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Abstract. By means of a computer model certain 
essential aspects of the vegetative and flowering 
development of Hieracium murorum have been suc- 
cessfully simulated. The model is based on local 
control mechanisms operating over a large number of 
units and is stated in terms of the theory of develop- 
mental systems and languages. The model is construc- 
ted as a table deterministic (1,1) L-system. The model 
is especially concerned with the correlation mecha- 
nisms between the various differentiating parts of the 
plant. 

To try to simulate the development of an entire 
flowering plant may generally be considered impos- 
sible. A complete description of such a developmental 
process would have to include all the biochemical, 
cytological and anatomical details of the plant. To 
achieve such a description would be completely out 
of the question. Only by drastic abstraction from all 
these details one can hope to obtain a biologically 
relevant simulation. Even with this abstraction, the 
simulation will require very extensive computations, 
which can be carried out only with the help of a large 
computer. 

We approach the plant as a whole, not in terms of 
individual cells and tissues. We study the correlation 
mechanisms and the influences that certain parts 
of the plant exert on other parts of the plant in the 
course of development. Recently, developmental mod- 
els have been introduced which are called L-systems 
(Lindenmayer, 1968, 1971, 1975; Herman and Rozen- 
berg, 1975). Our simulation model is stated in terms of 
such L-systems and processed by a computer in the 
simulation language CELIA, a language intended to 
process models based on L-systems (Baker and 
Herman, 1970, 1972; Herman and Liu, 1973). 

* This work has been supported by a grant from the Netherlands 
Organization for the Advancement of Pure Research (Z.W.O.) 

In the present paper concepts are used which are 
similar to the ones which were used in the simulation of 
the development and flowering of Aster novae-angliae 
L. (Frijters and Lindenmayer, 1974). The structures of  
the branching patterns are stated in terms of uniform 
paracladial relationships. Such relationships apply to 
branching patterns where uniform relations are ob- 
tained during development between all pairs of 
daughter- and mother branches (Frijters and Linden- 
mayer, to appear). 

We have concentrated in this work on the following 
features of the plant Hieracium murorum L.: 

(1) The lengths and positions of internodes, and 
their formation and elongation in the course of time. 

(2) The sequential order of appearance and develop- 
ment of floral buds, and their positions in the pattern. 

In short, we have studied the mechanisms of 
development which regulate the formation and devel- 
opment of internodes and floral buds in time and space. 

Biological Data: 
Characteristics of H i e r a c i u m  m u r o r u m  

We collected shoot systems of Hieracium murorum. 
On a series of shoots we measured the lengths of the 
internodes and observed the flowering stages of the 
flowering heads (capitula). We made notes on the 
presence or absence of leaves and on the physical 
condition of (some parts of) the plant. Figures 1 and 2 
are two examples of the representation of the data in 
two-dimensional diagrams, where the lengths of the 
internodes, the branching structure, and the position: 
and relative sizes of the flowering heads are given. The 
plants represented in these figures have lengths of 
about 60 and 40 cm respectively. These diagrammatic 
representations of actual shoot systems were drawn 
by a CALCOMP plotter attached to the CDC 6400 
computer of the University of Utrecht. The drawing 



program has been described in a previous paper 
(Frijters and Lindenmayer, 1974). 

The biochemical processes in the diverse tissues 
of this plant which are responsible for the develop- 
mental mechanisms of the plant as a whole are mostly 
unknown. Nevertheless, on the basis of mechanisms in 
other species and of general physiological considera- 
tions some plausible mechanisms may be assumed. 
We are primarily interested in the connection between 
these hypothetical processes at the local level and the 
overall development of the whole pattern. On the 
basis of our data, of which Figures 1 and 2 are two 
examples, we propose to introduce the following 
mechanisms. 

Fig. 1. Diagram of a flowering shoot system of Hieracium murorum 

showing the internodes and capitula. The symbols T ~ ~ denote the 
capitula, the size of the symbols correlates with the state of their 
development. The symbols ~ designate fruit bearing capitula. In 
this shoot system the main axis bears 11 side branches. The main 
axis and the top 6 primary branches have reached their final length, 
the others are still elongating. All branches are formed at this stage. 
At the end of each branch a capitulttm is present. The length of the 
main axis is about 60 cm 

Fig. 2. Diagram of a flowering shoot system of Hieracium murorum. 

Symbols as in Figure 1. The main axis has only four side branches. 
The capitula of the main axis and of the first order branches all bear 
fruits. This shoot system is at a somewhat later developmental 
stage as in Figure 1. The length of the main axis is about 40 cm 

At some stage in the development of the shoot the 
until then vegetatively developing apical buds are 
converted into floral buds. In some plant species this 
happens very abruptly and occurs simultaneously for 
all buds. In others this conversion of buds occurs 
gradually. In the case of Hierac ium murorum we know 
that the plants are perennials with the root stock 
surviving from year to year. In the winter condition 
one finds on the root stocks some large old rosette 
leaves and a few small dormant buds. In the buds 
there are leafy apices of about two milimeters length. 
In the spring, new large rosette leaves develop and a 
month later new flowering shoot systems (inflores- 
cences) begin to appear. The flower-heads are in a 
loose terminal corymb. We have reasons to assume 
that the development of the flowering shoot systems 
takes place as follows: Up to a certain moment 
vegetative growth takes place. In that period branches 
with scale-like leaves are formed. Then suddenly all 
the apices of such branched structures are converted 
into primordia of floral structures. Beginning with 
this conversion gradually the internodes and flowering 
stalks elongate. This process takes place within a few 



weeks from the conversion. The plants continue to 
produce new flowering shoot systems from buds in the 
rosette throughout the summer. Flower-stems elongate 
to 30 to 70 cm high. 

On the shoot apices new organs (leaves, branches, 
flowers) are formed. The frequency at which new 
organs are formed may depend on a large number 
of influences, internal as well as external ones, such as 
the distribution of assimilates, growth hormones, 
senescence, temperature, exposure to light, and so on. 

The flowering structure of Hieracium, a member of 
the family of the Compositae, is a capitulum. It is 
composed of numerous individual flowers, implanted 
on one central disk. A shoot system bearing such 
capitula is called an inflorescence. 

The developmental rates of the floral buds quite 
often are different on the same plant. In this species 
every branch eventually bears a terminal capitulum. 
The development of the inflorescence is strictly 
basipetal, meaning that the capitulum at the end of 
the main axis flowers first, followed by the capitulum 
at the tip of the highest positioned branch of first 
order, and so on. The proportions among the floral 
rates are maintained during development while their 
absolute values change. 

The capitula begin their development as a floral 
bud. The speed at which the flowering stages follow 
each other may depend not only on the initial dif- 
ferences in floral rates but also on factors which 
interfere with its development, such as senescence. 

The peduncles (stalks) of the capitula all elongate to 
some extent. The differences in final lengths may 
depend on factors like the developmental rate of the 
capitula and the lengths of the branches on which 
they are born. 

The internodes must elongate to some extent. In 
some species of the Compositae consecutive internodes 
on a shoot show a definite increasing or decreasing 
series in final length. In other species, as in this case, 
the sequence is much less regular. The possible control 
mechanisms of the elongation process of the internodes 
may be manifold. 

At the point where a side branch is borne by its 
mother branch special mechanisms can be operating 
such as the mechanisms establishing the distribution 
of nutrients. 

Senescence is a process which in many plants is 
directly connected with the process of flowering. 
Flowering often hastens the end of life of the plant. 
In this case, since we are dealing with a perennial 
plant, it only limits the life of the shoot systems, while 
the roots and the rosette buds survive during the 
winter season. Senescence sometimes proceeds so 
rapidly that it prevents the development of flowering 
of large parts of the plant. 

Computing Techniques and Theoretical Framework 

In L-systems (Lindenmayer, 1968, 1971) an organism 
is represented as a linear sequence of units where 
each unit is characterized by some number of param- 
eters. All units of the organism are replaced simulta- 
neously at discrete time steps by other units according 
to a finite set of transition rules. These transition rules 
can use several sources of information. If they use only 
the information which is present in the unit itself, the 
rules are called "interactionless". If the transition 
rules for all units in a certain developing organism are 
interactionless, the corresponding L-system is ca l led  
an interactionless L-system or a (0,0) L-system. The 
transition rules can also use information concerning 
neighbouring units. They are then called transition 
rules with interactions and the corresponding L-system' 
is called an L-system with interactions or a <k, l)  
L-system, where k and 1 are non-negative integers, and 
k denotes the number of units to the left and I denotes 
the number of units to the right from which information 
is to be obtained. The theory applies to branching a s 
well as to non-branching filamentous organisms. A 
branch is usually placed between an opening 
parenthesis and a colon and a colon and closing 
parenthesis, "(:" and ":)". The branch is assumed to be 
attached to the node above the internode unit preceding 
the left parenthesis. For example, in case of a string of 
symbols a (: b:) c, the branch which contains b is at2 
tached to symbol a. 

In the present version of CELIA no influence can 
be exerted by a branch on its mother branch. On the 
other hand, a branch can obtain information from 
its mother branch. These restrictions do not interfere 
with our present simulation. Should they be considered 
undesirable, one could change CELIA accordingly. 

The present model of Hieracium murorum is based 
on a branching L-system with interactions. Although 
some transition rules use information which is transfer, 
red in one time through a large number of units, we 
will argue that this information, if necessary, can also 
be obtained directly from neighbouring units, and 
that our generating system can be described as a 
< 1,1) L-system. To let every bit of information advance 
unit by unit would increase the cost in computing 
time. 

The theory of L-systems has provided several way s 
of extending or restricting their computing power 
(Herman and Rozenberg, 1975). One way of restricting 
the systems i sby  requiring that there can only be one 
rule for every situation, that is, every situation is 

I 

uniquely determined. This gives rise to deterministic 
L-systems or D L-systems. The systems can also be 
extended by using different tables of rules such that 
one table of rules is used at a particular time step, and 



is replaced by another at another time step. If this 
applies to the whole organism, it gives rise to table 
L-systems or T L-systems. The model of Hieracium 
murorum uses deterministic rules and has two different 
tables of rules. It is, therefore, a TD (1,1) L-system. 
The sequence in which the two tables are applied in 
the model is very simple, namely the first table is 
applied for a limited number of steps (between 2 and 12 
iteration steps) and then the second table is applied 
for another 20 to 40 time steps. Thus the control 
language for the tables is a finite and, therefore, 
regular language. The properties of table interaction- 
less L-systems with regular control languages have 
been investigated by Ginsburg and Rozenberg (1975), 
the main result having been that the effect of regular 
table control is exactly equivalent to the addition of a 
non-terminal alphabet to such systems. It is conjectured 
(Rozenberg, pers. comm.) that the same equivalence 
relationship holds for table L-systems with interactions 
as well. 

Baker and Herman (1970) designed the program 
CELIA to process strings of symbols in the way 
L-systems do. Liu (1972) and Herman and Liu (1973) 
developed later a more extensive version of this 
program. 

The name is an acronym for Cellular Linear 
Iterative Array simulator. What we call "units" were 
originally called "cells". The program is written in 
FORTRAN. The states of the units are specified by a 
number of attributes. The attributes can be either 
expressed as integer or as real numbers. The user has 
to provide transition rules for each possible combina- 
tion of attributes and CELIA applies these rules in a 
parallel way to all units in the string. Changes in the 
states of the units occur synchronously at discrete 
time steps. The state of a unit at the next time step is 
determined through its present state and the state of k 
neighbours to the left and l neighbours to the right. 
Increase of the number of units and new branches are 
possible by inserting new units and placing necessary 
branching markers at the proper places in the string. 
The input/output formats are specified by the user. 
The user can let print the string at any time step he 
wishes. The main program of CELIA keeps a double 
administration: The administration of the old string 
and the administration of the string which is processed. 
There are subprograms, which are either involved 
in the administration and in the processing of the 
strings or in surveying or intervening with the proces- 
sing of the current string. There are subprograms for 
statistical survey of the strif~gs, storage of the strings, 
changes in the environment, and so on. In fact, CELIA, 
is an elaborate program for simulation of growing 
branched organisms. It is a special purpose simulation 
computer language. 

The units of the model plant are meant to designate 
internodes, apices, branch bases, capitula and 
peduncles. A branching organism consists of branches 
of different branchin9 orders. A branch of order i bears 
branches of order i + l  at its nodes. Between the 
nodes are internodes. In our symbolism only internodes 
are named, and nodes are assumed to be incorporated 
in their basal internodal neighbour. A branch of order i 
can be written as a concatenation of symbols, as 
follows: 

b i = pij] (: b]+l :) ...... fn(: bin + 1:) d ,  (1) 

where for all k, O < k < n ,  ji k and b~ are internodes and 
branches of serial number k and of branching order i, 
and where pl and a i are a basal part and an opical part 
of the branch. The apical part of a branch consists 
either of a vegetative apex or of a peduncle and a 
capitulum. 

In our model an internode or apical unit is 
characterized by four attributes. A unit is written 
between sharp brackets and the attributes are separated 
by commas. The four attributes are symbolized by 
T, C, P, and D, and a unit is written as (T, C, P, D). 

The attribute T denotes the type of the unit. We 
let 1 stand for an apex, floral bud, or flowering 
capitulum; 2 stand for a peduncle (=stalk, bearing 
the capitulum); 3 stand for an internode; and 6 for 
the basal unit of a branch, also called a "branch-base". 

The attribute C has always an integer value. A 
value of - 1  means for all types of units that the 
development of the unit is irreversible halted. For  
units of type 1 the attribute C indicates their progress 
in floral development. For units of types 2, 3, and 6 the 
attribute C serves to keep track of time in the elonga- 
tion process. 

The attribute P denotes the rate of development 
either in vegetative or in flowering conditions. It is 
only used for units of type 1. In case of the vegetative 
rate, it always has positive real values. In case of the 
floral rate, it always has values between zero and one. 

The attribute D, finally, denotes the length or the 
developmental stage of a unit. For units of types 2, 3, 
and 6, it gives the length. This length can vary from 
0.3 to approx. 250. The length variable is in arbitrary 
units, which can be expressed in actual length units. 
For  units of type 1, D denotes the developmental 
stage. If a unit is in vegetative condition, its develop- 
mental stage has always a value smaller than one. 
In flowering condition, the variable has a value greater 
than or equal to zero. 

The transition rules are always of the following 
form: 
If conditions R1 . . . . .  R, are applicable then either 

(T, C, P, D ) - + ( T  1, C 1, p1, D 1 ) 



or  

(T, C, P, D ) ~ ( T  1, C 1, p1, D 1 ) ( T  2, C 2, p2, D 2)  

o r  

(T, C, P, D)-->(T ~, C ~, P~, D ~) 
�9 ( : ( T  2, C 2, p2, D 2) ( T  3, C 3, p3, D 3) :) (T4; C 4, p4, D 4) 

or  

(T, C, P, D ) ~ S b t  (T",  C", W, D") ,  

where Sbt consists of (n-1) /3  substrings of the form 

( r  1, C 1, p1, D 1 ) (: ( T  2, C 2, p2, D 2) ( T  3, C 3, p3, D 3 ) :) .  

The new value of each of the attributes T, C, P, D is 
calculated (1) from the attribute values of the unit 
itself, (2) from the value of the attributes in the left 
and right neighbour units, (3) from the values of the 
apex or of the subtending internode of the particular 
branch on which the unit is located, and (4) from the 
four extra information parameters E, H, Q, and IT. 

The conditions R 1 . . . . .  R, use the same information 
as that from which the new state of each of the at- 
tributes T, C, P,D is calculated, and no other in- 
formation. 

The extra information consists of the parameters 
E, H, Q and I T, and of the states of the attributes of 
the apex and of the subtending internode of the branch 
on which the unit is present. 

The parameter IT  denotes the number of time 
steps at which the development of the organism is at 
the present time. Instead of I T  one could have an 
extra unit which would keeps track of the time steps. 
That would be within the limits of a TD (1,1) L-system. 
However, as it is, CELIA keep track of the number of 
time steps anyway. Therefore, we do not need to 
increase the costs of the computation by adding an 
extra attribute. 

The parameter H denotes the "height" of a unit 
in the organism. H is equal to the sum of the values 
of the attribute D (lengths of internodes) in all the 
internodes to the left of the unit. In the model, H is 
calculated globally. This could be brought back to a 
unit to unit calculation so that the calculation would 
fit into the framework of a TD (1,1)L-system. How- 
ever, in that case, all the other processes would have 
to be scaled down because of this very slow procedure. 
This would require an increase in the number of 
attributes, in computing time and in the complexity 
of the transition rules. 

The parameter Q and the states of the attributes 
of the apex of the branch, on which the unit is present, 
can be calculated as follows. Let X(A) be attribute 
X of apex A. Then the CELIA program is instructed to 
look at the values of the attributes of 13 right neigh- 
bours of a certain unit. It so happens that in our 

simulation a branch never consists of more than 
13 units; therefore, one of the 13 right neighbours 
will be the apex of the branch. It can be recognized as 
such because of the particular value of its T attribute, 
T(A)=  1. The values of C(A), P(A), and D(A), then, 
can also be obtained for the same unit. The apical 
unit is preceded by a number of internodal units. 
Q, now, is the sum of the values of the attribute D of 
the internodal units between the unit under considera- 
tion and the apical unit. In fact, X(A) and Q would: 
be computable within a (1, 13) L-system. By adopting 
a unit to unit procedure, in this case also, the system: 
could be reduced to a TD (1, 1) L-system. 

Parameter E can be calculated at every internode 
by the following formula: 

E = P(A) x 0 . 8 5  Q/0"3 . (2) 

Parameter E is, therefore, defined in terms of two 
other extra information parameters. 

The value of E is used in another way as well. Let 
us call the internode subtending a branch I. E(I) then 
designates the value of E calculated for the internode 
subtending the branch which we are interested in. At 
every time step the apex of a branch is given access 
to its E(I) value. But the E(/) of the main axis cannot 
be established in this way (there is no internode 
subtending it) and, therefore, it is given an arbitrarily 
fixed value of 1. Instead of the calculation by the 
above formula and instead of the immediate transmis- 
sion of the value of E from the internode to its laterally 
attached side branch, the value of E could also be 
calculated in a unit to unit procedure and transmitted 
in the same way so that it would still fit into a TD (1, 1) 
L-system. 

Glossary 
The following symbols are used in our rules. 
ent (x) the lower entier ofthe number x. 

m 

{StCj)} = Sto) �9 St(2 ) *... * St<m ) 
j = l  

(where 
X(M) 
X(L) 
X(R) 
X(A) 

D 
IT 

means the concatenation of strings of symbols) 
the value of the attribute X of the unit under consideration. 
the value of the attribute X of the left neighbour unit. 
the value of the attribute X of the right neighbour unit. 
the value of the attribute X of the apex of the branch on 
which the unit under consideration is located. 
the value of parameter E for the internode subtending the 
branch on which the unit under consideration is located. 
the attribute denoting the "type" of the unit. 
the attribute denoting the "condition" of the unit. 
the attribute denoting the "progress in development" of 
a unit. 
the attribute denoting the "developmental stage" of a uniti 
the number of time steps at which the development of th e 
organism is at the present time. 
the time step at which the tables of transition rules are 
switched. 



H the "height" of a unit: the sum of the values of the length 
parameters  of all internodes to the left of the unit under 
consideration. 

Q the stun of the lengths of the internodal units between the 
unit  under  consideration and the apical unit on the same 
branch. 

E= P(A) x 0.85 e/~ . 

Senescence factor = (S + 25 - IT)/25. 
Floral rate factor = F(R). 
Elongation factor = F [i], where 0_< i_< 8 and i = C (M) and the values 
for F [0] - F [8] are given under rule 15 in the next section. 

The Model 

We use two tables of transition rules, designated as Table I and 
Table II. We instruct CELIA to let the plant develop for a number  
of time steps under  Table I, after which development is continued 
under Table II. Table I gives the rules under which the branching 
structure develops, and Table II gives the rules which apply after 
the apices are converted into flowering primordia. 

The transition rules form the core of the model. The most  impor- 
tant differences in the rules are based on the attribute "Type". We 
list the rules accordingly. 

Table I--Rules which Apply under Vegetative Conditions 

1. If T = I  and D+P>I then 

<T,C,P,D) 
ent (D+P) 

~ {<3, 0, 0, 0.3) ( :(6, 0, 0, 0.3> 
j = l  

�9 <1, 0, 1.4P, 1.4(D+P--j)-P) :)} (T, C, P, D+P-ent(D+ P)>. 

Rule 1 allows the production of a number  of new internodes and side 
branches under  a developing apex. Let an internode set be an 
internode bearing a branch consisting of a branch-base and branch 
apex. Then  with the help of the concatenation operator ~ we 
express the production of more than one internode set in one time 
step according to the value of ent (D + P). 

Each new internode, units of type 3, gets assigned to it an initial 
length of 0.3. Each new side branch begins with a branch-base of 
type 6, which gets an initial and at the same time final length of 0.3. 
The branch-base is followed by an apical unit of type 1, which has 
a C attribute value of zero, a new vegetative rate F ,  which is 1.4 times 
the developmental  rate of the apical unit of its mother  branch, and 
a new developmental stage D', which is 1.4 (D+P-j ) -P.  This rule 
is similar to rules given for the production of organisms with uniform 
paracladial relationships (Frijters and Lindenmayer,  to appear). 
Accordingly, a newly formed side branch repeats (or anticipates) 
the development of its mother  branch with vegetative rate 1.4-fold 
as fast as the rate of its mother  branch, while a delay period of one 
time the vegetative rate of its mother  branch is observed before the 
repetitive development begins. 

2. If T = I  and  D + P < I  then 

<T, C, P, D > ~ < T ,  C, P, D +  P} .  

As long as the new vegetative developmental stage D'=D+P is 
less than  1, no new internodes and side branches are formed. The 
developmental  stage at each time step is increased with the value of 
variable P, the vegetative rate. 

3. If T = 2  or 3 or 6 then 

(T,C,P,D>~(T,C,P,D>. 

Units of types 2, 3, and 6 do not change under vegetative conditions. 

Table II--Rules which Apply under Flowering Conditions 

4. If C = - t  then 

<T,C,P,D>~<T,C,P,D}. 

Units do not  alter when their C attribute has a value of - 1. 
5. If T = I  and C = 0  and E = 0  then 

<T,C,P,D>~<T,C,P,O). 

When an apex develops under Table II it begins with a C value of 
zero. Its future floral rate P will be determined by the value of the 
variable E according to rule 6. But when the value of E is still zero 
the floral rate cannot yet be assigned. The information carried by 
variable E can advance one order of branching per time step only. 
Consequently, it always takes a number  of time steps after the 
switch before an apex can calculate its floral developmental rate. 
In the meant ime this rule applies. 

6. If T = I  and C = 0  and E > 0  then 

<T, C, P, D>--+<2, 0, 0, 0.3> <T, 1, E, E x ( S + 2 5 - I T ) / 2 5 > .  

In contrast to the situation encountered in rule 5, here we can 
assign a floral rate P to the apex. This apex gives rise to a peduncle 
of type 2 and a floral bud of type 1. The peduncle starts with an 
initial length of 0.3. The floral bud starts with a C value of 1, a P 
value equal to E, and a D value of E times the senescence factor. 
The senescence factor, (S+25-IT)/25, is constructed as follows: 
S is the time step at which the table switch takes place; 25 is the 
number  of time steps in which senescence is going to be completed; 
and IT is the current time step. 

7. If T =  1 and C = 0 and there is no value for E then 

<T, C, P, D>~<2,  0, 0, 0.3> <T, l, 1, D>. 

This rule is only used at the moment  of the table switch for the 
apex of the main  axis. Since flowering development has to start 
somewhere, after the table switch we give the apex of the main axis 
an initial floral rate of 1. From this rate in the following time steps 
the floral rates for the other apices will be calculated according to 
rule 6. The P value of the floral bud of the main axis from the time 
of the table switch on is fixed with the value of 1. Its peduncle is 
formed at the same time as well. 

8. If T = I  and C = 1  then 

(T, C, P, D > ~ ( T ,  2, P, D+ Px (S+25-IT)/25>. 

When a floral bud has a C value of 1 it gets at the next time step 
always a C value of 2. During the one time step the bud has a C value 
of 1 the floral rates of the side branches of that axis can be calculated 
according to rule 6. The D value of the floral bud is regularly increased 
by the P value times the senescence factor, as in rule 6. 

9. If T = I  and C = 2  and D+Px(S+25-IT)/25<2 then 

<T,, C, P, D>~<T,  C, P, D+ Px (S+25-IT)/25>. 

As long as the D value of the floral bud plus its increase is less than 2 
the floral bud keeps a C value of 2. 

10. If T = I  and C = 2  and  D+Px(S+25-IT)/25>=2 then 

<T, C, P, D > ~ ( T ,  4, P, D+ Px (S+25--IT)/25>. 

Under  the given conditions the floral bud becomes a flowering 
capitulum, characterized by C values of 3 or 4. 

11. If T = I  and C = 4  and D + 0 . 8 < 6 . 5  then 

<T, C, P, D>~<T,  C, P, D+0.8> .  

The D value of a flowering capitulum is increased at every time step 
with a constant  value of 0.8. As long as D plus its increase is less 
than 6.5 the flowering capitulum keeps a C value of 4. 



12. If T = I  and C = 3 o r 4  and 6.5=<D+0.8<10 and 
H < 150 then 

(T, C, P, D ) ~ ( T ,  3, P, D +0 .8 ) .  

If the value of D plus its increase is between 6.5 and 10, and the 
height H of the flowering capitulum is less than 150 then the unit 
gets a C value of 3. If the H parameter has a value greater than or 
equal to 150 then the flowering capitulum gets a C value of 4 ac- 
cording to rule 13. 

13. If T = I  and C = 3 o r 4  and 6 .5ND+0.8<10  and 
H >  150 then 

(T, C, P, D ) ~ ( T ,  4, P, D + 0 . 8 ) .  

See rule 12. 
14. If T = I  and C = 3 o r 4  and D + 0 . 8 > 1 0  then 

<T, C, P, D ) ~ ( T ,  - 1, P, D + 0 . 8 ) .  

A flowering capitulum finishes its flowering development, i.e., it 
has a C value assigned to it of - 1, when its D value has reached a 
value of 10. 

15. If T = 2  and C(R)_>_3 and C(M)<9  and [if T(L)=3 then 
C(L)>0]  then 

(T, C, P, D ) ~ ( T ,  C +  1, P, D + 0.75D x F [C(M)] 

x ((S + 25 - IT)/25) • P (R)- 1/2>. 

else if T = 2  but one of the other conditions does not hold then 

<T, C, P, D)~<T,  C, P, D>. 

This rule states that a peduncle elongates only when the three 
following conditions are applicabie: 

(1) The C value of the right neighbour unit must be greater 
than or equal to 3. The right neighbdur unit in this case is always 
the capitulum of the branch. A C value greater than or equal to 3 
means that the capitulum must be flowering, see rule 10. 

(2) The C value of the unit under consideration must be smaller 
than 9. A peduncle elongates in the course of 9 time steps at the most, 
see below. The C attribute of this unit counts these time steps. 

(3) If the left neighbour happens to be an internode, T(L)=3,  
then this internode must have a C value greater than zero. This is 
the case when the internode has started to elongate, see rule 18. 

If the three given conditions are all applicable, the peduncle 
will elongate. The elongation itself is also complicated. First, the 
C value increases by 1, for it serves as a counter of the time steps of 
the elongation. Further, its existing length D is increased by 0.75 
times D times an elongation factor times the senescence factor 
times a floral rate factor. The elongation factor F [i] denotes the 
i-th item of the array F [0] to F [8], the value of which is obtainable 
from the following series: F [ 0 ] = 0 ,  F I l l  = 1, F[2]  = 1, F [ 3 ] =  1.5, 
F [ 4 ] =  1.6, F[-5]=0.9, F[6]=0 .6 ,  F[7]=0 .5 ,  and F[8]=0.5 .  The 
senescence factor is the same one as we used in rules 6 to 10. The 
floral rate factor P(R)- 1/2 is the inverse of the square root of the P 
value of the right neighbour unit, the capitulum. Taking the inverse 
of the square root of the P value of the capitulum has the effect that 
the elongation of a peduncle, which neighbours a capitulum with 
a low P value, is stimulated. In practice, however, this stimulation 
can be counteracted by the senescence factor, because it takes 
capitula with a low P value a relatively long time before they are 
flowering. 

16. If T = 3  and C ( A ) = - I  then 

(T,C,P,D)~(T, --1, P,D). 

An internode halts its development, i.e. C becomes - 1 ,  when the 
C value of the apex on the same branch has a value of - 1. 

17. If T=3 ;  and either C(M)=9, or C(L)=O, or D(A)< 1 then 

(T,C,P,D>~(T,C,P,D). 

This rule is similar to rule 15 for the elongation of a peduncle. 
But here alternative conditions are given under which no elongation 
takes place. These conditions are: 

(1) The C value of the unit under consideration is equal to 9_ 
This happens when the internode is fully elongated, c o m p a r e t o  
condition 2 of rule 15. 

(2) The C value of the left neighbour unit is equal to zero. This 
happens when the neighbour has not begun to elongate. 

(3) The D value of the apex on the same branch is smaller than 
one. In fact, the elongation of the internodes on a branch cannot  
begin before the floral bud on their branch has reached a D value of 1. 

18. If T=3  and none of the other conditions stated in rule 17' 
applies and C(A)4=3 then 

<7;,c,e,D>-.<r,c + l ,e ,o+oxerc(M)3x(s+ 25-~r)/25>. 

This rule specifies when and how an internode elongates. Its length 
D is increased by D times an elongation factor times the senescence 
factor. The elongation factor and the senescence factor are the 
same as used in rule 15. 

19. If T=3  and none of the other conditions stated in rule 17 
applies and C(A)=3 and C(M)<8  then 

(T, C, P, D) ~ (T, C +  1, P, D +  1.5D • F[C(M)] x (S+25 -IT)/25). 

When the C value of the apex on the same branch is equal to 3 the: 
internode does not elongate in the normal way as in rule 18. Its: 
length increases 1.5 fold as much as under the conditions stated 
there. 

20. If T=3  and none of the other conditions stated in rule 17 
applies and C(A) = 3 and C(M) = 8 then 

( T, C, P, D) ~ < T, C, P, O + 1.5 D x F [C (M)] • (S + 25 - I T)/25>. 

This rule is an extension of rule 19. It covers the situation in which 
the internode has already elongated during 8 time steps, C=8,: 
and now should finish its elongation, but, because of the circumstance 
that the C value of the apex is equal to 3, it is granted an extra 
elongation time step. Its C value for that purpose is not increased. 

21. If T = 6  and C(L)>0 then 

(T, C, P, D)--*( T, 1, P, D>. 

Else, if T=  6 and C (L)< 0 then 

(T,C,P,D)~<T,C,P,D). 

A branch-base never elongates. Under certain conditions, its C 
value changes. This is in order to enable its right neighbour internode 
to start elongating, see condition 2 of rule 17. The C value of the 
branch-base changes when the internode on the mother branch 
at which the branch-base is attached, has begun to elongate, this 
is when C (L) > 0. 

Extra Information 

The calculations of E, H, Q, IT and X (A)were treated in the preceding 
section. It suffices to add one additional remark. 

Parameter E is equal to P(A)x 0.85 e/~ by formula (2). The 
initial length of an internode is according to rule 1 equal to 0.31 
Therefore, as long as the internodes preceding the apex have not 
elongated, E will have values P(A) x 0.851, P(A) x 0 . 8 5 2  . . . . .  P(A) x: 
0.85", dependent on the number of internodes on the right of the 
internode where E is calculated. 

Results 

H a v i n g  s p e c i f i e d  s o m e  i n i t i a l  u n i t s ,  a t i m e  s t e p  a t  

w h i c h  t h e  t a b l e  s w i t c h  m u s t  t a k e  p l a c e ,  a n d  t h e  

n u m b e r  o f  t i m e  s t e p s  t h e  s t r i n g  o f  u n i t s  m u s t  b e  
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iterated, the CELIA program is able to perform the 
simulation. The output data, see below can be used 
for a plotter program to draw the model plant at 
several time intervals (see Frijters and Lindenmayer, 
1974). 

The first 3 time steps of the computer simulation of the model 
plant of Hieracium murorum are as follows: 

1. (6, 1, O, 0.1> (3, O, O, 0.3} (: (6, O, O, 0.3> (1, O, 1.4, -0.86> :) 
<1,0, 1.0,0.1> 

2. <6, 1, O, 0.1> <3, 0,0, 0.3> (: <6,0,0,0.3> <1,0, 1.4, 0.54> :) 
<3, 0,0, 0.3> (: <6, O, O, 0.3> <1,0, 1.4, -0.86> :) <1,0, 1.0, 0.1> 

3. <6, 1, O, 0.1> <3, O, O, 0.3> ( : <6, O, O, 0.3> ( : <6, O, O, 0.3} 
<1, O, 1.96, 0.44> :) <1, O, 1.4, 0.94> :) <3, O, O, 0.3> (: <6, O, O, 0.3> 
<1,0, 1.4, 0.54> :)<3, 0,0,0.3> (: <6, O, O, 0.3> 
<1, O, 1.4, - 0.8@ :) <1, O, 1.0, 0.1> 

We start the simulation with two initial units 

<6, 1, O, 0.1> <1, O, 1, 0.1}. 

We command a table switch after 7 time steps, and we 
stop the simulation after 30 iteration steps. Figure 3 
shows the results. 

Diagram a of Figure 3 shows the model plant at 
the 15-th time step, 8 time steps after the table switch. 
The timesteps of the simulation occur as follows. 
Under Table I, vegetative condition, per time step 
one new internode and side branch is formed by the 
apex of the main axis. In other words, then one time 
step corresponds to one plastochron of the main axis. 
The length of the plastochron interval varies in this 
plant according to environmental conditions between 
1 day and 1 week. Under Table II, flowering condition, 
the flowering capitulum of the main axis takes 10 to 15 
time steps to reach the fruiting stage, which corresponds 
to 2 to 3 weeks. The final length of the main axis 
reaches 30 to 60 cm, and the side branches are scaled 
accordingly. Some internodia have begun to elongate. 
The capitula are all present, but they are in clusters 
and difficult to distinguish on this plot. Diagram b, 
five time steps later, shows the plant at a stage at 
which the capitulum of the main axis has reached 
the fruit stage. The internodes of the main axis have 
reached their final lengths, those of the side branches 
still continue to elongate. Diagram c shows the plant 
at the 25-th time step. The capitula of the first order 
branches all have reached the fruit stage. Some of the 
capitula of the second order branches as well. The 
internodes on the branches which bear a fruiting 
capituium have reached their final lengths, the others 
have not. The stage of diagram c is somewhat later 
than that of the flowering shoot systems of the observed 
plants shown in Figures 1 and 2. The developmental 

stage of the shoot system of Figure 2, however, is 
very close to the stage of the model plant shown in 
Figure 3c. Diagram d, finally, shows the model plant 
at a moment where many of the second order branches 
have reached the fruit stage, as well as some of the 
third order branches. Senescence has an influence at 
this stage, so that virtually all elongation is halted as 
compared to diagram c. Some capitula will still be 
able to reach the fruit stage, but most will be impeded 
to do so because of senescence. 

Another simulation has been done with the table 
switch at an earlier step. The results are shown in 
Figure 4. This model has approximately the same 
branching structure as the observed plant in Figure 2. 

Discussion: Developmental Mechanisms in the Model 
and in the Real Plant 

The features of the model plant are achieved by 
applying repeatedly the rules stated in the previous 
section. These rules are based on certain ideas about 
the most suitable and efficient control mechanisms 
which are also biologically acceptable. We are dealing 
with the following set of mechanisms. 

1. The Floral Switch 

At a certain time the plant is suddenly converted from a 
vegetative state into a flowering state. Before this 
abrupt change of states the apices form internodes 
and side branches. After it, the apices give rise to 
peduncles and floral buds, and the internodes begin 
to elongate. 

Floral induction is a well known developmental 
process. It occurs in many flowering plants (Salisbury, 
1963; Evans, 1969). It is known that a shoot system 
sometimes waits with its elongation until its apical 
meristems have reached the flowering stage. 

2. The Formation of Internodes and Side Branches 

Apices form the new plant organs. The frequency at 
which new organs are formed is dependent on the 
position of the apex. The resulting branching pattern 
can be completely described in terms of a uniform 
paracladial relationship, as defined in a previous 
paper by Frijters and Lindenmayer (to appear). In 
short, a paracladial relationship means that on a 
branch x the number of internodes--and consequently 
also the number of side branches--is linearly cor~ 
related to the number of internodes present on its 
mother branch y counted above the point where 
is attached to y. The relationship can be written in a 
formula, (3), as follows: 

In(x) = a • (In(y) - b) (3) 



i0 

\ 

\ , / 

~T= 15 

a 
#T= 20  

b 

C uT= 25 u wT= 30 

Fig. 4. Four diagrams (a--d) of the developmental stages of a model plant at time steps 15, 20, 25, and 30. Symbols as in Figure 1. Table switch 
at time step 5 
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where In(x) means the number of internodes on x, 
In(y) the number of internodes on y, a is the rate at 
which branch x is repeating (or anticipating) its 
mother branch y, and a x b is the period of delay before 
branch x starts to repeat branch y. A paracladial 
relationship is called uniform when for all branches 
in the pattern the same paracladial relationship 
applies. Frijters and Lindenmayer (to appear) have 
shown how every pattern which displays uniform 
paracladial relationships can be generated by a (0, 0) 
L-system. In rules 1 to 3 the preceding section we have 
used the same developmental rules as described in 
that paper. The variable a in formula (3) has been 
given a value of 1.4 and the variable b a value of 1. 
In our model, variable a is greater than 1, meaning 
that a side branch ultimately develops faster than its 
mother branch. We let the time steps of the model take 
place so that per time step one new internode and 
side branch is formed by the apex of the main axis. In 
other words one time step corresponds to one plas- 
tochron of the main axis. The conditions and calcula- 
tions in rules 1 and 2 of the preceding section take 
care of the fact that the behaviour of all other apices 
must be scaled down to the behaviour of the apex of 
the main axis. 

Plant morphologists talk frequently about repeti- 
tions of development of constituent parts of the plant. 
Troll (1964) uses the term "paracladium" to denote a 
flowering system which repeats the flowering system 
of the main axis. Maresquelle (1964), Maresquelle and 
Sell (1965) and Sell (1969) speak in that connection 
about ~fleurs de renfort et inflorescences de renfort)) 
and about (~repetitions morphogenetiques)). Sell (1970), 
Jauffret (1970) and many others have looked at the 
physiological connections between systems where one 
repeats the other. Our paracladial relationships define 
some special cases of such connections. 

3. The Formation of the Peduncles and Floral Buds 

After the floral switch, the apical units divide into 
floral stems (peduncles) and floral buds. But this 
does not happen simultaneously everywhere in the 
plant. Each apex waits until it has acquired from the 
apex of its mother branch the necessary information 
to determine the floral rate of its newly formed 
floral bud. 

4. The Assignment of the Floral Rate of Development 

After the switch, first of all the floral rate of development 
is fixed at a value of 1 for the newly formed floral bud 
of the main axis. The floral rates of the other floral 
buds are derived from and scaled down to the rate 
of the main axis. These floral rates are determined as 
follows. Each successive floral bud of the same order 

of branching along a communal mother branch in 
basal direction gets a floral rate p l =  E of respectively 
0.851, 0.852, 0.853 . . . .  times the floral rate of its mother 
branch. The successive values of 

E = P(A) x 0.85 a/~ 

are equal to the number of internodes from the at- 
tachment points of the branches to the floral bud of 
their mother branch. If any of the internodes has 
elongated before E is determined for the apex of one 
of the side branches, then Q/0.3 increases with bigger 
steps than 1 unit per internode, and this means that a 
side branch of which the floral rate is being determined 
receives a low floral rate value. 

The floral rate is always derived from the floral 
rate of the mother branch. The assignment of floral 
rates in our model can, therefore, only proceed one 
order of branching per time step. 

The mechanisms under point 3 and 4 are closely 
related to the concept of"apical dominance". This well 
known phenomenon can be observed in numerous 
ways. It is known that growth hormones like auxine 
often play an important role. Our mechanisms provide 
a way how a substance like auxin can be distributed 
throughout the plant in such a way that they influence 
floral development in the desired manner. The value 
of E, standing for the distribution of an auxine-like 
substance, is calculated from the activity of the apex, 
P(A), of a branch, and is diminished by the distance, Q, 
from the apex. 

5. The Development of the Capitula 

The terminal flowering structures of this plant are the 
capitula. A floral bud develops into a flowering 
capitulum and later on into a fruit bearing capitulum. 
The development from a flowering capitulum into a 
fruit bearing capitulum takes place in a highly regular 
fashion with a speed of 0.8 flowering stage units per 
time step. The development stops when the fruit 
forming stage is reached. The duration of development 
of a newly formed floral bud into a flowering capitulum 
differs for each floral bud. It is based on the individual 
floral rates and on the particular senescence factor 
present at the successive time steps. As a consequence 
not all floral buds are able to reach a flowering stage 
before they are ultimately halted in their development 
because of the senescence of the entire shoot system. 

Often capitula, which have reached a certain 
developmental stage, continue without any additional 
control. For  commercial purposes, therefore, flowers 
can be sold which are not yet opened. They will, when 
cut, open soon, sometimes even faster than could be 
expected otherwise. The capitula ofHieracium murorum 
after some stage also continue to develop into fruits, 
despite of senescence. 
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6. The Elongation of the Peduncles 

A peduncle begins to elongate when its apically 
neighbouring capitulum begins to flower and its 
basally neighbouring internode, if present, begins to 
elongate. The elongation formula for a peduncle is 
quite similar to the elongation formula for an internode. 
There are only two differences; one, the elongation 
rate of internodes is multiplied by 0.75; and two, the 
rate is additionally multiplied by a floral rate factor. 
The latter is equal to the inverse of the square root 
of the floral rate of the apically neighbouring capitulum. 

7. The Elongation of the Internodes 

An internode begins to elongate when the capitulum 
on its branch surpasses a certain developmental stage, 
and when at the same time its basally neighbouring 
internode begins to elongate. The elongation usually 
goes on during 9 time steps. It can be halted earlier 
when the capitulum of the branch on which the 
internode is situated has reached the fruit forming 
stage. Conversedly, it can be continued for longer 
than 9 time steps when the capitulum of the branch 
on which the internode is situated has reached a 
flowering stage but has not yet reached a particular 
height. The elongation formula consists of an elonga- 
tion factor multiplied by a senescence factor. The 
elongation factor has 9 discrete values, one for each 
time step of the elongation process, having a maximum 
value at the fifth step. This gives an S-shaped elongation 
curve, which is well established in plant physiology. 
The senescence factor causes a decrease in the elonga- 
tion according to the number of time steps which have 
occurred since the table switch. At 25 time steps after 
the switch all elongation ceases. Under certain condi- 
tions when the height of the capitulum is not large 
enough, the elongation rate is multiplied by 1.5. 

The mechanisms under point 6 and 7 are intended 
to produce the kind of corymb-shaped, flat-topped, 
inflorescence structures as actually occurs in Hieracium 
(Pugsley, 1948), see Figure 5. The rate at which the 
capitula develop decreases from center to periphery, 
while the lengths of the stems increase from center to 
periphery. Clearly, this can be achieved only by an 
inverse relationship between the flowering rate and the 
process of stem elongation. The assumptions incor- 
porated in point 6 and 7 are expressions of this inverse 
relationship. More details will be given in a subsequent 
paper. 

8. The Development of the Branch-Base 

The branch-base plays a role in the transmission of 
information from the mother branch to its side 
branches. The type assigned to a branch-base unit 
serves as a branch begin-marker. The branch-base can 

\ 
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Fig. 5. Corymb o f H i e r a c i u m  murorum 

also be considered as the node where the branch is 
attached. To facilitate calculatiOns this node has been 
made part of the side branch. It is for this reason that a 
branch-base does not elongate. It only alters its C 
value once, when the internode on the mother branch 
to which it is attached, begins to elongate. By doing 
this, the branch-base makes it possible for the inter- 
nodes on its own branch to begin to elongate. Further, 
the branch-base is also useful in the process of 
calculating the height parameter H. 

9: Senescence 

Senescence begins with the occurrence of the table 
switch. In 25 time steps it reaches a level at which all 
development is halted. The senescence factor begins 
with a value of 1, no senescence, and goes to a value 
of zero, complete senescence. Senescence effects the 
elongation of peduncles and internodes and also the 
rate of development of the floral buds into a flowering 
capitulum. It does not effect the development of 
flowering capitula into fruits. 

The mechanisms of development described for 
the model in the preceding section are not necessarily 
the ones which are used by the real plants to regulate 
their development. However, we presume that some of 
the hypothetical mechanisms are closely related to 
the actual ones. The hypothetical mechanism of the 
table switch from vegetative to flowering condition 
of the shoot system of Hieracium murorum is presumab- 
ly matched by the real plant in the following way: 

It proves that in each flowering shoot system of 
this plant the branching pattern can be described in 
terms of some uniform paracladial relationship. It 
seems unlikely that such a relationship can occur 
when the formation of the branching pattern is not 
strictly bounded in time. For example, if in one branch 
of the organism the formation of new branches has 
stopped, but is continued in one of its side branches, 
a uniform paracladial relationship for the whole 



organism can never be expected. Therefore, at least 
two switches seem necessary in the development of 
the flowering shoot systems. Because the first switch 
implies that an apex begins to form the branching 
pattern, and this corresponds to the start of our 
simulation, we actually need only one table switch. The 
uniformity of the paracladial relationships in this 
plant also puts severe restrictions on the frequency 
at which internodes and branches are formed. There- 
fore, also the hypothetical mechanism about this 
frequency seems justified. 

By letting the switch occur earlier than in the 
model plant represented in Figure 3, one gets another 
model plant shown in Figure 4. This structure resembles 
a comparable real plant, in this case a plant as shown 
in Figure 2, more closely in respect to its branching 
structure and order of flowering, but less in the 
elongation of the diverse internodia and peduncles. 
The mechanisms which control the elongation of the 
peduncles and internodes are quite complicated. The 
variation in internode lengths is often enormous, but 
limited. Nevertheless, or perhaps because of that, it 
has proved difficult to develop suitable mechanisms 
to take care of all the observed lengths. The mechanisms 
which are employed, work at best when the table I 
switch occurs at about 7 time steps, as in Figure 3. 
When the switch takes place at 5 time Steps, as in 
Figure 4, the lengths we obtain fit more poorly. We 
think that also some external factor like exposure to 
light affects the elongation process. Such a factor is 
hard to account for in our model. However, our 
mechanism calculating the "height" of every unit and 
directing the elongation processes accordingly comes 
near to it. 

Even if some of the hypothetical mechanisms which 
were assumed do not stand up to future physiological 
evidence, they still have the merit that on their own. 
and in combination with each other they have proved 
to be sufficient to produce a pattern of development 
and flowering similar to that in real plants. 
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