
The Journal of Real-Time Systems, 1, 243-264 (1989)
�9 1989 Kluwer Academic Publishers. Manufactured in The Netherlands.

Mode Change Protocols for Priority-Driven
Preemptive Scheduling

LUI SHA
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213

RAGUNATHAN RAJKUMAR
Department of Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

JOHN LEHOCZKY
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213

KRITHI RAMAMRITHAM
Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003

Abstract. In many real-time applications, the set of tasks in the system, as well as the characteristics of the tasks,
change during system execution. Specifically, the system moves from one mode of execution to another as its
mission progresses. A mode change is characterized by the deletion of some tasks, addition of new tasks, or
changes in the parameters of certain tasks, for example, increasing the sampling rate to obtain a more accurate
result. This paper discusses how mode changes can be accommodated within a given framework of priority driven
real-time scheduling.

1. Introduct ion

To successfully develop a large-scale real-time system, we must be able to manage both
the logical complexity and timing complexity by using a disciplined approach. The logical
complexity is addressed by software engineering methodology, while the timing complexity
is addressed by research in real-time scheduling algorithms (Lehoczky and Sha 1986;
Lehoczky, Sha and Strosnider 1987; Leinbaugh 1980; Leung and Merrill 1980; Liu and
Layland 1973; Rajkumar, Sha and Lehoczky 1987; Ramamritham and Stankovic 1984; Sha,
Rajkumar and Lehoczky 1987; Zhao, Ramamritham and Stankovic 1987). An important
class of scheduling algorithms is known as static priority scheduling algorithms. These
algorithms have several attractive properties. First, they are simple to implement. Second,
they have good performance. In a uni-processor, the CPU utilization bound of a randomly
chosen periodic task set is 88 percent (Lehoczky, Sha and Ding 1987), while the worst-case
bound for any task set is 69 percent (Liu and Layland 1973). In many applications, periodic
tasks are often harmonic or nearly harmonic, and this leads to utilization bounds at or near
100 percent.

In addition to good performance found in practice, static priority scheduling algorithms
are analyzable for a wide variety of practical conditions such as: (a) the scheduling of a
mixture of periodic and aperiodic tasks (Lehoczky, Sha and Strosnider 1987), (b) the handling
of transient overloads (Sha, Lehoczky and Rajkumar 1986), and (c) the effect of using

244 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

semaphores (Sha, Rajkumar and Lehoczky 1987) and Ada rendezvous (Goodenough and
Sha 1986) for task synchronization. From a software engineering point of view, these algo-
rithms translate complex timing constraints into simple resource utilization constraints. As
long as the utilization constraints of the CPU, I/O channels and communication media are
observed, the deadlines of periodic tasks and the response time requirements of aperiodic
tasks will both be met (Lehoczky and Sha 1986). This means that the real-time software
can be modified freely as long as the utilization bounds are observed. Furthermore, should
there be a transient overload, the tasks that will miss deadlines will miss them in reverse
order of importance, and the number of tasks missing their deadlines will be a function
of the overload (Sha, Lehoczky and Rajkumar 1986).

However, in many applications neither the task set nor the task parameters can remain
static throughout the mision. A change in operational mode often leads to the modification
of task parameters (for example, task period and execution time) as well as the addition
of some new tasks and deletion of some existing tasks. For example, a phase array radar
can adjust its sampling rate for the tracking task. Generally speaking, there are two types
of mode change issues: application issues and runtime management issues. Application
issues deal with the semantics of mode change: the condition for initiating a mode change,
the set of tasks to be replaced or modified, and the sequence to delete, add and modify
tasks. In this paper, we do not address the application issues of mode change. We assume
that when a mode change is initiated, we are given a list of tasks to be modified, added
or deleted, and the sequence to do so.

The focus of this paper is on the runtime management of the mode change process. Spe-
cifically, we focus upon the scheduling of mode change activities and of tasks during the
transition period of mode change. Our objective is to accomplish the mode change process
quickly, subject to keeping the consistency of shared data and to meeting the deadlines
of tasks that must execute before, during, and after a mode change. This paper is intended
to provide an overview on rate-monotonic based scheduling methods and to show how mode
changes can be accommodated within this framework. In addition, we analyze the time
delay associated with using the mode change protocol presented in this paper.

This paper is organized as follows. In Section 2, we first review the rate-monotonic algo-
rithm and the priority ceiling protocol for scheduling periodic tasks since our mode change
protocol will be designed to be compatible with them. In Section 3, we develop the basic
mode change protocol and analyze the properties of the basic protocol. In Section 4, we
first examine some possible alternatives to the basic protocol. Next, we consider the inter-
play between this basic protocol and other scheduling issues, namely, the period transforma-
tion method for maintaining stability under transient overload and the server algorithms
for scheduling both periodics and aperiodics. Finally in Section 5, we present the conclud-
ing remarks.

2. Scheduling periodic tasks

In this section, we first review the rate-monotonic scheduling algorithm for independent
periodic tasks and then review the priority ceiling protocol designed for the synchronization
of periodic tasks using the rate-monotonic scheduling approach. We shall first define the

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 245

basic concepts and state our assumptions before presenting a review of the scheduling algo-
rithms. A job J with execution time C is a sequence of instructions that will continuously
use the processor until its completion if it is executing alone on the processor. That is,
we assume that a job J does not suspend itself, say for I/O operations; however, such a
situation can be accommodated by defining two or more jobs. In addition, we assume that
the critical section of a job is properly nested, that is, semaphores will be unlocked in
the reversed order of locking. A job will release all of its locks, if it holds any, before
or at the end of its execution. In all our discussions below, we assume that jobs Jl, J2
Jn are listed in descending order of priority with J~ having the highest priority. A periodic
task r is a sequence of the same type of job J occurring at regular intervals, {kT, k = 0, 1,
2 }, where T is the period of task ~-. An aperiodic task is a sequence of the same
type of job occurring at irregular intervals. Each task is assigned a fixed priority P, and
every job of the same task is initially assigned that task's priority. If several jobs are eligible
to run, the highest priority job will be run. Jobs with the same priority are executed according
to a first-come first-serve discipline. When a job J is forced to wait for the execution of
lower priority jobs, job J is said to be blocked. When a job waits for the execution of higher
priority jobs or equal priority jobs that have arrived earlier, it is not considered blocked.

In the following, we first review the scheduling of independent periodic tasks. Next, we
review the synchronization of periodic tasks and illustrate the issues with an example.

2.1. Scheduling independent periodic tasks

From a scheduling point of view, tasks are considered independent if they do not need
to synchronize their executions with each other. Given a set of independent tasks, the sched-
uler can always preempt the execution of a lower priority task whenever a high priority
task is ready to execute. Given a set of independent periodic tasks, the rate-monotonic sched-
uling algorithm gives a fixed priority to each task and assigns higher priorities to tasks
with shorter periods. A task set is said to be schedulable if all its deadlines are met, that
is, if every periodic task finishes its execution before the end of its period. Any set of inde-
pendent periodic tasks is schedulable by the rate-monotonic algorithm if the condition of
Theorem 1 is met (Liu and Layland 1973).

THEOREM 1: A set ofn independent periodic tasks scheduled by the rate-monotonic algo-
rithm will always meet its deadlines, for all task phasings, if

C1 Cn n(21/n
T + . . . - l)

where Ci and T/are the execution time and period of task ri respectively.

Theorem 1 offers a sufficient (worst-case) condition that characterizes the schedulability
of the rate-monotonic algorithm. This bound converges to 69 percent (ln 2) as the number
of tasks approaches infinity. Table 1 shows values of the bound for 1 to 10 tasks.

246 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

Table 1. Worst-case scheduling bounds as
a function of number of tasks.

Scheduling Bounds

Number of Tasks Utilization Bound

1 1.0
2 0.828
3 0.779
4 0.756
5 0.743
6 0.734
7 0.728
8 0.724
9 0.720
10 0.718

The utilization bound of Theorem 1 is pessimistic because the worst-case task set is con-
tribed and rather unlikely to be encountered in practice. For a randomly chosen task set,
the likely bound is 88 percent (Lehoczky, Sha and Ding 1987). To know if a set of given
tasks with utilization greater than the bound of Theorem 1 can meet its deadlines, the con-
ditions of Theorem 2 can be checked (Lehoczky, Sha and Ding 1987).

TheOREM 2: A set of n independent periodic tasks scheduled by the rate-monotonic algo-
rithm will always meet its deadlines, for all task phasings, if and only if

u 1 < i < n, min ~-~j Cj 1 FlTkl
j = l

where Cj and Tj are the execution time and period of task rj respectively and R i -- {(k, l)
I 1 <_ k <_ i , l = 1, . . . LTi /TkJ} .

Theorem 2 provides the exact criterion for testing the schedulability of independent peri-
odic tasks using the rate-monotonic algorithm. In effect, the theorem checks if each task
can complete its execution before its first deadline by checking all the scheduling points. ~
The scheduling points for task r are r 's first deadline and the end of periods of higher
priority tasks within r 's first deadline. In each application of the formula, i corresponds
to the task ri whose deadline is to be checked, and k corresponds to each of the tasks that
affects the completion time of task r, that is, task ri itself and the higher priority tasks.
For given i and k, I represents the scheduling points of task rk. For example, suppose that
we have tasks r~ and r2 with periods T~ = 5 and T2 = 14. For task (ri, i = 1) we have
only one scheduling point, the end of task r;s first period, that is, i = k = 1 and (l = 1,
. . . . LTi/TkJ = LT~/T~ J = 1). The scheduling point is, of course, r~s first deadline
(lTk --- 5, l = l, k = 1). For task (ri, i = 2), there are two scheduling points from all
higher priority tasks, (rk, k = 1), that is, (l = 1 LTi/TkJ = LT2/T~J = 2). The
two scheduling points correspond to the two end-points of task r~s period within the first

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 247

deadline of task r2 at 14, that is, (lT k = 5, l = 1, k = 1) and (IT k = 10, l = 2, k = 1).
Finally, there is the scheduling point from r~s own first deadline, that is, (lT k = 14, l = 1,
k = 2). At each scheduling point, we check if the task in question can complete its execu-
tion at or before the scheduling point. A detailed illustration of the application of this theorem
and its generalization is given in Example 3 in Section 2.3.

2.2. Task synchronization

In the previous sections we have discussed the scheduling of independent tasks. Tasks, how-
ever, do interact and hence need to be synchronized. Common synchronization primitives
include semaphores, locks, monitors, and Ada rendezvous. Although the use of these or
equivalent methods is necessary to protect the consistency of shared data or to guarantee
the proper use of non-preemptable resources, their use may jeopardize the ability of the
system to meet its timing requirements. In fact, a direct application of these synchronization
mechanisms may lead to an indefinite period of priority inversion and low schedulability.
However, the discussion is limited to scheduling within a uniprocessor. Readers who are
interested in the multiprocessor synchronization problem are referred to (Rajkumar, Sha
and Lehockzy 1988).

Example 1: Suppose Jl, -/2, and -/3 are three jobs arranged in descending order of priority
with Jt having the highest priority. Let jobs J~ and J2 share a data structure guarded by
a binary semaphore S. Suppose that at time h, job J3 locks the semaphore S and executes
its critical section. During the execution of job J~s critical section, the high priority job
J~ is initiated, preempts J3 and later attempts to use the shared data. However, job Jl will
be blocked on the semaphore S. One might expect that J~, being the highest priority job,
is blocked no longer than the time for job J3 to complete its critical section. However,
the duration of blocking is, in fact, unpredictable. This is because job J3 can be preempted
by the intermediate priority job J2. The blocking of J3, and hence that of J~, will continue
until J2 and any other pending intermediate jobs are completed.

The blocking period in this example can be arbitrarily long. One way to deal with the
priority inversion problem is to let the critical section of each task to run to completion
without interruption. This is know as the kernelized monitor approach (Mok 1983), which
is an effective approach for short critical sections. Another approach is to properly manage
task interactions. The priority ceiling protocol is a scheme designed for the use of binary
semaphores. This protocol ensures (1) freedom from mutual deadlock and (2) that a high
priority task will be blocked by lower priority tasks for the duration of at most one critical
section (Goodenough and Sha 1988; Sha, Rajkumar and Lehoczky 1987).

Two ideas underlie the design of this protocol. First is the concept of priority inheritance:
when a task r blocks the execution of higher priority tasks, task z should execute at the
highest priority level of all the tasks blocked by r. Secondly, we must guarantee that each
newly started critical section executes at a priority level that is higher than the (inherited)
priority levels of the preempted critical sections. It was shown in (Sha, Rajkumar, and
Lehoczky 1987) that such a prioritized total ordering in the execution of critical sections

248 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

leads to the two properties mentioned above. To achieve such prioritized total ordering,
we define the concept of the priority ceiling of a binary semaphore S to be equal to the
highest priority task that may lock S. When a job J attempts to execute one of its critical
sections, it will be blocked unless its priority is strictly higher than all the priority ceilings
of semaphores currently locked by jobs other than J. If job J blocks, the job that holds
the lock on the highest priority ceiling semaphore is said to be blocking J and hence inherits
J's priority. A job J can, however, always preempt another job executing at a lower priority
level as long as J does not attempt to enter a critical section.

Example 2: Suppose that we have two jobs Ji and J2 in the system. In addition, there
are two shared data structures protected by binary semaphores S~ and $2 respectively. Sup-
pose the sequence of processing steps for each job is as follows:

J, = { P(SO P(S2) V(S2) V(SO }

J: = { P(S~) P (S ,) v (s ,) , . . . v (s o } .

Recall that the priority of job J l is assumed to be higher than that of job J2. Thus, the
priority ceilings of both semaphores SI and $2 are equal to the priority of job Jl. Suppose
that at time to, J2 is initiated and it begins execution and then locks semaphore $2. At time
fi, job J1 is initiated and preempts job J2 and at time t2, job Jl tries to enter its critical
section by making an indivisible system call to execute P(SI). However, the runtime system
will find that job J~s priority is not higher than the priority ceiling of locked semaphore
$2. Hence, the runtime system suspends job Jl without locking S~. Job J2 now inherits
the priority of job J~ and resumes execution. Note that J~ is blocked outside its critical
section. As J I is not given the lock on S~ but suspended instead, the potential deadlock
involving J~ and Jz is prevented. Once J2 exits its critical section, it will return to its assigned
priority and immediately be preempted by job J~. The J~ will execute to completion, and
finally J2 will resume and run to completion.

Let Bi be the longest duration of blocking that can be experienced by a job of task ri.
The following two theorems indicate whether the deadlines of a set of periodic tasks can
be met if the priority ceiling protocol is used.

THEOREM 3: A set of n periodic tasks using the priority ceiling protocol can be scheduled
by the rate-monotonic algorithm if the following condition is satisfied (Sha, Rajkumar and
Lehoczky 1987):

Cl Cn ~ Bn-l'] < n(21/n - 1).
y + . . . + y + m~x r n - , _) -

THEOREM 4: A set of n periodic tasks using the priority ceiling protocol can be scheduled
by the rate-monotonic algorithm for all task phasings if the following condition is satisfied
(Sha, Rajkumar and Lehoczky 1987).

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 249

u 1 <_ i <- n, min Cj 1

where C/, T/and Ri are defined in Theorem 2, and B i is the worst-case blocking time for
a job of task r,.

Remark: Theorems 3 and 4 generalize Theorems 1 and 2 by taking the blocking duration
of a job into consideration. The Bi's in Theorems 3 and 4 can be used to account for any
delay caused by resource sharing. Note that the upper limit of the summation in the theorem
is (i - 1) instead of i, as in Theorem 2.

In the application of Theorems 3 and 4, it is important to realize that under the priority
ceiling protocol, a task r can be blocked by a lower priority task rL if rL may lock a sema-
phore S whose priority ceiling is higher than or equal to the priority of task r, even if
r and rL do not share any semaphore. For example, suppose that z~. locks S first. Next,
r is initiated and preempts rL. Later, a high priority task rn is initiated and attempts to
lock S. Task r/4 will be blocked. Task rL now inherits the priority of r/4 and executes. Note
that r has to wait for the critical section of rL even r and rL do not share any semaphore.
We call such blocking, push-through blocking. Push-through blocking is the price for avoid-
ing unbounded priority inversion. I f task rL does not inherit the priority of ZH, task T/4
can be indirectly preempted by task r and all the tasks that have priority higher than that
of z L. Finally, we want to point out that even if task ~'/4 does not attempt to lock S but
attempts to lock another unlocked semaphore, z n will still be blocked by the priority ceil-
ing protocol because r/4's priority is not higher than the priority ceiling of S. We call this
form of blocking, ceiling blocking. Ceiling blocking is the price for ensuring the freedom
of deadlock and the property of a task being blocked at most once. Both ceiling blocking
and push-through are accounted for by B i in Theorems 3 and 4.

2.3. An example

In this section, we give a simple example to illustrate the application of the scheduling
theorems.

Example 3: We would like to check the schedulability of the following task set.

1. Periodic task rl: execution = 40 msec; period = 100 msec; deadline is at the end of
each period.

In addition, r3 may block r~ for 10 msec through the use of a shared communication
server and task r2 may block rl for 20 msec through the use of a shared data object.

2. Periodic task r2: execution time = 40 msec; period = 150 msec; deadline is 20 msec
before the end of each period.

3. Periodic task r3: execution time = 100 msec; period = 350 msec; deadline is at the
end of each period.

250 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

Since under the priority ceiling protocol a task can be blocked by lower priority tasks
at most once, the maximal blocking time for task rl is BI = max(10, 20) msec = 20 msec.
Since r3 may lock the semaphore Sc associated with the communication server and the
priority ceiling of Sc is higher than that of task r2, task r2 can be blocked by task ~'3 for
10 msec? Finally, task r2 has to finish 20 msec earlier than the nominal deadline of a periodic
task. This is equivalent to saying that r2 will always be blocked for additional 20 msec
but its deadline is at the end of the period. Hence, B2 = (10 + 20) msec = 30 msec?
Using Theorem 4:

1. Task rl: Check C1 + B~ _ 100. Since 40 + 20 _ 100, task r~ is schedulable.
2. Task r2: Check whether either

or

C~ + C2 + B2 -< 100
2C~ + (72 + B2 < 150

40 + 40 + 30 > 100
80 + 40 + 30 = 150

Task r2 is schedulable and in the worst-case phasing will meet its deadline exactly at
time 150.

3. Task r3: Check whether either

o r

o r

o r

o r

C1 + (72 + C3 < 100
2CI + (72 + C3 < 150
2CI + 2(72 + Ca -< 200
3C~ + 2C2 + C3 -< 300
4C1 + 3(72 - Ca < 350

40 + 40 + 100 > 100
80 + 40 + 100 > 150
80 + 80 + 100 > 200
120 + 80 + 100 = 300
160 + 120 + 100 > 350

Task r3 is also schedulable and in the worst-case phasing will meet its deadline exactly
at time 300. If follows that all the three periodic tasks can meet their deadlines.

3. Mode change protocols

We now discuss the protocols needed to support mode changes in the context of our schedul-
ing algorithms for periodic tasks. First, we discuss the characteristics of mode change.
This is followed by a simple protocol when only independent tasks are involved. Finally,
we discuss the mode change problems in the presence of task interactions.

3.1. Mode changes for independent tasks

From a scheduling point of view, typical mode change operations can be classified into

two types:

1. Operations that increase a task set's processor utilization:
a. Adding a task
b. Increasing the execution time of a task
c. Increasing the frequency of execution of a task.

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 251

2. Operations that decrease a task set's processor utilization:
a. Deleting a task
b. Decreasing the execution time of a task
c. Decreasing the frequency of a task.

A simple mode change protocol can be defined in terms of the deletion of existing tasks
and the addition of a new task. If a task modifies its parameters, that is, changes its sampling
rate, it is modeled as the deletion of the original task and the addition of a new task. In
addition, we assume that all the tasks are periodic and that a task which has started its
execution will not be deleted until it has completed its execution in the current period.
We will relax these assumptions later in this paper, however.

When tasks are independent, the addition, deletion, or modification of a task's parameters
is merely an application of Theorems 1 or 2.

THEOREM 5: At any time t, a task r can be added, or its computation time C increased
or its frequency increased without causing any task to miss their deadlines if the conditions
of Theorems 1 or 2 are satisfied.

Proof: It directly follows from the fact that a task set is schedulable if it satisfies the con-
ditions of Theorems 1 or 2.

THEOREM 6: At any time t, a task r can be deleted, or its computation time C reduced
or its frequency reduced without causing any task to miss their deadlines.

Proof: It directly follows the fact that if a given task set satisfies the conditions of Theorems
1 or 2, then the modified task set will also satisfy the conditions in question.

It may seem that once a task is deleted, its allocated processor capacity can be immediately
reused by other tasks. However, this is not true. The schedulability of a set of tasks using
the rate-monotonic algorithm is determined under the assumption that once a job J of a
task r is initiated, task r cannot request additional processing until the beginning of r's
next period. Thus, even if job J has finished its execution m units before the end of r 's
current period, task r has used up the processor capacity for the given period. Hence,
task r must be included in the application of Theorems 1 and 2, 3 and 4 until the end
of the current period. In other words, the processor capacity allocated to r cannot be used
by new tasks until the end of z's current period.

3. 2. The basic mode change protocol

In this section, we will develop a basic mode change protocol for periodic tasks using binary
semaphores for synchronization. There are two basic concepts in the design of this protocol.
The first is the notion of sufficient processor capacity to add a task on thefly when synchro-
nization is involved. The second is the preservation of the characteristic of the priority
ceiling protocol: each newly started critical section is guaranteed to execute at a priority
level that is higher than the maximum priority that any of the preempted critical sections
can inherit.

252 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

Definition: Processor capacity is said to be sufficient for adding a task r, if the resulting
n tasks, including r, can meet all their deadlines using the rate-monotonic algorithm and
the priority ceiling protocol.

Theorems 3 and 4 provide us with sufficient conditions for processor capacity to be suf-
ficient. Theorem 4 allows for a higher degree of processor utilization while Theorem 3
is easier to apply.

We have defined the concept of having sufficient capacity to add a task. A related concept
is the deletion of a task r and reclaiming the processor capacity used by r.

Definition: The processor capacity used by a deleted task r is said to be reclaimed at
time t if after t task r does not need to be included in the application of Theorems 3 and 4.

We now define the basic mode change protocol. We assume that during mode transition,
tasks are deleted/added in an order that is consistent with the semantics of the application.

1. The addition and/or the deletion of tasks in mode change may lead to the modification
of the priority ceiling of some semaphores across the mode change. Upon the initiation
of mode change,
�9 For each of the unlocked semaphores S, whose priority ceiling needs to be raised,

S's ceiling is raised immediately and indivisibly.
�9 For each locked semaphore S, whose priority ceiling needs to be raised, S's priority

ceiling is raised immediately and indivisibly after S is unlocked.
�9 For each semaphore S, whose priority ceiling needs to be lowered, S's priority ceil-

ing is lowered when all the tasks which may lock S and which have priorities greater
than the new priority ceiling of S are deleted.

2. A task r, which needs to be deleted, can be deleted immediately upon the initiation
of mode change, if r has not yet started its execution in its current period. In addition,
the processor capacity used by r is reclaimed immediately. On the other hand, if r
has started execution, r can be deleted after the end of its execution and before its next
initiation time. The processor capacity allocated to r will, however, not be reclaimed
until the next initiation time.

3. A task r can be added into the system if the following two conditions are met:
�9 If task r ' s priority is higher than the priority ceiling of locked semaphores S~ ,

Sk, then the priority ceiling of S~ Sk must be first raised before adding task r.
�9 There must be sufficient processor capacity for adding task r.

We now illustrate the mode change protocol using an example.

Example 4: Suppose that the task set {rl, r2, 7"2} is replaced by the task set {ro, r~',
r4, rs}. In other words, tasks rl and r2 are to be deleted and replaced with ro, r4 and
r5 in the new task set. The task r3 is to be modified to r~'resulting in a change of parameters.
Suppose that ro cannot be added until r~ is deleted because of insufficient processor capacity
or semantic requirements. Similarly, suppose that r4 and r5 cannot be added until r2 is
deleted and its processor capacity reclaimed. We assume that we add tasks to, r4 and r5

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 253

in that order when a mode change is initiated. In addition, we assume that tasks that need
to be deleted can be deleted in any order.

Let the jobs of each task execute the following sequences of instructions in the current
task set.

J1 = { P (S I) , " ' - , V (S l) , " '" }

J2 = { P (S ,) , P (S O V (S ~) , . . . , V (S ,) }

J3 = { P (S 2) V (S 2) } .

Let the jobs in the new mode execute the following sequences of events:

.to = { P (s 2) , . . . , v (s 2) }

J~" = { P(S~), . . . , v (s 9 }

J4 = { P (s 2) , P (s o , v (s ,) v (s 2) , . . . }

J5 = { P (s o , . . . , v (s o } .

As before, we assume that the priority of Ji+l is lower than the priority of Ji. Before
the mode change, the priority ceilings of $1 and $2 are the priorities of zl and r2 respectively.
However, after the mode change, the priority ceilings of S1 and $2 are the priorities of
r4 and ro respectively. Thus, after the mode change, the priority ceiling of $1 is lowered,
while that of $2 is raised.

Consider the following sequence of events depicted in Figure 1. A line at a low level
indicates that the corresponding job is blocked or has been preempted by a higher priority
job. A line raised to a higher level indicates that the job is executing. The absence of a
line indicates that the job has not yet been initiated or has completed. Shaded portions
indicate execution of critical sections.

�9 At time to, the task set that is being run is {rl, z2, z3}. J3 arrives and begins execution.
�9 At time tl, J3 locks $2 and enters its critical section.
�9 At time t2, J2 arrives and preempts J3.
�9 At time t3, -/2 attempts to lock $1 and is blocked by the priority ceiling protocol. J3 inherits

J~s priority and resumes execution.
�9 At time t4, J1 arrives and preempts J3.
�9 At time ts, J~ successfully locks S1, since its priority is higher than the priority ceiling

of locked semaphore $2.
�9 At time t~, Jl releases the semaphore S~. At the same time, a mode change is initiated

due to external requirements, ro is the first task to be added at the mode change and
it cannot be added until the processing capacity is reclaimed from rl. Hence, ~'0 cannot
be added until the end of J;s current period (at q2). Similarly, z4 and r5 cannot be added
until the end of J~s current period (at tiT). The priority ceiling of $2 gets raised in the
new mode but cannot be raised until it is unlocked.

�9 At time tT, J1 completes execution and J3 resumes execution at its inherited priority of./2.
�9 At time ts, J3 releases the semaphore $2 and resumes its original priority. The priority

ceiling of $2 is raised now. J2 immediately preempts J3 and locks $1.
* At time t9, J2 makes a nested access to $2 and locks $2.

254 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

,4 I-1 I - -

I I I I I I I [I I I I ~ ~m~
t O t 2 t~. t 6 t 8 t l 0 t12 t14 t16 t18 t20 t22

$~ s ceiling raised J4 ~ d J5 ~e~ly ~ ex~u~e

and

S ~ s ceiling low~ed

Figure 1. Sequence of events described in example 4.

�9 At time tlo , ,]2 releases the semaphore S 2.

�9 At time t 11, J2 releases the semaphore S 1.

�9 At time t12 , J2 completes execution. The current period 7-1 ends here and 7" 1 is deleted.
Hence, ro is added into the system and immediately becomes eligible for execution.

�9 At time t13, Jo locks semaphore $2 since there is no other locked semaphore in the system.
�9 At time t14, Jo releases $2.
�9 At time t~5, Jo completes execution and J3 resumes execution.
�9 At time t16 , J3 completes execution.
�9 The processor remains idle during the interval [t~6, t17]. 4
�9 At time tl7 , the current period of 7" 2 ends and it can be deleted from the system. The

priority ceiling of S~ is lowered and 7"o was added into the system. Now, 7"4 and 7"5 can
also be added into the system. Having the highest priority among tasks ready to run,
,/4 begins execution.

�9 At time t~8, 7"~s current period ends and 7"3 can be replaced with 7"*. The mode change
is now complete. Job J3 preempts J4 and begins execution.

�9 At time t2~, J* completes execution, locking and releasing $2 at t19 and t20 respectively.
Now, J4 resumes execution.

�9 Processing proceeds normally in the new mode.

The above example illustrates the following properties of the mode change protocol. First,
tasks can be added as long as they are schedulable in the resulting task set. However, a
task to be added may have to wait for the deletion of an existing task even though there
is idle capacity available. We shall further study this mode change delay in Section 3.4.
Task modifications, such as the modification of 73 into r~'can be carried out relatively easily.

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 255

3.3. Properties of the basic mode change protocol

The Mode Change Protocol is designed to keep the properties of the priority ceiling protocol
valid. Under the priority ceiling protocol, there is no mutual deadlock, and a job can be
blocked by lower priority jobs for at most the duration of a single critical section (Sha,
Rajkumar and Lehoczky 1987). We shall now prove that both these properties are preserved
under the mode change protocol.

Lemma 7: Under the mode change protocol, when a job J enters its critical section and
preempts job Ji while Ji is in its critical section, the priority of J is higher than the priority
that can be inherited by Ji.

Proof: Under the definition of the mode change protocol, the priority ceiling of a sema-
phore S will not be lower than the priority of any job that may lock S. When job J enters
its critical section, its priority will be higher than the (inherited) priority of the jobs pre-
empted by J, since (1) a job J is allowed to enter its critical section only if J 's priority
is higher than the priority ceilings of all the semaphores locked by jobs other than J, and
(2) the highest priority that a job can inherit is bounded by the priority ceiling of the sema-
phores locked by this job.

THEOREM 8: There is no mutual deadlock under the mode change protocol.

Proof: Suppose that there is a mutual deadlock. Let the highest priority of all the jobs
involved in the deadlock be P. Due to the transitivity of priority inheritance, all the jobs
involved in the deadlock will eventually inherit the same highest priority P. This contradicts
Lemma 7.

Lemma 9: A job J can be blocked by a lower priority job JL at most for the duration
of executing one critical section.

Proof: First, if job JL is not already in its critical section when job J arrives, then job
JL will be preempted by J and cannot block J. Suppose that JL is in its critical section
when J arrives and that JL blocks J . . I t inherits the priority of J and continues its execution.
Once JL exits its critical section, by the definition of the priority ceiling protocol, JL will
be assigned its original priority and be immediately preempted by J. Hence, JL cannot
block J again.

THEOREM 10: Under the mode change protocol, a job J can be blocked by lower priority
jobs for at most the duration of a single (outermost) critical section.

Proof: Suppose that job J is blocked by lower priority jobs more than once. By Lemma
9, job J must be blocked by n different lower priority jobs, J~In, where the priority
of Ji is assumed to be higher than or equal to that of Ji+l. Since a lower priority job cannot
block a higher priority job unless it is already in its critical section, jobs J~ Jn must
be in their critical sections when J arrives. By assumption, J is blocked by Jn and Jn

256 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

inherits the priority of J. It follows that job J's priority cannot be higher than the highest
priority P that can be inherited by Jn. On the other hand, by Lemma 7, job Jn-l'S priority
is higher than P. It follows that job Jn-l's priority is higher than that of job J. This contra-
dicts the assumption that J 's priority is higher than that of jobs J~, . . . , Jn.

Remark: It is important to point out that the property of a job being blocked for at most
one critical section depends upon our model of a job, an instance of a periodic task. We
assume that when a job executes alone on the processor, input data from I/O devices will
be ready when the job is initiated and it will continue to execute until it completes without
suspension for I/O activities. In some applications, an instance of a periodic task may need
to suspend itself for I/O. In this case, we have the following corollary:

Corollary 11: If a generalized job J suspends itself n times during its execution, it can
be blocked for the duration of at most n + 1 critical sections.

3. 4. Mode change delays.

In this section, we analyze the delays that can occur before a mode change is completed.
In the following analysis, we assume that the given task set is schedulable using the rate-
monotonic algorithm and the priority ceiling protocol.

Notation: Let to denote the time at which the mode change is initiated. Let Ds be the
delay in elevating semaphore priority ceilings, that is, the delay between to and the time
at which all the semaphores whose ceilings need to be raised are raised. Let Dc be the
delay in reclaiming processor capacity, that is, the delay between to and the time at which
all the tasks that need to be deleted are deleted and their allocated processor capacity becomes
available. Finally, let D be the mode change delay, that is, the duration between to and
the time at which the mode change is completed.

The following lemmas and theorems are based on the assumption that the task sets before
and after a mode change are schedulable.

Lemma 12: Let Si be a semaphore whose priority ceiling needs to be raised during a
mode change. Let r be a task whose priority is equal to the priority ceiling of semaphore
Si. The delay in elevating the priority ceiling of Si is bounded by the period of task r, T.

Proof: The priority ceiling of a semaphore S can be raised only if it is not locked. Sema-
phore S may have been locked when the mode change is initialed. However, under the
assumption that task r can meet its deadline, the locking of S cannot be longer than T and
the lemma follows.

I.emma 13: Let S* be the semaphore that has the lowest priority ceiling of all the sema-
phores whose ceilings need to be raised. The ceiling elevation delay for mode change, Ds
is bounded by T*, the period of a task whose priority is equal to the priority ceiling of S*

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 257

Proof: It directly follows from Lemma 12 and from the fact that a task associated with
a lower priority ceiling has a longer period under the rate-monotonic scheduling algorithm.

Lemma 14: Let task r be the lowest priority task needed to be deleted. The delay due
to the reclamation of processor capacity, Db, is bounded by the period of task r.

Proof: Let the periods of the tasks that need to be deleted be {Tj Tin}, where
Tg >_ Tj if k > j. Under the assumption that the set of given tasks is schedulable, each
of the tasks needed to be deleted can be deleted by the end of its current period, and its
allocated processor capacity can be reclaimed. Hence, we have Dc = max{Tj Tin}.
Under the rate-monotonic scheduling algorithm, a task with a longer period has lower prior-
ity. It follows that the delay due to reclaiming all the processor capacity is bounded by
the period of task Zm, Tin.

THEOREM 15: The mode change delay D is bounded by max(Ds, Dc).

Proof: Suppose that the mode change request occurs at time to. By (to + D~), all the
semaphore priority ceilings that need to be raised have been raised. By (to + Dc), all the
tasks in the current mode that need to be deleted are deleted. That is, the processor capacity
needed for the new tasks is available by (to + Dc). It follows that all the new tasks can be
added by the time (to + max(Ds, Dc)). Finally, by the definition of the basic mode change
protocol, all the semaphore priority ceilings that need to be lowered have been lowered
by (to + Dc). Hence, the mode change delay is bounded by max(D s, De).

Remark: Under the mode change protocol, the maximal mode change delay is bounded
by the longest period in a task set, which is generally much shorter and will never be longer
than the least common multiple (LCM) of all the periods. In the cyclical executive approach,
the major cycle is the LCM of all the periods and a mode change will not be initiated until
the current major cycle completes. Hence, the delay to complete a mode change using the
mode change protocol would typically be much shorter than the delay using the cyclical
executive approach. In addition, the mode change protocol also provides the flexibility
of adding the most urgent task in the new mode first.

4. Extensions of the basic mode change protocol

In this section, we will examine some design alternatives to the mode change protocol as
well as the integration of our basic mode change protocol with other scheduling algorithms.

4.1. Variations of the basic protocol

The objective in the design of the mode change protocol is to minimize the mode change
delay subject to keeping the shared data consistent and to meeting all the deadlines of tasks
that must be continuously executing. We also made an implicit assumption that the mode
change protocol should not lower the system schedulability in any given mode.

258 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

However, assumptions and objectives are, of course, application dependent. Generally,
there is relatively little that one can do about mode change delay caused by reclaiming
processor capacity, because a task could have started its execution when the mode change
is initiated. Once a task begins execution, it may well be desirable to let it complete because
the abortion of a task may lead to complications that makes later correction and/or recovery
time-consuming. There is an exception to this general observation, however. In certain appli-
cations, one can define a set of tasks that constitutes an atomic configuration unit. Such
a unit encapsulates all the shared variables for the task set in question. In this case, the
application semantic may allow the entire unit to be deleted immediately and indivisibly
at the initiation of mode change.

Generally, when D s > Dc, there is an incentive to minimize Ds. We can minimize the
mode change delay associated with elevating the priority ceilings if we are willing to pay
a schedulability cost. For example, we define the global ceiling mode change protocol as
follows. In this protocol, the priority ceiling of a semaphore S is defined as the priority
of the highest priority task that may access S across all modes. The disadvantage of this
mode change protocol is rather obvious. In any mode, the actual ceiling of a semaphore
can be much lower than the global priority ceiling. As a consequence, the blocking duration
is longer and it translates into schedulability cost, causing some otherwise schedulable
task sets to become unschedulable. The priority ceiling elevation cost can be fine-tuned,
however. Since Ds is determined solely by the period of the task whose priority equals
the lowest priority ceiling that needs to be raised, Ds can be shortened by deliberately
assigning a higher priority ceiling to the semaphore with this lowest priority ceiling that
needs to be raised in mode changes.

Finally, we may want to emphasize the simplicity of managing a mode change process.
In this case, we do not raise the semaphore priority ceiling of any semaphore until all the
tasks that need to be deleted are deleted and the priority ceilings of associated semaphores
are lowered. New tasks will be added at time tadd = to + (D~ + Dc). We need apply
neither Theorem 3 nor Theorem 4 during runtime as long as tasks are known to be sched-
ulable in each mode. This is because at time tadd all the deleted tasks' processor capacity
have already been reclaimed and the priority ceilings are at the correct level. That is, the
condition under which we may apply Theorem 3 or 4 is the same as in the new mode.

4. 2. Stability under transient overload

In this section, we discuss the integration between the mode change protocol and the solu-
tion to the stability problem. In the previous sections, the computation time of a task is
assumed to be constant. However, in many applications, task execution times are often sto-
chastic, and the worst-case execution time can be significantly larger than the average execu-
tion time. In order to have a reasonably high average processor utilization, we must deal
with the problem of transient overload. We consider a scheduling algorithm to be stable
if there exists a set of critical tasks such that all tasks in the set will meet their deadlines
even if the processor is overloaded. This means that under worst-case conditions, tasks
outside the critical set may miss their deadlines. The rate-monotonic algorithm is stable
in the sense that the set of tasks that never miss their deadlines does not change as the

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 259

processor gets more overloaded or as task phasings change. Of course, which tasks are
in the critical task set depends on the worst-case utilizations of the particular tasks being
considered. The important point is that the rate-monotonic theory guarantees that if such
a set exists, it always consists of tasks with the highest priorities. This means that if a tran-
sient overload should develop, tasks with longer periods will miss their deadlines.

Of course, a task with a longer period could be more critical to an application than a
task with a shorter period. One might attempt to ensure that the critical task always meets
its deadline by assigning priorities according to a task's importance. However, this approach
can lead to poor schedulability, that is, with this approach, deadlines of critical tasks might
be met only when the total utilization is low.

The period transformation technique can be used to ensure high utilization while meeting
the deadline of an important, long-period task. Period transformation means turning a long-
period important task into a high priority task by splitting its work over several short periods.
For example, suppose task r with a long period T is not in the critical task set and must
never miss its deadline. We can make r simulate a short period task by giving it a period
of T/2 and suspending it after it executes half its worst-case execution time, C/2. The task
is then resumed and finishes its work in the next execution period. It still completes its
total computation before the end of period T. From the viewpoint of the rate-monotonic
theory, the transformed task has the same utilization but a shorter period, T/2, and its priority
is raised accordingly. It is important to note that the most important task does not have
to have the shortest period. We only need to make sure that it is among the first n high
priority tasks whose worst-case utilization is within the scheduling bound. A systematic
procedure for period transformation with minimal task partitioning can be found in (Sha,
Lehoczky and Rajkumar 1986).

Period transformation allows important tasks to have higher priority while keeping priority
assignments consistent with rate-monotonic rules. This kind of transformation should be
familiar to users of cyclic executives. The difference here is that we don't need to adjust
the code segment sizes so different code segments fit into shared time slots. Instead, r
simply requests suspension after performing C/2 amount of work. Alternatively, the runtime
scheduler can be instructed to suspend the task after a certain amount of computation has
been done, without affecting the application code?

The period transformation approach has another benefit--it can raise the rate-monotonic
utilization bound. Suppose the rate-monotonic utilization bound is Um,~ < 100 percent,
that is, total task utilization cannot be increased above Umax without missing a deadline.
When a period transformation is applied to the task set, Umax will rise. For example:

Example 4: Let

�9 Task rl: Cl = 4; T1 = 10; UI = .400
�9 Task r2:C2 = 6; T2 = 14; U~ = .428.

The total utilization is .828, which just equals the bound of Theorem 1, so this set of two
tasks is schedulable. If we apply Theorem 2, we find:

o r

C~ + C2 -< T~ 4 + 6 = 10 l = 1, k = 1
2C~ + C2 - T2 8 + 6 = 14 l = 1, k = 2.

260 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

So Theorem 2 says the task set is just schedulable. Now suppose we perform a period
transformation on task r~, so C~' = 2 and T~' = 5. The total utilization is the same and
the set is still schedulable, but when we apply Theorem 2 we find:

C~ + C2 < T~ 2 + 6 > 5 l = 1, k = 1
or 2C~ + C2 < 2T~ 4 + 6 = 10 l = 2, k = 1
or 3C~ + 6"2 < /'2 6 + 6 < 14 l = 1, k =2 .

The third inequality shows that the compute times for tasks rl and/or r2 can be increased
without violating the constraint. For example: the compute time of Task r~ can be increased
by 2/3 units to 2.667, giving an overall schedulable utilization of 2.667/5 + 6/14 = .961;
or the compute time of Task r2 can be increased to 8, giving an overall schedulable utilization
of 2/5 + 8/14 = .971. So the effect of the period transformation has been to raise the utiliza-
tion bound from .828 to at least .961 and at most .971. Indeed, if periods are uniformly
harmonic, that is, if each period is an integral multiple of each shorter period, the utiliza-
tion bound of the rate-monotonic algorithm is 100 percent. 6 So the utilization produced
by the rate-monotonic approach is only an upper bound on what can be achieved if the
periods are not transformed. Of course, as the periods get shorter, the scheduling overhead
utilization increases, so the amount of useful work that can be done decreases. For example,
before a period transformation, the utilization for a task, including scheduling overhead,
is (C + 2S)/T, where 2S is the context switching time due to the preemption and resump-
tion of a task, After splitting the period into two parts, the utilization is (.5C + 2S)/.5T,
so scheduling overhead is a larger part of the total utilization. However, the utilization bound
is also increased, in general. If the increase in utilization caused by the scheduling overhead
is less than the increase in the utilization bound, then the period transformation is a win--
more useful work can be done while meeting all deadlines.

Period transformation does not affect the mode change protocol except that to delete a
transformed task that has already started execution, we must wait for its completion which
may take several transformed periods. In addition, we cannot reclaim the processor capacity
of a transformed task until the end of the last transformed period, which is also the end
of the task's original period.

4.3. Scheduling both aperiodic and periodic tasks

It is important to meet the regular deadlines of periodic tasks and the response time require-
ments of aperiodic events. We now review the scheduling of both aperiodic and periodic
tasks within the rate monotonic framework. 7 As we will see, the mode change protocol
can easily accommodate the aperiodic scheduling algorithms. Let us begin with a simple
example.

Suppose that we have two tasks. Let rl be a periodic task with period 100 and execution
time 99. Let r2 be an aperiodic task that appears once within a period of 100 but the arrival
time is random. The execution time of task r2 is one unit. If we let the aperiodic task wait
for the periodic task, then the average response time is about 50 units. The same can be
said for a polling server, which provides one unit of service time in a period of 100. On

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 261

the other hand, we can deposit one unit of service time in a ticket box every 100 units
of time; when a new ticket is deposited, the unused old tickets, if any, are discarded. With
this approach, no matter when the aperiodic event arrives during a period of IO3, it will
find there is a ticket for one unit of execution time at the ticket-box. That is, ~'2 can use
the ticket to preempt ~-~ and execute immediately when the event occurs. In this case, z~s
response time is precisely one unit and the deadlines of z~ are still guaranteed. This is the
idea behind the deferrable server algorithm (Lehoczky, Sha and Strosnider 1987), which
reduces aperiodic response time by a factor of about 50 in this example.

In reality, there can be many periodic tasks whose periods can be arbitrary. Furthermore,
aperiodic arrivals can be very bursty, as for a Poisson process. However, the idea remains
unchanged. We should allow the aperiodic tasks to preempt the periodic tasks subject to
not causing their deadlines to be missed. It was shown in (Lehoczky, Sha and Strosnider
1987) that the deadlines of periodic tasks can be guaranteed provided that during a period
of T a units of time, there are no more than Ca units of time in which aperiodic tasks
preempt periodic tasks. In addition, the total periodic and aperiodic utilization must be
kept below (Ua + ln[(2 + Ua)/(2Ua + 1))], where Ua = CJTa. And the server's period
must observe the inequality Ta <- (T - Ca), where Tis the period of a periodic task whose
priority is just lower than that of the server.

Compared with background service, the deferrable server algorithm typically improves
aperiodic response time by a factor between 2 and 10 (Lehoczky, Sha and Strosnider 1987).
Under the deferrable server algorithm, both periodic and aperiodic task modules can be
modified at will as long as the utilization bound is observed.

A variation of the deferrable server algorithm is known as the sporadic server algorithm
(Sprunt, Sha and Lehoczky 1987). As for the deferrable server algorithm, we allocate C a
units of computation time within a period of T a units of time. However, the C~ of the ser-
ver's budget is not refreshed until the budget is consumed? From a capacity planning point
of view, a sporadic server is equivalent to a periodic task that performs polling. That is,
we can place sporadic servers at various priority levels and use only Theorems 1 and 2
to perform a schedulability analysis. Sporadic and deferrable servers have similar perform-
ance gains over polling because any time an aperiodic task arrives, it can use the allocated
budget immediately. When polling is used, however, an aperiodic arrival generally needs
to wait for the next instant of polling. The sporadic server has the least runtime overhead.
Both the polling and the deferrable servers have to be serviced periodically, even if there
are no aperiodic arrivals? There is no overhead for the sporadic server until its execution
budget has been consumed. In particular, there is no overhead if there are no aperiodic
arrivals. Therefore, the sporadic server is especially suitable for handling emergency
aperiodic events that occur rarely but must be responded to quickly.

Simulation studies of the sporadic server algorithm (Sprunt, Sha and Lehoczky 1989)
show that given a lightly loaded server, aperiodic events are served 5-10 times faster than
with background service, and 3-6 times faster than with polling. Figure 2, from (Sprunt,
Sha and Lehoczky 1989), shows one example of the relative performance between back-
ground execution, the deferrable server algorithm (DS), the sporadic server algorithm (SS),
polling, and another algorithm, not explained here, called the priority exchange algorithm
(PE). The analysis underlying these results assumes a Poisson arrival process with exponen-
tially distributed service time. In addition, each server (other than the background server)

262 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. R A M A M R I T H A M

A v era g e Response T i m e
Relat ive To

Background Service

Periodic Load: 40%

1

0.8

0.6

0.4

0.2

0
(a)

Mean Aperiodic Execution T i m e

0.9 2.7 4.5 6.3 8. I 9.9
I I I I I I

O . . .

. - ./r ~

~ ~- - - .A SS

I I I I I I
5 15 25 35 45 55

Aperiodic Load (%)

1

0.8

0.6 Server Sizes
45.3% DS

0.4 56.3% Polling. PE, SS

- 0 . 2

0

Figure 2. S c h e d u l i n g b o t h a p e r i o d i c and p e r i o d i c tasks .

is given a period that allows it to execute as the highest priority task. t~ Aperiodic requests
can therefore preempt the execution of periodic tasks as long as server execution time is
available.

The maximum amount of aperiodic service time allowed before periodic tasks will miss
their deadline is called the maximum server size. In this example, aperiodic tasks can preempt
periodic tasks for at most 56.3 percent of the sporadic or polling server's period without
causing the deadlines of periodic tasks to be missed. For the deferrable server, only a smaller
amount of service time is possible: 43.6 percent. In either case, the server is not allowed
to execute at its assigned priority once its computation budget is exhausted, although it
can continue to execute at background priority if time is available. A server's budget is
refreshed at the end of its period, at which time execution can resume at the server's assigned
priority.

Figure 2 shows the average response times of the different scheduling algorithms as a
function of average aperiodic workload. When the average aperiodic workload is small
compared with the sporadic server size, randomly arriving requests are likely to find the
server available and can successfully preempt the periodic tasks. This results in good per-
formance. For example, when the average aperiodic workload is 5 percent, t~ the deferrable
and sporadic server response time is about 10 percent of the average background response
time, while the average polling response time is about 65 percent of background response
time. (This means the sporadic server gives about 6 times faster response than polling and
10 times faster than background service.) When the aperiodic workload increases, the like-
lihood of server availability decreases and the resulting performance advantage also
decreases. For example, when the aperiodic load is 55 percent, the different server algorithms
do not give significant performance improvement over background service.

From a mode change point of view, sporadic server effectively transforms the service
of aperiodic events into periodic tasks. We can add or delete a server and increase or decrease
its capacity as if it were a normal periodic task.

PRIORITY-DRIVEN PREEMPTIVE SCHEDULING 263

5. Conclusions

In m a n y rea l - t ime appl ica t ions , ne i t he r the task set no r the task p r io r i t i e s r e m a i n static

t h r o u g h o u t the miss ion . A change in ope ra t iona l m o d e often leads to the mod i f i ca t i on of

task p a r a m e t e r s as well as the add i t ion of new tasks and de le t ion of o ld tasks. In this paper ,

we have deve loped a s imp le m o d e c h a n g e pro toco l in a p r io r i t i zed p r e e m p t i v e schedu l ing

env i ronmen t . We have shown that u n d e r this m o d e change protocol , there c a n n o t be mutua l

deadlocks , a n d a h igh p r io r i ty j o b can be b l ocked by lower pr ior i ty j o b s for at m o s t the

du ra t ion of o n e cr i t ical sec t ion , desp i te the add i t ion and de le t ion o f tasks du r ing the m o d e

change. We have shown that the worst-case mode change delay unde r this protocol is bounded

and is genera l ly m u c h sho r t e r than tha t poss ib le in a c o m m o n l y used cyclical executive.

Acknowledgement

T h e au thors wish to t h a n k J o h n G o o d e n o u g h for h is helpful c o m m e n t s .

Notes

1. It was shown in (Liu and Layland 1973) that when all the tasks are initiated at the same time, if the first
job of a task meets its deadline, that task will never miss a deadline.

2. This may occur if r3 blocks 71 and inherits z;s priority.
3. Note that the blocked-at-most-once result does not apply here. It only applies to blocking caused by task

synchronization using the priority ceiling protocol.
4. Idling of the processor can occur for two reasons: the rate-monotonic algorithm does not guarantee a 100

percent schedulability level for all task sets. Secondly, task sets in some modes may have lower processor
utilization levels than task sets in other modes.

5. The scheduler must ensure that r is not suspended while in a critical region since such a suspension can
cause other tasks to miss their deadlines. If the suspension time arrives but the task is in a critical region,
then the suspension should be delayed until the task exits the critical region. To account for this effect on
the schedulability of the task set, the worst-case execution time must be increased by e, the extra time spent
in the critical region, that is, s utilization becomes (0.5C + E)/0.5T.

6. For example, by transforming the periods in Example 3 so r ; and r~ both have periods of 50, the utilization
bound is 100 percent, that is, 4.7 percent more work can be done without missing a deadline.

7. Aperiodic tasks are used to service aperiodic events.
8. Early refreshing is also possible under certain conditions. See (Sprunt, Sha and Lehoczky 1989).
9. The ticket box must be refreshed at the end of each deferrable server's period.

10. This means each server's period must not be greater than the shortest period of all the periodic tasks. The
sporadic server and polling server can have a period equal to that of the shortest period task. As mentioned
earlier in this section, however, the deferrable server must have an even shorter period.

11. A 5 percent average aperiodic workload means that in the tong run, the aperiodic requests consume about
5 percent of the CPU cycles, although the number of requests and their execution time vary from period
to period and from request to request.

264 L. SHA, R. RAJKUMAR, J. LEHOCZKY, K. RAMAMRITHAM

References

Goodenongh, J. B., and L. Sha 1988. The Priority Ceiling Protocol: A Method for Minimizing the Blocking
of High Priority Aria Tasks. The Proceedings of the 2nd ACM International Workshop on Real-Time Ada Issues.

Lehoczky, J. P. and L. Sha 1986. Performance of Real-Time Bus Scheduling Algorithms. ACMPerformance Eval-
uation Review, Special Issue. 14, (1) (May).

Lehoczky, J. P., L. Sha, and J. Strosnider 1987. Enhancing Aperiodic Responsiveness in a Hard Real-Time Envi-
ronment. IEEE Real-lime System Symposium.

Lehoczky, J. P., L. Sha, and Y. Ding 1987. The Rate Monotonic Scheduling Algorithm--Characterization and
Average Case Behavior. Technical Report, Department of Statistics, Carnegie Mellon University.

Leinbangh, D. W. 1980. Guaranteed Response Time in a Hard Real-Time Environment. IEEE Transactions on
Software Engineering, (Jan).

Leung, J. Y. and M. L. Merrill 1980. A Note on Preemptive Scheduling of Periodic Real-Time Tasks. Information
Processing Letters U (3) (Nov.): 115-118.

Liu, C. L. and J. W. Layland 1973. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environ-
ment. JACM 20 (1): 46-61.

Mok, A. K. 1983. Fundamental Design Problems of Distributed Systems for the Hard-Real-lime Environment.
Ph.D. thesis, Massachusetts Institute of Technology.

Rajkumar, R., L. Sha, and L. Lehoczky 1987. On Countering the Effect of Cycle Stealing in A Hard Real-Time
Environment. IEEE Real-lime System Symposium.

Rajkumar, R., L. Sha, and J. P. Lehockzy 1988. Real-Time Synchronization Protocols for Multiprocessors. Pro-
ceedings of the IEEE Real-lime Systems Symposium.

Ramaritham, K. and J. A. Stankovic 1984. Dynamic Task Scheduling in Hard Real-Time Distributed Systems.
IEEE Software (July).

Sha, L., J. P. Lohoczky, and R. Rajkumar 1986. Solutions for Some Practical Problems in Prioritized Preemptive
Scheduling. IEEE Real-Time Systems Symposium.

Sha, L., R. Rajkumar, and J. P. Lehoczky 1987. Priority Inheritance Protocols: An Approach to Real-Time Syn-
chronization. Technical Report, Department of Computer Science, Carnegie Mellon University (To appear in
1EEE Transactions on Computers).

Sprunt, B., L. Sha, and J. P. Lehoczky 1989. Scheduling Sporadic and Aperiodic Events in a Hard Real-Time System.
Real-lime Systems 1 (1) (June).

Zhao, W., K. Ramamritham, and J. Stankovic 1987. Preemptive Scheduling Under Time and Resource Constraints.
IEEE Transactions on Computers, (Aug).

