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Abstract. Methods of analysis for some deterministic 
and stochastic variants of the integrate-to-threshold 
neural coding scheme are presented. Adaptation 
phenomena are modeled by means of feedforward and 
feedback adaptive threshold control. Simulations of 
sinusoidal and step responses reproduce satisfactorily 
the qualitative characteristics of adaptation as com- 
pared with physiological data. It is postulated that 
such adaptive threshold control may be accomplished 
by the release, or conformation change, of molecules 
involved in the control of excitable-channel dynamics. 

I. Introduction 

It is well established that transmission of information 
over relatively long distances in the nervous system is 
accomplished by means of a nonlinear mechanism of 
excitable membranes, which generates all-or-none ste- 
reotyped pulses of depolarization and propagates them 
along neuronal axons (Hodgkin, 1964; Cole, 1968; 
Bullock, 1959). Trains of such "spikes" or "action 
potentials" carry pulse-coded information, for example 
from peripheral sensory transducers to the central 
nervous system (along the afferent pathways) and from 
it to the motor units (along the afferent pathways). It is 
the function of neural encoders to transform time- 
varying analog signals, such as sensory transducer's 
output or other graded potentials resulting from cu- 
mulative electrical activity, into sequences of spike 
discharges. This mode of neural communication raises 
some important questions concerning the coding pro- 
cess involved at the neuron level and the biologically 
significant - information-carrying - parameter of the 
resulting spike trains. Excellent discussions of this 
topic were presented by several authors (e.g. Perkel 
and Bullock, 1968 ; Segundo, 1970 ; Perkel, 1970; Stein, 

1970; Terzuolo, 1970). It is likely that information 
encoded in spatial patterns of activity utilizing "labeled 
lines" with built-in connections is more important to 
the central nervous system than the detailed structure 
of the time-varying pattern of spike activity on a 
certain fiber (Perkel and Bullock, 1968). However, 
study of temporal coding by individual units is re- 
levant, since spatial patterns are generated as a pooling 
of individual time-varying patterns. Furthermore, cer- 
tain sensory phenomena are probably coded by the 
sequence of interspike intervals and not only by the 
mean rate of firing (Perkel and Bullock, 1968; Chung 
et al., 1970). 

Experimental studies on both the details of action- 
potential generation at the membrane level and the 
overall input-output transfer function of the encoder, 
indicate that : 

1. Action-potential discharges occur at a certain 
threshold level of membrane potential. 

2. Up to the firing moment, there is cumulative 
build-up of sub-threshold membrane depolarization. 

3. Changes in the rate of spike occurrence from a 
certain spontaneous level of activity are proportional 
to the graded potential input amplitude. 

4. Firing of a unit is essentially a probabilistic 
event, and the interspike intervals are subject to ran- 
dom fluctuation even at constant stimuli. 

5. The encoder exhibits saturation as well as adap- 
tive properties, therefore it is a nonlinear time varying, 
input dependent system. 

Extensive experimental work, resulting in a vast 
volume of data, led to development of several neural 
encoder models. In spite of obvious over- 
simplifications, these models permit digital simulation 
and mathematical analysis, with valuable insight into 
the coding process (Siebert, 1970; Lee, 1969; Gestri, 
1971; Sanderson and Calvert, 1973; Sugiyama et al., 
1970; Zeevi and Bruckstein, 1977). For the analysis of 
such models, concepts and techniques of communi- 
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cation and information theory are useful and available. 
In addition, this approach permits meaningful com- 
parison between the performance of biological and 
engineering communication systems (Stein, 1970; Stein 
et al., 1972; Gerstein and Perkel, 1972; Knox, 1970; 
Walloe, 1968). Both deterministic and stochastic pulse- 
modulation schemes were considered in the search for 
an adequate model of the neural encoder. 

The probabilistic approach, implied by the exis- 
tence of fluctuations (Verveen and De Felice, 1974) and 
necessitated by the difficulties in allowing for the 
formidable complexity of the process, treats the ac- 
tivity registered on the nerve fiber as essentially ran- 
dom sequences of pulses carrying information in terms 
of some of the overall statistical parameters, for exam- 
ple the mean rate of occurrence (Siebert, 1970; Gestri, 
1971; Bayly, 1968), or the interspike interval distri- 
bution (Perkel and Bullock, 1968; Sanderson and 
Calvert, 1973). Thus rate modulators for a stochastic 
point process (usually the classic Poisson process) were 
employed in describing the behavior of the neural 
encoder. This approach, however, regards the neuron 
as a black box and does not take into account several 
essentials of the coding process. 

The "Integrate-to-Threshold" (ITT) model, or the 
"Integral Pulse Frequency Modulation" (IPFM) has 
several advantages in this context. Indeed, its de- 
finition is an adequate mathematical description of 
what physiologists believe to be the process of spike 
generation at the membrane level. Furthermore, the 
behavior of this model corresponds to some of the 
important experimental tidings and is relatively easy to 
handle mathematically (Lee, 1969 ; Gestri, 1971 ; Zeevi 
and Bruckstein, 1977 ; Li, 1961 ; Bayly, 1968). A further 
advantage of the above model is its suitability for 
unified representation of assorted schemes - for exam- 
ple, some of the stochastic black-box models are 
obtainable through incorporation of random fluc- 
tuations in the ITT model. 

In this work, we present methods of analysis for 
some deterministic and stochastic variants of the 
integrate-to-threshold scheme. The model is then mo- 
dified to account for adaptation phenomena. Finally, 
spectral analysis of the spike trains obtained from the 
models discussed is used in estimating the capability of 
the neural system to convey information reliably. 

II. The Neural Eneoder Model 

Let 2(t)>O, denote the time varying intensity of the 
stimulus applied to the encoder - the input function. In 
the following analysis we shall consider the input, 2(0, 
to be a deterministic function which is a realization of 
a continuous stochastic process {A(t)}. 

The ITT encoder model can be described as fol- 
lows: integration is performed on the positive input 
2(0 and an action potential impulse is initiated when 
the integral representing the cumulated membrane 
depolarization reaches a certain threshold value. The 
integrator is then reset and the whole process restarted 
(Lee, 1969; Gestri, 1971). 

At low firing rates, the action potential pulse is of 
short duration compared to the interspike intervals, 
and can therefore be modelled as a Dirac impulse 
defining the moment of its initiation. Moreover, this 
assumption is further justified by the fact that whenev- 
er neural information has to be transmitted over a long 
distance (compared to the neuronal fiber space con- 
stant), it is encoded in interspike intervals, or times of 
occurrence, and the action potential shape is quite 
irrelevant. Accordingly, the encoder output in re- 
sponse to an input 2(0 can be given by: 

f(t) = ~ 6(t- tk), (la) 
k 

where the time of occurrence t k is defined recursively as 
the solution of the equation 

i 2(~)d~=A(t), (lb) 
t k -1  

such that no other solution t '<  t k exists. Here t o = 0 is 
an arbitrarily assigned time origin and A(t)> 0 is the 
time varying threshold function. 

Thus we have for t = t k > t k_ 1 : 

tic 

A(tk). (1c) 
t k -  I 

Note that if a train of pulses with shape p(t) is to be 
generated, where p(t) accounts for the action potential 
time course, the output will be: 

L(O = 2 p(t - 
k 

or equivalently: fv(t)=p(t),f(t), where �9 denotes the 
convolution operator. In other words, in order to 
reconstruct in the model the neuronal signal, a pulse 
shaping filter with impulse response p(t) can be intro- 
duced. A schematic representation of such a general ide- 
alized neuronal encoder model is presented in Fig. 1. 

The main differences between the various more 
specific ITT models stem from the underlying assump- 
tions with regard to the threshold function, A(t), as 
follows : 

- -  A constant threshold, A(t)=A, defines a de- 
terministic pulse frequency modulator. The resulting 
model was extensively analyzed in the context of 
neural encoders (Lee, 1969; Zeevi and Bruckstein, 
1977; Li, 1961; Bayly, 1968). 
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Fig. 1. Schematic block diagram of the general 
"integrate-to-threshold" encoder. The threshold 

element indicates that f(O = ~ 6( t - tk)Vk when 
k 

v(tk)=A(tk). P(s) denotes the transfer function of a 
pulse shaper such as an action potential generator 

- -  If one assumes that the threshold A ( t ) = A  k is 
constant only over the interspike interval (t  k_ l,  tk), the 
Ak'S being random, a stochastic model with some very 
interesting properties is obtained (Gestri, 197l). 

When A ( t )  is considered to change in a certain 
adaptive way, a complicated output feedback or input 
feedforward scheme is obtained. 

- -  Finally, if A ( t )  is taken as a continuous random 
function, determination of the encoder output reduces 
to a classical crossing problem. This has not yet been 
analytically solved, and encoder behaviour is usually 
simulated on a digital or an analog computer. 

Another possible modification of the integrate-to- 
threshold model is weighted integration of the input at 
the membrane level, accounting for the leaky properties 
(the leaky SSIPFM model) (Poppele and Chen, 1972). 

III. The Deterministic IPFM and its Equivalence 
to Other Pulse Modulation Schemes 

In the case of constant encoder threshold A ( t ) =  A > 0, 
and positive input 2(t), the model is called Single 
Signed Integral Pulse Frequency Modulation 
(SS-IPFM). Extensive theoretical work on this model 
was reported by Li (1961), Lee (1969), and Bayly 
(1968). Lee introduced a "functional model" for the 
encoder useful in spectral analysis and also established 
that SS-IPFM is identical to Continuous Pulse 
Frequency Modulation. This result and the proof of 
equivalence between SS-IPFM and the naturally sam- 
pled Pulse Position Modulation (PPM) are readily 
obtained directly from the definition of these modu- 
lation schemes (Zeevi and Bruckstein, 1977; Rowe, 
1965; Carlson, 1975). 

A) From the definition of the generalized encoder 
(1), setting A ( t ) =  A ,  we have for the SS-IPFM output:  

fSSIPFM (t) ~--" 2 ~([  - -  ~'k)' (2a )  
k 

where the times of occurrence of consecutive impulses 
are related by: 

tk 

2 ( 0 d ( = A .  (2b) 
tk- 1 
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Fig. 2a and b. Functional model of a deterministic a and random b 
SSIPFM encoder (modified from [19]). The deterministic quantizer 
has the input-output function: y = ~ ( x ) = k  if X~(Xk, Xk+ 1), XO =0 
and x k = kA. The random-jump-point quantizer has an input-output 
function : y = ~(x) = k if x E (x k, k k + 1), Xo = 0 and the random variable 

x k = A k 
1 

It is easily seen that, provided t o --0 is the time origin 
as before, an equivalent expression for (2b), defining t k 

implicitly but not  recursively, is: 
tk 

)~(Od~ = k A .  (2c) 
0 

It can be easily checked that the "functional model", 
given in Fig. 2, generates the encoder output defined 
above. As already emphasized by Lee, this scheme is 
useful for the analysis but clearly cannot be directly 
implemented since both integrator and quantizer must 
have infinite dynamic range. 

B) Let us now consider the Continuous Pulse 
Freqency Modulation (CPFM) defined as a train of 
spikes occurring at the zero crossings of a Frequency 
Modulated (FM) sinusoidal continuous wave: 

fcPvg(t) = ~ 6 ( t - -  tk) , (3a) 
k 

where tk's are the zero crossings of the FM wave 
defined for convenience as: 

7C t 

and 2(0 is the modulating input function. 
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Fig. 3a and b. Diagrams illustrating the relationships between the 
various modulation schemes, a SSIPFM encoded signal obtained by 
means of a PM encoder and its PPM equivalent, b PPM encoded 
signal obtained by means of an FM encoder and its SSIPFM 
equivalent 

Using the above definition of FM, we have the 
following expression for the k-th zero crossing: 

7~ t 

o r  

o 

which is identical to (2c). 
Note that the FM wave is usually defined in 

communication textbooks (Rowe, 1965; Carlson, 
1975) as : 

fFM = g sin ogct + 2n s(~)d( 

where co c is the carrier frequency, s(.) the a.c. modulat- 
ing function, and f~ the frequency deviation constant. 

Thus, identical pulse trains are defined by the SS- 
IPFM and CPFM encoders if the corresponding FM 
wave has a carrier frequency of 

COc = 2~  ~ , 

an a.c. modulating function s(t)=2~(t), and a fie- 
t 

quency derivation constant fA = 2A" 

This result, derived first by Lee (1969), makes it 
possible to apply results readily available from c o r n -  

munication theory to the study of neural encoders. The 
same rationale motivates the search for similarities to 
other pulse modulation techniques. 

C) The Naturally Sampled Pulse Position 
Modulation is defined as: 

fPPM(t) = 2 b(t - -  t k )  (4a) 
k 

with tk'S satisfying the equations 

t -  kT = re(t), k~ N,  (4b) 

re(t) is the a.c. modulating function, with d~tm < 1, where 

and T is the clock period. 
Modifying the form of (4b), we obtain 

d 

Comparing (2c) and (4c), it is apparent that if the SS- 
IPFM input, 2(t), is: 

2(t) = ~ 1 -  ~ re(t) , (5a) 

identical times of occurrence characterize the PPM and 
the SS-IPFM output functions. This result will be 
reestablished later, using a PPM spectral analysis 
technique for the SSIPFM output (Zeevi and 
Bruckstein, 1977). 

(5a) also yields 2ac = T '  Note that and 

1 t 
re(t) = - ~ ! 2~(~)d(. (5b) 

D) To complete the comparison of pulse modu- 
lation schemes, we note that the PPM wave is in fact a 
"continuous pulse phase modulation" (CPPM) in the 
sense that its output pulses define exactly the zero 
crossings of the Phase Modulated (PM) continuous 
sinusoidal wave. If, for convenience, the PM wave is 
written as : 

fpM=Ksin{2~2@[t--m(t)] }, (6a) 

then the equation for the k's zero crossing becomes: 

2 1 n - ~  I t -m( t ) ]  = kn, (6b) 

and from (6b) we obtain: tk--kT=m(tk), which is 
exactly (4b). 

Note that the PM wave given in (6a) has a carrier 
1 

frequency of co c = 2n. 2T and the modulating function 

is proportional to rn(t) (Rowe, 1965; Carlson, 1975). 
The above results on the equivalence between 

different pulse modulation schemes are summarized in 
Fig. 3. 



IV. The Random Threshold Model 

Up to this point the threshold, A, was assumed to be a 
noise-free, constant parameter, characteristic of the 
encoder. We shall now consider the case in which after 
emission time t k_ 1, the threshold assumes a value that 
is a realization of a random variable, A k. Let us further 
assume that the probability density function, pAk(a), is 
given for each k, and pAk(a)= 0 for a < 0. [Obviously 
the SSIPFM model is obtained taking the particular 
case of pA~(a)--,6(a--A), for all k.] This model was 
considered by Gestri (1971) who pointed out that, as a 
direct result of the theory of random point processes, a 
"good stochastic pulse frequency modulator" is 
obtained. 

Considering again the "functional encoder" of Fig. 
2, and accounting for the above modifications, we 
obtain a quantizer with random jump points (on the 
input, x, axis) with interval statistics determined by the 
r.v.'s Ak, keN.  Starting from Xo=0 (origin), the jump 
points are the r.v.'s given by: 

k - 1  
xk= ~. A i, k e N .  (7) 

i=0 

Thus a random point process on the x-axis is con- 
structed, a realization of which defines the quantizer 
input-output function. This stochastic quantizer is 
illustrated in Fig. 2b. 

The main problem concerning this random model 
is whether the input function 5~(t), is properly encoded 
so that it can be recovered from the output. Obviously, 
the latter is a random point process in time, with the 
sequence of occurrences, {tk} defining the instants at 

which x(t)= i 2(~)d~ is equal to the Xk'S -- the jump 
t 

0 
points of the quantizer. The situation can be illustrated 
as follows: a traveller on the x-axis with unknown 
time-varying speed (2(t)) sends a radio signal when 
meeting randomly spread signs (at Xk'S ) on his way. 
Knowing the statistics of the distances between con- 
secutive signs on the way, the problem is to find the 
instantaneous velocity of the traveller from the se- 
quence of signals received from him. 

Given the definition of x k, Eq. (7), and the interval 
density distributions, pAk(a), joint probability density 
functions for the quantizer jump points can be com- 
puted over any interval (xa, Xb). This provides a com- 
plete analytical description of the static point process 
generated on the x-axis. Using the relation between x 
and the time varying input ("distance vs. velocity") the 
output point process statistics can be obtained. 

A) Let us now find the relation between the rates of 
the output process {tk} and the jump point process 
{xk}. 
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The x-rate of the process {Xk} is defined as: 

= E {  numberOf jumppOin t s in (x ' x+Ax!  } A x  

where: 
Ax is an interval too short for significant rate 

changes to occur, but sufficiently long compared 
to the intervals between successive jump points, 
and 

E{.} denotes the ensemble average operator. 
The time rate of the output process {tk} is defined 

as  

A f A Y ]  
0UOT(t) = E / ~ 7 -  t 

{number of occurrences in (t,t + At)} 
=E At 

=E  NT(t't + At)  
( At ]' (9) 

where: 
A t is, again, an interval too short for significant rate 

changes to occur, but long enough compared to 
interspike intervals. 

t 
Now, since x(t)= ~ 2(0d~, we can write: 

0 

. .  _ f X r ( t  , t  + A t ) )  

= E ~N.[x(t), x(t + A t)] x(t + A t ) -  x(t)_ I 
(- ~xx At j '  

and because : 

x(t + At ) -  x(t) d 
At ~- ?7 x(t) = ,Z(t), 

is a deterministic value, we immediately have: 

o r  

~OUT(t) = 2(0" Ox(x(t)). (10) 

Thus if the "rate" of the {Xk} process is a constant, 
Qx(x) = ~a0, we have for the output rate 

~OUT(t) = e 0' 2(0. (10a) 

Therefore the output rate follows the time varying 
input function. This result of Gestri (1971) leads to the 
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conclusion that the model described is in fact a 
stochastic pulse frequency modulator. Furthermore, 
since no specific assumptions were made on the thresh- 
old random variables, Ak, describing the jump-point 
interval statistics, result (10) is generally true. [In the 
deterministic case of SSIPFM, we obviously have that 

1 Qo = 1/A is a constant, and thus : GOUT(t) = ~-,~(t), the 

meaning of rate in this case being the inverse of the 
interspike interval.] 

B) It is also of interest to compute the probability 
Px[N(x~,xb)] of exactly N jump points of the {Xk} 
process over the interval (x~, Xb). 

With P~[N(xa, xb) ] and the input function 2(t) 
known, the corresponding probability Pr[N(ta, tb) ] of 
N occurrences (emitted pulses) at the encoder output 
during the interval (t~, tb) is readily obtained, since: 

PT[N(t ~, tb)] = Px[N(x(t .), X(tb))] , 

and this yields immediately 

PT[N(t~,tb)]=Px[N(i 2(~)d~, ! 2(~)d~)]. (11) 

Let us now assume that the random variables Ak, 
defining the process {Xk} in (7) are statistically inde- 
pendent and that the probability density functions, 
pA~(a), are known for each k. It is a classical result that 
if: 

pA~(a)=6oe-~176 for each k, 

[ U(a) denoting the unit step function], then the process 
{Xk} defined in (7) is a Poisson-process with mean 6o 
(Gestri, 1971 ; Papoulis, 1965 ; Snyder, 1975). 

Therefore we have: 

Px[N(Xa, Xb) ] = [e0(Xb-- Xa)] N" exp[-- eo(Xb-- X,)] 
- ( l /N0,  

and using (11) we obtain for the encoder's output 
statistics : 

PT[N(t a, tb)] = [~o ! 2(~)d~]N'exp [- Qo ! 2(~)d(]'(1/N !) �9 

This is indeed the statistics of a non-uniform Poisson- 
process with a rate of Qo~:v = 6o" 2(0, as expected from 
the result (10a) of the previous analysis. 
Note : if instead of a constant mean 6o, the process {Xk} 
has a non-uniform rate of 6x(x), P~[N(x~, xb) ] will be a 
function of: 

Xb 

6x(()d( instead of 6o(Xb--X,) (Papoulis, 1965). 
Xa 

In this case PT[N(ta, tb) ] will be a function of: 

t~ 

~~ S o~(~)ds or j e~ ,t(Od~ .,t(t).dt, 
ta 

S ~ .~(Oa~ 

and the output rate is therefore 

eouT(t)-- ex(x(t)). 2,(t), 

as expected from the more general result (10). 
In conclusion, the Poisson-process rate modulator 

model is obtained as a particular case of the random 
integrate-to-threshold model, with an exponential dis- 
tribution taken for the firing threshold. The distri- 
bution assumed is, however, unphysiological. 

Experiments performed to test fluctuation pheno- 
mena at the neural membrane level (Verveen and De 
Felice, 1974 ; Verveen and Derksen, 1968) provide that 
the relation between probability of response (emission 
of output pulse) and stimulus intensity applied for a 
certain fixed duration A t obeys a Gaussian (eft-shaped) 
distribution law for independent trials. Furthermore, 
the mean of the intensity distribution and the standard 
deviation follow an approximately hyperbolic relation 
to stimulus duration. 

In the context of the random integrate-to-threshold 
model, the probability of response (action potential 
emission) to a stimulus of constant intensity, I, applied 
during a period At is: 

Prob Id~>A k =Prob{I.At>Ak}. 

Let us assume that the threshold random variables, 
{Ak} have the same distribution for all k, thus the 
values of the threshold are in fact results of repeated, 
independent trials on the random variable A with 
distribution PA(a). 

With pA(a) known, we can write that 

I .A t  

Prob{I.At>A}= ~ PA(a)da. (12) 
o 

For a constant stimulus duration, At=const ,  
Prob{I.At>A} is a function of I only thus, mea- 
surement of the probability of response for a range 
of intensities yields the exact shape of the distribu- 
tion function for the random variable A. Note that 
the definition of the distribution function of the r.v. A 
is FA(a)= Prob{A <a}. Thus we have (Papoulis, 1965) 
Prob {I. A t > A} - FA(I. A t). The experimental results 
provide as stated before a Gaussian (err shaped) distri- 
bution, thus the density is PA(a)= JV'(A o, a), a classical 
normal distribution. 



[Note:  since A takes only positive values, a pro- 
blem seems to arise; but this is not too serious since 
PA(a) is narrow around a positive average value 
and for negative a's the density becomes practically 
zero.] 

The mean of the intensity distribution for a certain 
A t is defined as the intensity at which the probability of 
response is 1/2, thus 

Prob{I . . . .  .At>__A} =1 

and obviously 

I . . . .  �9 A t = E[A]  = A o = constant. 

Therefore we have I . . . .  - A~ and this explains the 
A t '  

hyperbolic relation between mean of the intensity 
distribution and the stimulus duration, the same being 
true for the relation between the standard deviation to 
stimulus duration. 

V. Modeling of Adaptation Phenomena 

Adaptation is an important functional characteristic 
encountered at all levels of the organizational hie- 
rarchy of the nervous system. Certain adaptive proper- 
ties are already exhibited by the neuronal encoder at 
the membrane level. As a result, a positive step change 
in the encoder input elicits an immediate increase in 
the rate of firing, followed by a decrease to a certain 
steady state level of activity. This transient response is 
attributable in part to adaptation of the neuronal 
membrane to the new input conditions. In the 
integrate-to-threshold model there are, basically, two 
possibilities of accounting for this adaptation phenom- 
enon: (1) interposition of a preprocessing block (Fig. 
4a) between the model input and the integrate-to- 
threshold encoder (Gestri, 1971), and (2) postulation of 
suitable dynamic behavior for the threshold of the 
encoder model. 

The first approach is rather oversimplified, and 
provides no insight into the inner mechanisms of the 
coding process. The preprocessing block is assumed to 
have a step response similiar to firing rate transients 
such as observed experimentally in the case of retinal 
transient x-cells (Enroth-Cugell and Robson, 1966; 
Wright and Ikeda, 1974). 

The level of firing activity affects membrane excita- 
bility and the initial local depolarization; this can be 
modeled through output-rate dependent changes in 
threshold level. Possible effects of the input on the 
firing threshold can also be investigated. Let us analyze 
now some possible adaptation models for the de- 
terministic and stochastic models. 
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Fig. 4a and b. Modeling adaptation effects by preprocessing of the 
input 2(0 a, and by means of adaptive threshold control b. YF is a 
threshold control function operating on both  input, 2(0, (feedfor- 
ward) and output, f(t), (feedback). The integrate-to-threshold en- 
coder can be either deterministic or random 

A. The Deterministic Case 

Consider that instead of being constant, the threshold 
of the SSIPFM encoder is given by: 

A(t) = A  o +And(t) (14) 

where A o is a positive constant, and And is the adaptive 
component which is a function of the output rate of 
occurrence (feedback effect) and of the input level 2(0 
(feedforward effect). As shown schematically in Fig. 4b, 
this can be written formally as 

And(t ) = ~(2(t), f ( t ) ) ,  

where ~4 ~ denotes a general threshold control operator. 
If the input, 2(t), and the threshold, A(t), are slowly 

changing time functions, the output instantaneous 
rate, Oout(t), is approximately given by: 

~(t)  ~(t)  

~O~ ~ A(t) - A o + And(t)" (15) 

From (15) it is obvious that given a slow dynamic of 
And(t), a step change in 2(0 will result in an immediate 
change in 0out(t), followed by a transient toward a new 
steady state determined by the adaptive threshold 
dynamics. 

Three cases of adaptive threshold control can be 
considered : 

1. feedback only And(t) = ~l(Qo.,); 
2. feedforward only - A,d(t ) = ~2(s 
3. both feedback and feedforward - Aad(t  ) 

= 

where the threshold control function, ~ ,  has been 
separated into two distinct (feedback and feedforward) 
operators ~ 1  and J~fz respectively. 

Assigning to operators ~1  and H2 d.c. gains of M 
and N respectively, we can obtain the steady-state 
output rate of firing for a constant input, 2 o. 
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Fig. 5a and b. Models implemented in digital simulation of adaptive 
effects, a The deterministic model using linear first order feedforward 
and feedback operators. M and N denote variable gains, b 
Simulation of a random threshold model using a deterministic 
feedback scheme accounting for the meao rate of firing only 

In the case of feedback only, we have: 

20 
Qouts~ - Ao + M0outs ~ 

yielding : 

~/4M2o + A2o- Ao 
0outs, = 2M 

The feedforward case has for the steady state: 

20 
eouts, - Ao + N2 ~ 

which indicates saturation at high constant input levels 
(Qout, ~ I / N  as )oo~, oo). 

In the case of both feedback and feedforward we 
have: 

2o 
0OUts, = Ao  + MOo~t," + N2 ~ 

and the steady state is 

]/N222 + 2o(4M + 2NA o) + A2 - (X2o + Ao) 
Oo.t,, = 2M 

Here again the input-output steady-state function in- 
dicates saturation at 0outss = 1/N. 

Note that existence of a steady state is by no means 
a necessary characteristic feature of a nonlinear 
control system; the above solutions are correct since 
a steady state is actually reached. 

Further insight into the behavior of the adaptive 
encoder is obtainable by means of digital simulations. 
For this purpose we use the approximation given in 
(15) and the scheme with distinct feedback and feedfor- 

ward operators for adaptive threshold control. We 
assume, for the sake of simplicity, that Jr1 and Jr2 are 
linear, first-order low pass filters, with d.c. gain 1, 
cascaded by variable gain controls M and N represent- 
ing the feedback and feedforward gains respectively, as 
shown in Fig. 5a. This model was digitally simulated 
using the CSMP language. 

Examples of output instantaneous rate of firing as a 
function of time are shown for step and sinewave 
inputs in Figs. 6 and 7 respectively. By choosing the 
gain parameters M and N, different weights are assign- 
ed to feedback and feedforward in the threshold 
control function. The parametric set of step responses 
in Fig. 6 exhibit satisfactory adaptation, namely: a 
sudden increase in the rate of firing at the onset of the 
step stimulus, decreasing rapidly to a well-defined 
steady state. These simulated responses confirm the 
existence of a steady-state as calculated above. 

Since sine-waves are used extensively for analysis of 
cellular input-output functions even where it is known 
that the system is nonlinear, the adaptive model 
responses to sinusoidal inputs were determined as well. 
This permits comparison with experimental results 
and yields a qualitative idea of distortions caused by 
adaptive threshold control (see Fig. 7). 

One can also attempt to describe these responses 
analytically by solving the system's differential equa- 
tions ; denoting the feedback and feedforward 
operators' outputs by A l(t ) and Aa(t ) respectively, we 
have : 

0out(t) = ),(t)/(A o + M A  t(t) + gA2(t)) 

z 1 dAl ( t )+Al ( t )=Oout ( t  ) (16) 

. /  

z2 ~tt A2(t) + A2(t) = 2(t) 

where "c 1 and ~2 are the LPF's time constants. 
However, a closed form solution appears to be 

possible only in a limited number of cases in which it is 
also quite troublesome to obtain and provides no 
further insight into the system behavior in the transient 
phase. 

B. The Random Encoder 

The random integrate-to-threshold model presented in 
Sect. IV entails no specific assumptions regarding the 
threshold random variables A k. In the most general 
approach to the adaptation problem, we could assume 
that the output rate has some effect on the distribution 
of the threshold random variable. For example, a high 
rate of activity over a certain time interval would shift 
the expected value of the random threshold to a higher 
value and increase the next interspike interval, thereby 
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reducing activity through a negative-feedback mecha- 
nism. Some effect of the input on other statistics (such 
as the standard deviation of the threshold random 
variable) could explain changes in firing regularity 
with input intensity. Temporal changes in output- 
dependent statistics of the threshold random variables 
are reflected in the local rate of jump points of the 
encoder quantizer as defined in Sect. IV. Thus 0x(x) at 
time t depends on the output rate ~out(t). We shall 
henceforth denote the implicit time dependence of the 
output controlled local quantizer jump point rate ~o~ by 
0~(t). Thus we can write the expression for the output 
rate of the random encoder, (10), for this case as: 

Oou,(t)=Ox(O ,~(O. 
Defining the controlled jump point rate as: 

ax(t) ~- Oxo - ~ [0o . , ( t ) ]  

where ~f  denotes as before a general operator, we have 

~~ = {@x0 - 24~ [Ouut(t)] }2(t). (1 7) 

Let us assume that ~[~ou~(t)] has a positive d.c. gain of 
K. The arguments presented for the steady-state ana- 

lysis in the deterministic case are still valid. Thus for a 
constant input 2 o we have: 

Qoutss = [Qx0 --  K~outss]J~o, 

o r  

Qxo2o 
~o u t~s -  1 + K 2  o ' 

This expression for the steady-state firing rate indicates 
saturation at high input levels. Steady state responses 
to sinusoidal inputs can also be obtained analytically, 
assuming that the output becomes periodic and using 
its spectral decomposition. 

A schematic diagram of the feedback model de- 
scribed above is presented in Fig. 5b. It is in fact a 
deterministic model accounting for random threshold 
effects in terms of the mean rates of firing only. Using a 
linear first-order low-pass filter for the feedback oper- 
ator 5r ~, one can write the system's equations similar to 
the deterministic case. Here, however, it is possible to 
obtain a closed form solution for step responses. 

Given la feedback transfer function of ~ ( s ) = l /  
(sT+l), the output of which we denote by ~l(t), 
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the following equations for the adaptive system (Fig. 
5b) are obtained: 

Oout(t)  = s  [ 0 ~ o  - Koch(t)] 

27 ddt Oxl(t) ~- ~xX(t) = ~out(t), 

yielding for ~i( t )  the differential equation with time- 
varying coefficients : 

d 1 0~o 2(0. 
~ l ( t ) +  3 [l+K2(t)]Qxi(t)= z 

For a step input 2(0 = 2oU(t) and initial conditions due 
to constant background level of activity, represented in 
this model by the response to 2(0= 1 for t<0 ,  the 
system equations provide the following expression for 
the response : 

[ K(2 o - 1 )  exp(-t/'Cs) J (18) ~~ 1 + K +  1 

0xo2o 
with a steady state level ~out~s- 1 +K,~ o as obtained 

before, and an overall system time constant 
% = ~/(1 + K2o). 

An interesting feature of the adaptive system is the 
dependence of the step response time constant on 
input amplitude and feedback gain. This is a well- 
known characteristic of adaptive gain control systems. 

For a sinusoidal input the differential equation is 
rather difficult to integrate analytically; numerical 
methods which are possible are equivalent to the 
digital simulation of the system's behavior. The latter 
method was employed because of the convenience in 
using CSMP. 

A parametric set of simulated step responses is 
presented in Figs. 8-10. Since we do not simulate a 
specific physiological system, and therefore do not seek 
specific parameter identifications, all variables in the 
simulations were normalized so that suitable scaling 
can be introduced. In Fig. 8, the varying parameter is 
the d.c. loop gain, K. This simulation demonstrates 
that the loop gain has an effect on both the level of the 
steady state and on the duration of the transient phase, 
in accordance with (18). The varying parameter in Fig. 
9 is the time constant, r, of the first-order low-pass 
feedback filter where, as expected, the shorter the time 
constant, the steeper the descent towards the steady 
state. As also expected, the input step amplitude has an 
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effect both on the steady-state level finally reached and 
on the overall system's time constant (Fig. 10). 

Simulated sine-wave responses are given in Fig. 11 
through 13. For a given feedback time constant, 
increase of the loop gain results in drastic nonlinear 
suppression of the output's amplitude, hence in more 
pronounced distortions (Fig. 11). Given a relatively 
small loop gain, which yields a reasonable output 
dynamic range, the effect of reduced feedback time 
constants was reduction of total harmonic distortion 
(Fig. 12). Note that for longer time constants the 
resulting responses are quite asymmetric, with a higher 
rate of change of the output firing at the rising phase. 
The distortion became obviously weaker as the si- 
nusoidal input amplitude decreased, with the atten- 
dant decrease in output modulation depth (Fig. 13). As 
noted in the simulation results, a saturation effect is 
recorded at high amplitudes of the input sinewave, its 
level being determined by the feedback gain, as shown 
in Fig. 11. 

VI. Spectral Analysis 
In this section, we discuss methods used in spectral 
analysis of deterministic and stochastic integrate-to- 

threshold models. A specific method for spectral ana- 
lysis of SSIPFM, based on similarity to PPM as 
discussed in Sect. III (Zeevi and Bruckstein, 1977), is 
presented. 

Spectral Analysis of SSIPFM Signal 
Using the "functional encoder" defined by himself, Lee 
(1969) has shown that for the purpose of spectral 
analysis we can write an equivalent expression for 
ASIPFM(t) a s :  

Lee's derivation of (19) proceeds as follows: 
In the functional model (Fig. 2a), the quantizer is 

replaced by an equivalent parallel connection of a 
linear (L) and a nonlinear (NL) device (Fig. 14). The 
linear block, L, is defined as an amplifier with gain 1/A, 
while the nonlinear, NL, device has a sawtooth input- 
output function. Thus (see Fig. 14) 

1 
Yl z ~ X  

1 
y2=~(x-kA) for kA<x<(k+l)A 

(2o) 
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and thus the output  of the parallel scheme is : 

y=yl(x)-y2(x)=k for kA<x<(k+l)A, 
which is the quantizer transfer function. 

Considering the functional model  shown in Fig. 2a 
with the quantizer 's  equivalent, we have for the output :  

d f(t) = ~ ( y l ( x ) -  y2(x)) ; 

t 

Substituting j 2(~)d~ for x, we have 
0 

f(t) = d l  ,~(~)d~-y2 ,~(~)d , 
0 

which yields 

f(t)=2(t)[ 1-~xy2(x) x = o~ ~(~) a ~]" (21) 

Writing the Fourier  series for y2(x) and differentiating, 
we obtain : 

dy2(x) 2 ~ 27~n dx A cos ~ - -  x .  (22) 
n = l  

Again substituting i 2(~)d~ for x in (22), and introduc- 
0 

ing this series into (21), we arrive at the expression 
given for the SSIPFM signal in (19). 

We shall give here an analytical derivation of 
Eq. (19) based on the formalism devised by Rowe 
(1965) for analysis of the naturally sampled P P M  
Rowe's technique employs the following proper ty  of 
the Dirac delta function: if 9(t) is a function having a 



single, simple zero at 7, [9(7)= 0 and g(t)# 0 iff t =I= y], 
then : 

6(t - ?) = 6(g(t))Ig'(t)l. (23) 

Let us define a function g(t, k) as: 

t 

g(t, k) = ~ 2(ff)d~- kA.  (24) 
0 

It is readily verified that 9(t, k) is a monotonic increas- 
ing function of t, [-2(0>0 by definition], g(t,k)=O 
having the unique solution at t = t  k [-see Eq. (2)]. 
Furthermore, since 9'(t,k)=2(t) is positive, we can 
write (23) for this ease as: 

6(t-- tk) = c~(g(t, k))2(t). (25) 

Substituting (25) for 6( t - tk )  in (2a), we have: 

fSSlVFM(t) = 2(t) ~ c~(9(t , k)) 
k 

o r  

fSSIPFM(t) = 2(0 2 6 2(~)d~- kA . (26) 
k 

We now define an auxiliary variable x as follows: 

t 

~ 2(0d~ (27) X ~ 

0 

Using Fourier expansion of a sequence of uniformly 
spaced (along the x-axis) delta functions (Papoulis, 
1962), we formally obtain 

+ o0 1 2 ~ 2~zn 
L c o s - ~ - x .  (28) E (~(X -- kA) = Av A n  = 1  

k =  - o o  

Now, substitution of (27) for x in (28) yields: 

= cos 2(~)d~ �9 3 2 ( ~ ) d ( - k A  ~- -~ ~ n=l 
k = - c o  

(29) 

From (26) and (29) it follows immediately that: 

2. c o s < - -  2(~)d~ fss~PvM(t) = 2(0 + A-, = 1 ( A 

which is the required result stated in (19). 
Thus, by applying the formalism of PPM spectral 

analysis to the SSIPFM signal, we readily arrive at the 
expression found by Lee. This fact also shows that 
there is intrinsic similarity between the PPM and 
SSIPFM (see results of Sect. III). 

Note" Separating the input function, 2 (0>0,  into its 
d.c. and a.c. components (as is usually done): 

2(t) = 2do + 2a~(t), 

77 

and dividing g(t, k) [-defined in (24)] by 2ar we obtain : 

t 

1 ! ;o.~(0d~ O(t ,k )=t -k  A + 
Z d c  

Using 0(t, k) instead of g(t, k), we obtain the equivalent 
form for f i t ) :  

The counterpart of this expression in the naturally 
sampled PPM, having a clock of period T and modu- 
lated by an input function re(t), is (Rowe, 1965): 

fppM(t) = (1 - m'(t)) ~ 6 ( t -  k T -  re(t)), (31) 
k 

where the derivative of the input, m'(t), is less than 1. 
Now, comparing Eqs. (30) and (31), it is apparent that 
if 

A 1 t 
T = ~  and m ( t ) = -  ~ !2ac(~)d~ , 

we obtain fppM(t)----fSSlPFM(t); these are also the results 
of Sect. III (5a, b). 

Note that because 2(0 > 0, we have 

m'(t)= 2~c(t) <1 ,  
)~dc 

which satisfies the requirement for PPM. 
Equation (19) yields valuable insight into the spec- 

tral characteristics of the output f(t). It is readily seen 
that the spectrum of the encoder output comprises that 
of the slowly changing input, 2(0, as well as sidelobes 
centered at multiples of the frequency 2rc2ajA , result- 
ing from combined amplitude and frequency 
modulation. 

Random Model Output Spectral Analysis 

In Section IV, we presented a random integrate-to- 
threshold model which generates, subject to certain 
assumptions concerning the threshold random vari- 
ables, a rate-modulated Poisson process. The nonun- 
iform Poisson process is nonstationary and a specific 
technique is needed to obtain its spectral characteris- 
tics. Assuming that the modulating function, 2(0, is a 
realization of a stationary and ergodic stochastic pro- 
cess, {A(t)}, we have the following result for the 
encoder output autocorrelation (Knox, 1970; Bartlett, 
1963): 

Rf(z) = 6(~) 2ac + RA('C ) , (32) 
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where E[2(t)] = 2ac (ergodicity) and R A is the autocor- 
relation of the process {A(t)}. 

From (32) the spectrum is readily obtained as: 

Sy(co) = 2de + Sa(co ) . (33) 

If {A(t)} is a bandlimited process - or equivalently any 
realization 2(0 is a slowly changing signal, - it is 
recoverable by low-pass filtering. The LPF output 
signal thus obtained is distorted by an additional 
flatspectrum component as indicated in (33), the 
signal-to-distortion ratio being 

+ W  

S A(o))d(o 
S - w  

D 2ac2W ' 

where W denotes the bandwidth of the LPF. 
From the spectral analysis of the neural encoder 

output it is apparent that improvement in signal-to- 
distortion ratio is obtainable by signal amplification 
or, alternatively, by means of a multipath neural 
communication scheme (Knox, 1970; Bayly, 1968 ; Lee 
and Milsum, 1971 ; Milgram and Inbar, 1976). 

VII. Discussion 

Understanding of the functional characteristics of neu- 
ral encoders is of paramount importance in analysis of 
neural communication systems. Because of the com- 
plexity of the processes involved, and in order to 
account for the vast volume of available experimental 
data, there is need for relatively simple models than 
can simulate the observed behavior qualitatively and 
thereby provide insight into the physiological mecha- 
nisms involved through mathematical analysis 
(Harmon and Lewis, 1966). As such, the integrate-to- 
threshold model has been previously employed both in 
analysis of neuronal encoders and sensory transducers 
(Gestri, 1971 ; Zeevi and Bruckstein, 1977 ; Stein et al., 
1972; Knox, 1970; Stein and French, 1970), and as a 
component of complex neural information and control 
schemes (Lee and Milsum, 1971; Milgram and Inbar, 
1976 ; Pavlidis, 1964). 

Here, we were particularly interested in stochastic 
threshold fluctuations and adaptive phenomena. The 
latter were previously modeled using time-varying 
controlled membrane time constants and the leaky 
SSIPFM, with good fitting to experimental step- 
response data (Fohlmeister et al., 1974; Fohlmeister, 
1973 ; Fohlmeister et al., 1977a, b). However, analysis 
of such models is quite complicated. In comparison the 
adaptive threshold control models, for both stochastic 
and deterministic cases, are relatively simple and 
straightforward, and yield good qualitative results in 
simulations. Furthermore, at least for some cases, 

closed form solutions indicating satisfactory adaptive 
properties are obtainable. 

Both feedback and feedforward adaptive effects on 
threshold may be accomplished through voltage- 
dependent modulation of the concentration of mo- 
lecules involved in opening or closing of ionic chan- 
nels. Alternatively, such threshold control may be 
achieved through molecular conformational changes. 
However, in order to interpret the feedback or feedfor- 
ward mechanism in molecular terms, we would have to 
confine the analysis to a specific receptor or neuron 
system, whereas the object of this paper is a general 
framework for modeling of adaptive threshold pheno- 
mena. This is also the rationale for normalization of 
system parameters and variables, so that suitable 
scaling can be readily introduced in any specific case. 

Since changes in feedback gain affect the encoder's 
response time constants, the transfer characteristic of 
a population of cells may be modulated in concert 
through overall adaptive control of the cellular feed- 
back gains. This may be mediated by lateral inhibition, 
by pooling of ionic channel blocking molecules, and/or 
by modulation of extracellular ionic concentrations. 
The behavior of overall adaptive populations of such 
cross-coupled encoder units is currently under in- 
vestigation. 
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