 
time, rl,  for the calculation of the spectrum from a 
synthetic creep curve (derived from a multi-box-spec- 
trum defined later in Eq. (28)). Shown is the first 
window on the time axis for rl, which yields only 
positive retardation strengths. It extends from 
1.8.10 -5 s to 2.04.10 -5 s. There is a distinct position 
for "c~, which yields a minimum value for K. 

There will exist another window for positive retar- 
dation strengths at higher rl-values , but the sum of 
squares K will be larger there. 

Results and discussion 

The application of this algorithm to experimental 
creep curves will be discussed in part two of  this paper 
(Kaschta and Schwarzl, 1994). Here, we will test the 



Kaschta and Schwarzl, Calculation of discrete retardation spectra from creep data - I. Method 523 

10 -1 

10 -2 

10-8~ 

K 

negative 2 negative 
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Fig. i. Sum of squares of relative errors, K, for the calcula- 
tion of the creep compliance from a set of logarithmically 
equidistant retardation times as a function of the shortest 
retardation time rl; regions of negative and positive retar- 
dation strengths are indicated 

algori thm on two cont inuous  model  spectra, which 
cover 10 decades o f  re tardat ion time. The spectra 
and the addit ional  parameters  Jo = 1 0 - 9 p a - 1  and 
r/0 = 10 ~2 Pas have been chosen to describe approx-  
imately the master  creep curves o f  amorphous  un- 
crosslinked polymers  in the glass-rubber transit ion 
region, fol lowed by rubbery  plateau and having a 
dominan t  viscous contr ibut ion at long creep times. 

Two shapes for  the logari thmic re tardat ion spec- 
t rum were selected. The first consists o f  a wedge of  
constant  slope one-half  (Rouse-spectrum):  

f O for l"< 10 -4 s 
L w ( r ) =  t0 8.]/~- for  1 0 - 4 s N 2 " < 1 0 6 s  

0 for  r k  106 s . 

(27) 

(28) 

The other  spectrum has a mult i -box-shape:  

L m b ( r )  = 

# -  

0 for r<  10 -4 s 

5.10 -9 for 10-4s_r<  t0-2s 

10 6 for 10-2 s__< z-< 103 s 

10 -5 for  103 s _ r <  106 s 

0 for  77 ~> 106 S. 

L (r) is calculated in P a -  1 for  r in seconds. The creep 
compliances calculated by numerical  integrat ion o f  
these spectra are shown in Fig. 2. Points  were 
calculated at discrete creep times spaced equidistantly 
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IO-Q 

10 -6 _ 

10 -7_ 

10 .8 _ 

10 -9_ 
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J(t); Pa -1 

multi-box-spectrum ~ m  

~ t ; s  
I ' I ' I ' I ' I ' I ' I ' I ' 

10 -6 10 .4 10 -e 10 ° 102 104 106 10 a l l l °  

Fig. 2. Creep compliances as calculated from wedge and 
multi-box-spectra and recoverable compliance as calculated 
from wedge spectrum 

on the logari thmic time axis with c = 2 f rom 10 6 
until 109 s. Only these points were used in order to 
recover the course o f  the underlying spectrum. 
Together  with the creep compliances,  the recoverable 
compliances JR(t) were calculated. The wedge spec- 
t rum shows a creep compliance with a single transi- 
tion, a small rubbery  plateau and the terminal region. 
The mult i -box spectrum shows a creep compliance 
with three transitions, two of  them being very close 
together.  

Figure 3 shows the discrete spectra as calculated 
f rom the compliance by the proposed  method  with 

10 -5 

10 -6 _ 

10 -v_ 

10 .8 _ 

10 -9_ 

10 -10 _ 

10 -n  

L('r), Jk//ln(b) ; Pa -~ 

time window used for _ealeulationsl 

o10 -4 s < T < 107 s 
/ -  

o10 -5 s < "r < 107 s 
• 10 -4 s < "r < 108 s , j ~  ¢ 

5 164 100 102 164 165 
" r ; s  

1 )8 

Fig. 3. Double-logarithmic plot of the normalized retarda- 
tion strengths JJln (b) vs retardation time calculated from 
the creep compliance data, derived from the wedge-spec- 
trum, for fixed spacing (b = 10) and for three different 
retardation time windows 
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b = 10, together with the original wedge. To compare 
the values of the discrete spectrum with the con- 
tinuous logarithmic input spectrum, the Jk values 
have been divided by the natural logarithm of the 
spacing b. 

The figure shows the influence of the original time 
window, chosen for the calculation of  retardation 
times. For all spectra calculated, the jump at the 
beginning and the drop at the end of the wedge are 
smeared out and cannot be recovered with the desired 
accuracy. It can be seen that one of the calculated 
spectra, viz. that with the window [rl, ~max] = [ 10-4 S, 
108 S] shows a significant waviness. This can be at- 
tributed to the calculation of modes located at retar- 
dation times more than one decade outside the long 
time boundary of the definition range of  the input 
spectrum. The contribution of these modes has to be 
compensated by the others. On the other hand, if 
rmax is chosen to be much too short (not shown in 
Fig. 3), we also find wavy behavior, because the last 
retardation strengths are forced to have too large 
values. Though the wavy spectrum shows only 
positive retardation strengths, it is connected with a 
relative large value for the sum of squares of the 
relative error, viz. K = 2.27.10 -2. 

If  rma x is chosen to be one decade smaller, the 
spectrum with the window [10-4s, 107 s] describes 
the wedge very well, if the behavior at the edges is 
disregarded. It also yields a much smaller value for 
the sum of squares of relative errors, viz. K = 1.36. 
10 -3. The description may be slighty improved if the 
starting value for r~ is chosen below the short time 
boundary of the definition range of the input spec- 
trum. Therefore, the spectrum with the window 
[10 -5 s, 107 s] describes the wedge equally well, with 
a slightly lower value for K = 1.31" 10 -3. Both non- 
wavy spectra coincide so well that they cannot be dis- 
tinguished on the scale of Fig. 3 except for the first 
retardation strength. 

Figure 4 shows the relative error of the creep com- 
pliances calculated from the spectra given in Fig. 3, 
when compared with the input data. It can be seen 
that waviness in the description of the spectrum is 
connected with a larger relative error in the reproduc- 
tion of the original creep compliance. In the case of 
a wavy spectrum we find strong oscillations of the 
relative error on the order of 5% and more. For a 
non-wavy spectrum, we get relative errors in the order 
of 2% and less. 

The influence of an additional viscous contribution 
on the calculation is shown in Table 2 for the wedge 
model creep compliance. The spectrum was calculated 
in two different ways. First, we have calculated the 

t (AJ/J~ • % Itime window used for calculations] 
10-t ~ / / . . . . . .  

_~ ~ ~ 1 0  .4  s < "r < 107 S 

~J~ ] ~ 1 0  -5 S < "1" < 107 S 
6 4 ~ ~ ~-~ lO .4 S < "r < tO 8 s 

/ 

2 

0 ...... 

- - g [  ' I ' I ' I ' I ' [ ' ' ' 

10 .7 10 .5 10 -a 10 -1 101 10 a 105 107 1t 

Fig. 4. Relative deviations between input compliance and 
compliances calculated from the spectra in Fig. 3 

Table 2. Discrete wedge spectrum calculated from JR(t) 
and J(t) 

From recoverable compliance From creep compliance 

zg, s J~, Pa -I r k, s Jg, Pa -1 

2.81"10 4 4.27.10-1o 
2.81.10 -~ 1.36-10 .9 
2.81.10 -2 4.31.10 -9 
2.81.10 -1 1.37.10 -9 
2.81" 100 4.31" 10 -s 
2.81.101 1.36.10 -7 
2.81.102 4.31.10 -7 
2.81" 103 1.36" 10 -6 
2.81-104 4.35.10 -6 
2.81" 105 1.26" 10 .5 
2.81.106 1.16.10 -6 

J0 = 9.9973.10-10 pa-i  
r/0 = not calculated 

2.77" 10 -4 
2.77.10 -3 
2.77-10 .2 
2.77. t0-1 
2.77- 100 
2.77 101 
2.77 102 
2.77 10 t 
2.77 104 
2.77 1055 
2.77 106 

4.16.10 -10 
1.38.10 .9 
4.21 "10 -9 
1.37" 10 -8 
4.23" 10 -8 
1.36.10 -7 
4.25" 10 -7 
1.36.10 -6 
4.29" 10 .6 
1.26" 10 -5 
1.27" 10 -6 

Jo = 9.9997.10 -1° Pa- 1 
r/0 = 1.0002" 1012 Pas 

spectrum and the value for the instantaneous com- 
pliance J0 from the recoverable compliance JR(t). 
Secondly, the spectrum, the steady-state viscosity r/0 
and J0 were calculated from the creep compliance 
J(t). Both calculations have been performed for the 
same values of  rl and rma x and with the same spacing 
b =  10. 

As can be seen from Table 2, there is no significant 
difference between the calculated values for the spec- 
trum lines except for the last line, where the intensities 
differ by about 10°70. The instantaneous compliance is 
reproduced by up to three significant digits in both 
cases. When the spectrum is calculated from the creep 
compliance, the value for the viscosity is obtained 
with an accuracy of  0.1%. 
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I f  the calculated spectral intensities divided by 
ln (b )  are compared with the values of  L ( r )  a dif- 
ference of 10070 is found, the discrete values being 
higher. 

Figures 5 and 6 show the influence of the choice of  
the spacing varying f rom b = 5  to b = 1 0  on the 
calculated spectrum for the multi-box spectrum. In 
Fig. 5 the calculated spectra are given, while in Fig. 6 
the relative error is plotted. Regions of  constant value 
in the spectrum are reproduced quite well, especially 
when they extend over more decades in time. The 
jumps in the multi-box-spectrum are again badly 
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10  -7 _ 

10 -6_ 

10  .9  - 

10 -1o 

L(Q, ak/ ln(b)  ; Pa -1 
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+~ = o5 . 6  ° 7  . 8  o9 +10 

L('O 

10- u ~ -r ; 
10-6 ' 1 0 - 4  ' l O - e  ' 1 0 o  '16z' 104' 106 1{) 8 

Fig. 5. Double-logarithmic plot of the normalized retarda- 
tion strengths JJln (b) vs retardation time calculated from 
the creep compliance data, derived from the multi-box-spec- 
trum, for different spacings of retardation times 

reproduced. The region which is influenced by this 
smear out effect is greater for higher logarithmic 
jumps in the original spectrum. A region of instability 
of  the calculated spectrum is found just before the 
jump and this instability is more pronounced when 
the spacing of  the retardation times is decreased. 
These instabilities make an interpretation of  the 
calculated spectra more complicated and therefore we 
propose, that for describing measured creep com- 
pliances with discrete retardation spectra, it is suffi- 
cient to calculate only one line per decade. 

As shown in Fig. 6 for selected spacings, an in- 
crease of  the number  of  lines per decade results in a 
smaller relative error in the reproduction of the input 
creep compliance. It may occur that the value of K in- 
creases when decreasing the spacing, as it is shown for 
the spacing b = 7. This is due to the higher values of  
the relative errors in the short time region which are 
produced by a somewhat too small value of the initial 
compliance J0- The amplitudes of  the error at longer 
times for this spacing are smaller than the amplitudes 
for b = 10. 

All calculations presented up to now have been per- 
formed with synthetic and therefore error-free data. 
We will now show how the method works with noisy 
data, like those which are extracted f rom the experi- 
ment.  To test the algorithm with noisy data, we im- 
pose some random noise on the creep compliance 
calculated f rom the wedge spectrum. This was done 
by multiplying the exact values f(tk) with the factor 
(1 + ~.rnd(k)), where 6 is a measure for the relative 
experimental error and rnd(k) is a random number 
between - 1  and 1. 

it ° ° + 
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Fig. 6. Relative deviations between input compliance and 
compliances calculated from the spectra in Fig. 5 for 
selected values of b 
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Fig. 7. Double-logarithmic plot of the normalized retarda- 
tion strengths JJln (b) vs retardation time as calculated 
from the noisy data for the creep compliance, for different 
values of 
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Fig. 8. Double-logarithmic plot of the data points of the 
creep compliance with 10% noise (6 = 0. I), and the course 
of the creep compliance as calculated from the correspon- 
ding spectrum in Fig. 7 

In Fig. 7 the resulting spectra from compliance data 
with 6 = 0,0.05,0.1 are compared. The superimposed 
noise results in a little higher waviness of the spec- 
trum, especially in the long time region. The noise 
also influences the course of the spectra in the regions 
of the jump and of the drop. 

In Fig. 8 we compare the creep compliance 
calculated from the spectrum derived from the 10% 
noise-data with the noisy input data for the creep 
compliance. The calculated line smoothes out the 
oscillations in the data points. The relative differences 
between the smooth recovered data and the noisy in- 
put data are shown in Fig. 9. The maximum relative 
deviation between smoothed and noisy input data is 
not larger than the amplitude of the noise we put in. 
This is also true for the viscosity, which was 

Fig. 9. Relative deviations between smooth compliance 
from spectrum and noisy input data 

calculated to  be 1.11. loL2 Pas (input value 1012 Pas). 
A value of 9.98.10-'OPa-' was obtained for the 
glassy compliance (input value Jo = Pa-'). 

After having derived the retardation spectrum from 
the creep compliance, it is possible to  calculate 
storage and loss compliance by means of Eqs. (9) and 
(10). Therefore, the proposed method yields a way to 
convert measurable viscoelastic functions into each 
other. 

This is illustrated in Fig. 10 for the creep com- 
pliance derived from the wedge distribution, where 
the original points for the creep compliance are plot- 
ted together with the storage and loss compliance and 
with the damping. The curves for J 1 ( o ) ,  JU(w)  (stip- 
ped curves) and tan 6 (drawn line) were derived from 
the calculated retardation spectrum given in columns 
3 and 4 of Table 2, not from the original given wedge. 
Of course if the method is used to  convert measurable 
viscoelastic functions into each other, the window for 
the inverse circular frequency ( l /w)  of the calculated 
curves may not exceed the original window for the 
creep time, in which the data were given. Conversely, 
the window for the calculated functions has to be 
smaller, because of the truncation errors (unknown 
creep behavior outside the window). 

A further check for the accuracy of calculated 
values for J 1 ( o )  and J U ( o )  may be obtained in the 
following way. One of us (Schwarzl, 1969) has de- 
rived numerical formulae for the direct conversion of 
creep compliance into storage and loss compliance, 
without the detour via the retardation spectrum. 
These formulae have the shape 

J(t), J'(w), J"(w) ; pa-' 

J input 

- tan 6 from s~ectrum 

Fig. 10. Double-logarithmic plot of the creep compliance, 
storage and loss compliance calculated from the spectrum 
(cf. column 3 and 4 of Table 2 - lines - ) and from approx- 
imation formulae Eqs. (29) and (30) (points) vs creep time 
t or vs reciprocal angular frequency 
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J ' ( co )  = J ( t )  - a "  [J(32 t) - J(16 t)] - b "  [J(16 t) 

- J(8 t)] - c. [J(8 t) - J (4  t)] - d. [J(4 t) 

- J(2 t)] - e. [J(2 t -  J(t)]  - f .  [J(t) 

- J ( t / 2 ) ]  - g .  [ J ( t / 2 )  - J ( t / 4 ) ]  - h .  [ J ( t / 4 )  

- J ( t / 8 ) ]  with c o = l / t  (29) 

J "  (co ) = d.  [ J ( 4 t ) -  J ( 2 t ) ]  + e .  [J(2 t) - J(t)]  

+ f .  [J(t)  - J ( t / 2 ) ]  + g .  [ J ( t / 2 )  - J ( t / 4 ) ]  

+ h . [ J ( t / 4 )  - J ( t / 8 ) ]  + j .  [ J ( t / 8 )  - J ( t / 16 ) ]  

+ k .  [ J ( t / 16 )  - J ( t / 32 ) ]  + I. ( J ( t / 3 2 )  - J ( t / 64 ) ]  

+ n . [ J ( t / 6 4 ) - J ( t / 1 2 8 ) ] + . . .  with c o = l / t  , 
(30) 

where a ,b  . . . .  n are numerical constants. These for- 
mulae were derived by approximating the kernel func- 
tion in the spectral representation of storage and loss 
compliance (Eqs. (6, 7) using a linear combination of  
the kernel functions of  the creep compliance J ( t )  and 
of  finite differences of  the shape J ( 2 a t ) - J ( a t )  with 
different values of  a (a > 0). As the expressions cited 
above are linear, each approximation for the kernel 
function will yield an approximation for the cor- 
responding experimental function. The error in the 
approximation of the kernels may be calculated ex- 
plicitly. As the logarithmic retardation spectrum L (r) 
is assumed to be non-negative, the error in the ap- 
proximated experimental function will be smaller or 
equal to the error in the approximation of the kernel. 
In this way error bounds for the approximation of the 
experimental functions are obtained. For approxima- 
tions using a fixed number  of  difference terms the 
coefficients a , b  . . . . .  n have been determined to 
minimize the error bounds.  

We used an approximation for J '  (co) with the coef- 
ficients a = 0, b = 0, c = -0 .099 ,  d - -0 .608 ,  e = 0, 
f =  0.358, g - - 0 ,  h = 0. This numerical conversion 
formula  has bounds for the relative error between 
_+ 7 .5 . tan  5 %. The calculation was performed using 
the recoverable compliance JR ( t )  instead of J ( t ) .  For 
the calculation of  J"(co)  we used a formula  with the 
coefficients d =  -0 .505 ,  e = 1.807, f =  0, g = 0.745, 
h = 0 , j  = 0.158, all other constants in Eq. (30) are set 
to zero. This approximation has bounds for the 
relative error beetween + 1 .1 . [1+ i / t a n S ] %  and 
- 1.3/tan 5 %. This formula  was applied to J ( t ) .  The 
result of  the direct numerical conversion is indicated 
by the open points in Fig. 10. Differences between 

both methods of conversion do not show up on the 
given scale. The direct conversion shows the shorten- 
ing of  the window due to the truncation errors ex- 
plicitely. 

In the transition J ' (co) is smaller than J ( t ) .  The 
shape of J '  (co) very much resembles the shape of  J ( t ) ,  
and the damping tan 5 shows a broad and flat maxi- 
mum.  This is due to the choice of  the wedge distribu- 
tion for the spectrum and does not correspond to the 
behavior of  the characteristic functions found ex- 
perimentally in the glass rubber transition of amor-  
phous polymers.  This will be shown later (Kaschta 
and Schwarzl, 1994). 

To demonstrate the difference in the result of  the 
conversion using both methods the relative error be- 
tween the result of  the exact calculation of J '  (e)) f rom 
the wedge spectrum and the conversion based on the 
derived retardation spectrum is plotted vs. inverse 
angular frequency by open symbols in Fig. 11. The 
relative error is found to fluctuate with an amplitude 
of  about  4%. The corresponding relative error using 
the error bound formula (29) is shown to be smaller, 
but to be biased (filled symbols in Fig. 11). It has to 
be noted that the calculated error for the approxima- 
tion is within the bounds derived theoretically. 

The same is shown for the conversion of  J ( t )  to 
J"(co) in Fig. 12. Again, the relative error of  the con- 
version based on the calculated spectrum fluctuates 
around zero with an amplitude of  about  5%, except 
for two points at short frequencies. The relative error 

5 -  ( A J ' ) / J ' ;  % 

4- t 
3- 

2- 

1- d 

-31 7' fro% ' . . . .  

-4 ~j, from spectrum 

- 5  eq. (29) 

1 0 - '  10  -~ 10  ~ 10  ~ 10  ~ 10  ° 10  ~ 1 0 '  lC  

Fig. 11. Relative deviations between exact values for the 
storage compliance computed from the wedge spectrum and 
those calculated from a set of discrete retardation strengths 
(open symbols). Relative deviations between exact values 
for the storage compliance computed from the wedge spec- 
trum and those calculated from an error bound numerical 
formula (29) (filled symbols) 

~I/~ ; s  
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Fig. 12. Relative deviations between exact values for the loss 
compliance computed from the wedge spectrum and those 
calculated from a set of discrete retardation strengths (open 
symbols). Relative deviations between exact values for the 
loss compliance computed from the wedge spectrum and 
those calculated from an error bound numerical formula 
(30) (filled symbols) 

of  the conversion based on the error bound numerical 
formula (30) is smaller, but biased. The bump in the 
error at short frequencies can be attributed to the 
truncation error of the formula and again lies within 
the error bound. At these frequencies tan ~ is rather 
low, which makes the error bound rather high. 

Conclusions 

Most methods (for example the IRIS program 
(Baumgfirtel and Winter, 1989)) for the calculation of 
discrete spectra presented recently are used to analyze 
forced vibration experiments and thus yields relaxa- 
tion spectra. We have presented an easy to use 
algorithm for the calculation of the retardation spec- 
trum from creep and recovery data. The algorithm de- 
scribed always ends up with a set of positive retarda- 
tion strengths having a logarithmically equidistant 
spacing of retardation times. The spectrum minimizes 
the relative error of  description of  the input data. 
About three logarithmically equidistant experimental 
points per decade (the logarithmic spacing of the 
measuring points is not essential for the success of the 
algorithm) are sufficient to calculate up to 1.5 spec- 
trum lines per decade. This density of discrete lines is 
sufficient to describe the course of the spectrum L (r) 
(Baumgfirtel and Winter, 1992). For most applica- 
tions it will be sufficient to calculate one spectrum line 
per decade. It was shown that even for this density of 
spectrum lines the input compliance is reproduced 

well in all regions of consistency of polymeric materi- 
als. 

From calculations with error-free data we found 
that the calculated spectrum nearly coincides with the 
course of the input spectrum, if the time window for 
the calculation is choosen correctly and if the input 
spectrum does not contain steep jumps or drops. 
Regions where the retardation spectrum is either cons- 
tant or obeys a power law behavior are reproduced 
quite well. If the spectrum shows discontinuities, the 
algorithm is not able to recover the spectrum in the 
vicinity of these points. Regions of steep changes in 
the spectrum are smeared out and it was found that 
this effect is more severe when the logarithmic height 
of the jump is increased. Noisy data do not remark- 
ably influence the performance of the algorithm. 
Quite to the contrary, it is possible to use the 
algorithm as a powerful smoothing tool, which sup- 
plies with the smoothing information about the 
course of the spectrum characterizing the material 
behavior. 

The method can be used to convert creep data into 
storage and loss compliance. The error in this pro- 
cedure is an approximation error which originates 
from the chosen finite number of  spectral lines. The 
results for J '(co) and for J " ( c o )  have been compared 
with those obtained by a different method which leads 
to a direct conversion of the creep function to the dy- 
namic compliances without knowledge of the spec- 
trum. The conversion using those error-bound 
numerical formulae leads to biased results. The errors 
in this procedure are truncation errors. They are 
within the limits derived for the corresponding for- 
mulae. 

Both methods of conversion yield the same course 
for the dynamic compliances within the order of the 
experimental error. In our opinion this supports the 
quality of the spectrum determined from the creep 
data as well as the quality of the direct conversion. 
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