
The Journal of Real-Time Systems, 3, 67--99 (1991)
�9 1991 Kluwer Academic Publishers. Manufactured in The Netherlands.

Stack-Based Scheduling of Realtime Processes

T.P. BAKER*
Department of Computer Science, Florida State University, Tallahassee, FL 32306-4019 U.S.A.

Abstract. The Priority Ceiling Protocol (PCP) of Sha, Rajkumar and Lehoczky is a policy for locking binary
semaphores that bounds priority inversion (i.e., the blocking of a job while a lower priority job executes), and
thereby improves schedulability under fixed priority preemptive scheduling. We show how to extend the PCP
to handle: multiunit resources, which subsume binary semaphores and reader-writer locks; dynamic priority schemes,
such as earliest-deadline-first (EDF), that use static "preemption levels"; sharing of runtime stack space between
jobs. These extensions can be applied independently, or together.

The Stack Resource Policy (SRP) is a variant of the SRP that incorporates the three extensions mentioned above,
plus the conservative assumption that each job may require the use of a shared stack. This avoids unnecessary
context switches and allows the SRP to be implemented very simply using a stack. We prove a schedulability
result for EDF scheduling with the SRP that is tighter than the one proved previously for EDF with a dynamic
version of the PCP.

The Minimal SRP (MSRP) is a slightly more complex variant of the SRP, which has similar properties, but
imposes less blocking. The MSRP is optimal for stack sharing systems, in the sense that it is the least restrictive
policy that strictly bounds priority inversion and prevents deadlock for rate monotone (RM) and earliest-deadline-first
(EDF) scheduling.

1. Introduction

Hard real t ime computer systems are subject to absolute t iming requirements , which are
often expressed in terms of deadlines. They are often subject to severe resource constraints;
in particular, l imited memory. They are also expected to be rel iable in the extreme, to that

it is necessary to verify a priori that a system design will meet t iming requi rements within
the given resource constraints.

Verifying t iming and resource uti l ization properties of programs is inherent ly difficult.
In fact, it is impossible without some constraints on program structure. This is a conse-
quence of the Halting Problem, which is known to be undecidable. To get around the Halting

Problem, it is cus tomary to assume the program is divided into a set of jobs, whose arrival
times, execution times, and other resource requirements are known. Verification that the

program satisfies t iming and resource constraints then reduces to a scheduling problem.
However, scheduling is also difficult. Specifically, de termining whether a set of jobs can
be scheduled so as to complete execution by a fixed deadline is known to be NP-hard (Garey

and Johnson 1979; Leung and Merr i l l 1980) unless severe restrictions are placed on the
problem.

Practical schedulabil i ty analysis requires a simple model of software architecture. Liu
and Layland (1973) were able to obtain very strong results f rom such a simple model . They
assumed that for jobs with hard deadlines:

*This work is supported in part by grant N00014-87-J-U66 from the U.S. Office of Naval Research.

68 T.P. BAKER

1. there is a fixed set of such jobs;
2. requests for job executions are periodic, with a constant interval between requests;
3. relative deadlines are the same as the respective periods, i.e., a job need only complete

by the arrival of the next request for it;
4. no synchronization or precedence requirements exist between jobs;
5. there is no control over phasing of periodic jobs;
6. processor time is the only resource that needs to be scheduled;
7. execution times are constant.

Subject to these assumptions, they proved that rate monotone (RM) scheduling, in which
the job with the shortest period is given highest priority, is optimal among static priority
policies, and that earliest-deadline-first (EDF) scheduling is optimal among dynamic priority
policies. They also derived conditions for schedulability under these two policies, and for
a mixture of the two.

Other researchers have discovered that some of the restrictive assumptions made by Liu
and Layland can be relaxed, generally without much change to the schedulability results
or their proofs. Most of these extensions have been to the RM policy: Sha, Lehoczky, and
Rajkumar (1986) outline approaches to dealing with transient overloads due to variable exe-
cution times; Sprunt, Sha, and Lehoczky (1989) describe techniques for handling an aper-
iodic server job; Sha, Rajkumar, and Lehoczky (1987) show that the schedulability results
can be adapted to tolerate bounded blocking, such as may be due to scheduling exclusive
access to shared data. The problem of bounded blocking has also been addressed for EDF
scheduling, by Chen and Lin (1989).

Liu and Layland's Theorem 5 (1973) says that a set of n periodic jobs can be scheduled
by the RM policy if

n Ci (2 TM 1). Z <n.
i=1

Here T/and C i denote the period and execution time of the ith job, respectively, and the
jobs are ordered by increasing period.

Sha, Rajkumar, and Lehoczky's Theorem 15 (1987) generalizes this result, showing that
the jobs are schedulable by the RM priority assignment if

vk -~ +-~k_< k . - 1).
k = l , . . . , n i = l

Here Bk is an upper bound on the duration of blocking that the kth job may experience
due to resources held by lower priority jobs. The authors introduce the term priority inver-
sion to describe this sort of blocking.

Liu and Layland's Theorem 7 (1973) says that a set of n periodic jobs can be scheduled
by the EDF policy iff ~

STACK-BASED SCHEDULING OF REALTIME PROCESSES 69

i=l-~ii <.~ 1.

Chen and Lin's Theorem 4 (1989) extends the if part of this result to show that the jobs
are schedulable using the dynamic PCP for semaphore locking if

--~ Ci + Bi < 1.
i=l Ti -

In Section 5, we will tighten this result.
For these results to be useful, the priority inversion bound, Bi, of each job must be

small. This requirement has motivated the study of resource allocation policies that can
strictly bound priority inversion.

A great deal of effort has been spent studying the extreme forms of unbounded blocking
that are of interest to conventional operating systems designers, such as deadlock and star-
vation (Bic and Shaw 1988). Unfortunately, conventional operating systems techniques do
not provide a tight enough bound on blocking to be suitable for realtime schedulability
analysis. For example, the ordered resource allocation technique of Havender (1968) still
allows a job to be blocked by up to n lower priority jobs.

Sha, Rajkumar, and Lehoczky (1987) have devised a locking protocol for binary sema-
phores, cxalled the Priority Ceiling Protocol (PCP), for which priority inversion is bounded
by the execution time of the longest critical section of a lower-priority job. This protocol
has since been extended in several directions, including reader-writer resources (Sha,
Rajkumar and Lehoczky 1989), mode changes (Sha, Rajkumar and Lehoczky 1989), and
multiple processors (Rajkumar, Sha and Lehoczky 1988). Several variations have been de-
fined, including one which is optimal in the sense of avoiding unnecessary blocking (Baker
1989; Rajkumar, Sha and Lehoczky 1988). Chen and Lin have also extended the PCP to
use dynamically recomputed priority ceilings, so that it can be applied with EDF as well
as RM priorities (1989).

This article describes three more extensions to the PCP. These are:

1. Multi-unit resources.
This extension is based on treating the priority ceiling of a resource as a function of the
number of units that are currently available. It permits us to subsume binary semaphores
and reader-writer locks.

2. Simpler support for EDF scheduling.
This extension is based on separating the priority of a job, which may be dynamic, from
its preemption level, which is required to be static. Preemption levels are based on the
deadlines of jobs, relative to their request times. So long as these do not change, ceilings
do not need to be recomputed. This extension supports EDF, RM, deadline-monotone,
and combinations of these policies.

3. Sharing runtime stack resources.
This extension is based on treating the shared runtime stack as a resource, with ceiling
zero, which is requested at the time each job starts executing.

70 T.R BAKER

Although these three extensions can be applied independently, they work very well
together. We present them here in a combined form, which we call the Stack Resource
Policy, or SRP. The SRP takes one step further away from the PCP, by treating every job
as if it requires the use of a shared stack. This means that if it is necessary to block a
job to wait for a shared resource held by another job, this is done at the time the job at-
tempts to preempt (and thereby occupy runtime stack space), rather than later, when it
actually may need the shared resource. At the cost of some reduction in concurrency, this
earlier blocking saves unnecessary context switches, and allows us to implement the SRP
very simply using a stack.

We are also able to prove a schedulability result for EDF scheduling with the SRP that
is tighter than the one proved in (Chen and Lin 1989) for EDF with the dynamic PCP.
This proof appears to be independent of the early blocking, so that it could also apply
to the dynamic PCP.

The idea of using early blocking based on preemption levels, with a shared stack, has
been around for a long time. It is the way many machines handle hardware interrupts, and
has been used in real-time executives for at least 15 years. However, the use of this tech-
nique appears to have been limited to fixed-priority scheduling, without consideration for
locking of individual resources. Moreover, the problem of predicting schedulability of peri-
odic task systems using this technique does not appear to have been formally addressed.

The rest of this article is organized as follows. Section 2 defines the elements of our
formal model, including jobs, featherweight processes, and resources. Section 3 outlines
the general reasoning underlying the SRP. Section 4 defines the SRP, and proves that it
works. Section 5 gives the schedulability result for earliest-deadline-first (EDF) scheduling
with the SRP. Section 6 explains the idea of stack sharing, how it leads to interactions
with allocation of other resources, and how the SRP solves these interactions. Section 7
compares the SRP to the Priority Ceiling Protocol, and includes a comparative example.
Section 8 describes the MSRP, which is a slightly more complex variant of the SRP, and
proves that it is optimal with respect to minimizing unnecessary blocking under certain
assumptions. Section 9 very briefly discusses the implementation of the SRP and its rela-
tion to more complex process models, such as Ada tasking. Section 10 summarizes the
results and mentions some ongoing research.

2. Definitions

This section establishes notation, and defines the elements of our formal model. These
elements include jobs, featherweight processes, resources, priorities, and preemption levels.

2.1. Jobs and processes

A job is a finite sequence of instructions to be executed on a single processor. It may have
some branching control flow, but its maximum execution time and its other resource re-
quirements must be fixed. A job might correspond to a subprogram in some programming

STACK-BASED SCHEDULING OF REALTIME PROCESSES 71

language. Jobs are considered to be the lowest level of schedulable activity in a system.
A job may be preempted, but never intentionally waits. (Here waiting means suspending
execution until a specified time or event, as opposed to blocking because a needed resource
is busy.) Names of the forms J, J', J", . . . and Ji denote jobs.

A job execution is an instance of execution of a specific job, in response to a job execu-
tion request. Each job execution request arrives at some time, Arrival(~). The execution
of J in response to request ~q starts at some time, Start(~), where Arrival(~) < Start(~).
Requests that have arrived, but for which the corresponding executions have not yet com-
pleted are called pending. (Note that the pending jobs include both those that have not
started and those that have started execution but have not finished yet.) Names of the forms
~, ~', ~", . . . and ~i denote both job execution requests and job executions.

A featherweight process (process for short) is a higher level abstraction. Every~job belongs
to one of a fixed finite set of processes, &~, . . . , tP n. Each process (~i is characterized
by an (infinite) sequence of job execution requests ~i,1, ~i,2, . - . . A process is periodic
if the interval between successive execution requests is a constant (called the period); other-
wise it is aperiodic. The jobs requested by each process are assumed to belong to a finite
set, which are known a priori. Names of the forms (P and (Pi always denote processes.

There should be no more than one execution of any job going on at the same time. This
may be taken as an assumption, or as a consequence of other assumptions we will make:
that each job has a static preemption level and that there is only one processor. Thus, it
is usually not necessary to be very careful about distinguishing jobs from job executions
and job execution requests. The current execution of job J may be referred to by the same
name as the job, i.e., J. In particular, if we say job J is actively doing something (such
as holding or requesting a resource), we mean the current execution of job J.

2.2. Resources

An execution of a job requires the use of a processor and runtime stack space, and may
require certain other serially reusable nonpreemptable resources. Allocation of processor
time, stack space, and nonpreemptable resources to jobs is governed by processor and
resource allocation policies.

We assume there is a single processor, which is preemptable, and a finite set of resources,
RI Rm. These resources are all nonpreemptable and serially reusable. For each re-
source R there is a fixed number of units in the system, NR. Names of the forms R and
Ri always denote resources.

A job acquires an allocation of a nonpreemptable resource by executing a request instruc-
tion. Formally, an allocation is a triple (J, R, m), where J is a job, R is a nonpreemptable
resource, and m is the number of units requested. The number of units being requested
must be less than or equal to NR. The job making a request must wait to execute its next
instruction until the allocation is granted. While a job is waiting for a resource allocation
the job (and the request) are said to be blocked. After the allocation is granted, the job
holds it until the job executes an instruction that releases it. While the job holds an alloca-
tion the allocation is said to be outstanding.

72 T.E BAKER

The sequence of instructions performed by the job between the request and release opera-
tions for a resource allocation is called a critical section of the job for that resource. Note
that there is no implication of serialization between critical sections for the same resource,
if the resource has more than one unit. Each job is required to request and release resources
in Last-In-First-Out (LIFO) order; so critical sections of the same job can only overlap
if they are properly nested.

A critical section is trivial if it involves a resource that cannot cause any blocking. (For
example, in Section 6, we will show shared stack resources are trivial under the SRP.)
An outermost nontrivial critical section is nontrivial and is not nested within any other
nontrivial critical section. For bounding priority inversion, we will only be interested in
the execution times of outermost nontrivial critical sections.

Without loss of generality, semaphores and reader/writer locks can be treated as special
cases of multiunit resources. For a binary semaphore, NR = 1. For a reader/writer lock,
NR can be any number greater than or equal to the number of jobs that may request R.
While writing, a job needs to hold all NR units, thus blocking both readers and writers.
While reading, a job needs to hold an allocation of one unit, which blocks writers but
does not block any other readers.

Example. Suppose Jr, J2, and J3 are jobs, where the relationships of the jobs' critical sec-
tions are as shown by Figure 1. Here, an operation of the form request (Ji, Rj, m) means
the job Ji is requesting m units of resource Rj. A release operation releases the most
recently acquired resource allocation. (Since we assume resources are released in LIFO
order, the resource and number of units are uniquely determined.) The relationship of jobs
to resources in this example is also shown, schematically, in Figure 2. The arrows indicate
the may request relationship between jobs and resources, and are labeled with the number
of units the jobs may request. We are supposing NR~ = 3, NR2 = 1, NR3 = 3, resource
R2 behaves as a binary semaphore, R3 behaves as a reader/writer lock, and R~ behaves
as a more general multiunit resource.

-11 J2 J3
~ 1 7 6 1 7 6

r eques t (J1, R2, 1); ...
r eques t (J1 , R1,3) ; ...

release; ...
release;

, , ,

r eques t (J1 , R3, 1); ...
release;

~ 1 7 6 1 7 6

r eques t (J2 , R3, 3); ...

r eques t (J2 , R2, 1); ...

release; ...
release;
~ 1 7 6

r eques t (J2 , R1,2) ; ...

release;

~ 1 7 6

r eques t (J3 , R3, 1); ...

r eques t (J3 , R1, 1); ...
release; ...

release;

Figure 1. The critical sections of J~, ./2 and J3.

STACK-BASED SCHEDULING OF REALTIME PROCESSES 73

Figure 2. The resource graph for J~, ./2 and -/3.

2.3. Blocking

The resource allocation policy is constrained to block a request (at least) when there are
insufficient resources available to satisfy the request. We call such a conflict a direct block-
age. Since we are assuming a job never makes a request that exceeds the total resources
in the system, a job execution ~ can only be directly blocked if there is an identifiable
set of other jobs that are directly blocking J, in the sense that there will be sufficient re-
sources available to satisfy ~'s request as soon as one or more of these other jobs releases
an allocation.

For a multiunit nonpreemptable resource, a request (J, R, m) is blocked directly iff
~R < m, where vR denotes the number of units of R that are currently available (i.e., not
outstanding). As a consequence of this definition, if R is a binary semaphore, any request
for an allocation of R is blocked directly by any outstanding allocation of R to another
job. Similarly, if R is a reader/writer lock, any request for an allocation of R is blocked
directly by any outstanding write-allocation of R to another job, and any request for a write-
allocation of R is blocked by any outstanding read-allocation of R to another job.

In addition to direct blocking, there may be other blocking. The resource allocation policy
may choose to block some requests that are not blocked directly. In particular, it may do
this to insure priority inversion is bounded. However, we will assume that the resource
policy preserves the properly that whenever a job J is blocked there is an identifiable set
of other jobs that are blocking J; i.e., if some (or all) of the jobs blocking J released their
current allocations J would become unblocked.

2.4. Priorities

Each job execution request ~ has a priority, p(~). Priorities are values from some ordered
domain, where ~ has higher priority than ~q' i f fp@) > p@') . ~ having higher priority
than ~ ' means that expediting ~ is sufficiently important that completion of ~ ' is permitted

74 T.E BAKER

to be delayed. For concreteness in our examples, we will use numeric priorities, where
larger values indicate greater urgency. Examples of priority assignments of interest in real-
time system s include RM and EDE

A processor allocation policy determines which one of the pending unblocked jobs is
allowed to use the processor. The primary objective of the processor and resource alloca-
tion policies is to expedite the highest priority pending job execution request. Normally,
expediting the highest priority pending job means allocating the processor to that job, but
this is not possible when the job is blocked. If a job J is blocked, the only way to expedite
it is to expedite another (lower-priority) job that is blocking J, until the resources released
by such jobs remove the cause of the blocking. This rule, which is called priority inheritance
in (Sha, Rajkumar and Lehoczky 1987), can be applied transitively to expedite any directly
blocked job that is not involved in a deadlock.

The rest of this article assumes that use of the processor is allocated to jobs preemptively,
according to the priorities of requests and First-In-First-Out (FIFO) among jobs of equal
priority, with priority inheritance. More precisely, let ~qc,r denote the currently executing
request, and ~max denote the oldest highest priority pending job execution request. (Note
that ~cur may, but need not, be the same as ~max.) Under the priority inheritance policy,
either ~cur = ~,,~ or there is a chain of job executions ~ql, �9 �9 ~g such that ~ = ~ma~,
gk = J~,r, and ~i is blocked by ~i+l for i = 1 k - I. For there to be no multiple
priority inversion, the resource allocation policy must insure that there is at most one such
chain and the length of this chain never exceeds one.

2.5. Preemption levels

In addition to the priorities which are attached to individual requests for job executions,
there are preemption levels (level for short), which are attached to jobs. Each job J has a
preemption level 7r(J). The level of a job is statically assigned to the job and applies to all
execution requests for the job. The essential property of preemption levels is that a job
J ' is not allowed to preempt another job J unless r (J) < 7r(J'). This is also true for priorities.
The reason for distinguishing preemption levels from priorities is to enable us to predict
potential blocking, in the presence of dynamic priority schemes such as EDF scheduling.

2.5.1. Relative deadlines. For the specific priority assignments mentioned in this article,
the preemption level of a job is based on the relative deadline of the job. The relative deadline
of a job J is a fixed value, D(J), such that if a request for execution of J arrives at time
t, that execution must be completed by time t + D(J). In other words, the relative deadline
of a job is the size of the scheduling window in which each execution of the job must fit.

We define the preemption levels of jobs, lr(J), so that they are ordered inversely with
respect to the order of relative deadlines; that is:

r (J) < 7r(J') ~ D(J') < D(J).

Suppose there are two jobs, J and J', with relative deadlines D(J) = D and D(J') = D',
respectively. Suppose ~ is a job execution request of J such that Arrival(~) = t, and ~q'
is a request of J ' such that Arrival(~ ') = t'. In order for 3 ' to preempt ~, we must have:

STACK-BASED SCHEDULING OF REALTIME PROCESSES 75

i. t < t ' (so ~q can get started);
ii. p(~) < p(~ ') (so ~' can preempt).

This is illustrated in Figure 3.
With EDF scheduling, p(~) < p(~ ') iff t ' + D ' < t + d, so the essential property

of preemption levels is satisfied; i.e., job J ' is not allowed to preempt J unless ~'(J) < lr(J').

Example. An example will emphasize the difference between EDF priority and preemption
level. Let ~' and 6)' be two periodic processes, each of which has a single job. Let the
jobs be J and J', with relative deadlines 20 and 10, respectively. Preemption level 1 is assigned
to J and preemption level 2 is assigned to J', since the relative deadline of J ' is shorter
than the relative deadline of J.

J ' can never be preempted by J. This does not mean that requests for J ' always have
higher priority than those for J, or that we are allowing enforcement of preemption levels
to cause priority inversion. It is just that the only way a request for J can have higher priority
than a request for J ' is if it arrived earlier, before the request for J ' could have started,
in which case it will have no need to preempt J.

Suppose request ~ arrives at time t, and a request 3 ' arrives at time t + 11, as shown
in Figure 4. Since the absolute deadline of ~t is t + 20 and the absolute deadline of ~ '
is t + 21, ~ will have higher priority than ~', and so ~ will not be preempted. On the
other hand, if ~ ' had arrived at time t + 9 its deadline would have been t + 19 and we
would have had p(~) < p(~ '), so ~q would be preempted. Thus preemption level is differ-
ent from priority, but there is no priority inversion.

In addition to EDF scheduling, our preemption levels based on relative deadlines can
be used with RM, deadline monotone (Leung and Whitehead 1982) (where p(J) < p(J')
iff D(J') < D(J)), and static least-slack time scheduling (where p(J) < p(J') iff D(J')
- C(J') < D(J) - C(J), and C(J) is the maximum execution time of job J).

t J due
t., D J

t ' i f ' due

Figure 3. Preemption, in EDF scheduling.

t f f due
20 J I- -I

10 -~
t + 11 ,.7' due

t J due
L 20 J
I- -I

L 10 "~ i-
t + 9 ,.7' due

Figure 4. Preemption level vs. priority with EDE

76 T.E BAKER

2.5.2. Abstract preemption levels. Although relative deadlines are the basis for preemption
levels for all these examples, the theoretical results proven in this article do not depend
on this. The only properly of preemption levels on which these results do depend is the
following condition:

p(J) _< p (J ') or Arrival(J) <_ Arrival(~') or 7r(J) > 7r(J'). (2.1)

This is equivalent to requiring that if J has higher priority than ~', but J arrives after
J ', then J must have a higher preemption level than J'. Note that our preemption levels
based on relative deadlines do satisfy condition (2.1) above for all the priority assignments
mentioned in this article, and condition (2.1) is sufficient to guarantee that J can preempt
J ' only if 7r(J') < r (J) .

Condition (2.1) and the other definitions enable us to prove the following lemma, which
characterizes the relationships between allocation of processor time, preemption levels,
priorities, and arrival times.

LEMMA I. For every preempted job execution J:

1. p(J) < P(Jcur),
2. 7r(J) < r(Jcur);
3. Start(J) < Arrival(Jcur).

Moreover, if Jcur 7~ Jmax, for every preempted or executing request J , including Jcur:

1. p(J) < P(Jm~);
2. 7r(J) < 7r(J.u~x);
3. Start(J) < Arrival(~max).

Proof Recall from Section 2 that Jcur stands for the currently executing request and J , ,~
stands for the oldest highest priority pending request. A request J cannot preempt another
request J ' unless J arrives after J ' has started execution and J 's priority is higher than
J"s . By condition (2.1) this means the preemption level of J must also be higher than that
of J'. These relations are transitive. It follows that p(J) < P(Jcur), 7r(J) < lr(Jcur), and
Start(J) < Arrival(Jcur). From the definition of Jm~x, P(J) - P(Jmo.0, for every pending
~q. If Jc,r ~ Jmax we have p(J) < P(Jmax)- If ~qm~x arrived before Jc~r started, it would
have been chosen to execute ahead of Jcur, so Start(Jcu~) < Arrival(~max). Given these
two facts, from condition (2.1), we have r(Jcur) < 71"(Jmax). These three relations then
apply to jobs preempted by J~,r, transitively.

3. Preventing deadlock and multiple priority inversion

To strictly bound priority inversion, we want to require that the resource management policy
not allow deadlock or multiple priority inversion--that is, situations where a job is blocked
for the duration of more than one outermost nontrivial critical section of a lower priority

STACK-BASED SCHEDULING OF REALTIME PROCESSES 77

job. Given the model and assumptions described above, it is possible to derive general
conditions that are sufficient to guarantee there is no deadlock or multiple priority inver-
sion. (Moreover, we will show in Section 6 that these conditions are necessary if all jobs
share a single stack.) The conditions are:

To prevent deadlock, a job should not be permitted to start until the resources
currently available are sufficient to meet the maximum requirements of the job. (3.1)

To prevent multiple priority inversion, a job should not be permitted to start
until the resources currently available are sufficient to meet the maximum
requirement of any single job that might preempt it. (3.2)

Note that condition (3.1) above is similar to Havender's collective allocation approach to
avoiding deadlock (1968), but Havender proposes to actually allocate all the resources to
the job before it starts. In contrast, condition (3.1) only requires that the resources be avail-
able. They need only be allocated to the job during the critical sections in which it actually
needs to use them. A higher-priority job may preempt and use the resources between these
critical sections, if the available quantities are sufficient to meet its requirements.

LEMMA 2. Condition (3.1) guarantees that a job cannot block after it starts.

Proof. Suppose condition (3.1) is enforced. We have assumed there are only finitely many
jobs, and that a second execution of a job is not permitted to start while an execution of
the same job is active. Thus, an executing job can be preempted by only finitely many
other jobs. We will prove by induction on N that if 05 is preempted by no more than N
other jobs, 05 executes to completion without blocking.

Suppose the induction hypothesis fails for some N; that is, suppose 05 is blocked making
request (J, R, m), and N is the number of other jobs that preempt 05 during its lifetime.
By the condition (3.1), at least m units of R were available when 05 started. If N = 0, no
other job preempts 05, so these resources will still be available when 05 requests them, and
05 will execute to completion without blocking. If N > 0, suppose job 05n preempts 05.
By condition (2), all the resources required by 05n are available when 05n preempts. Since
any job that preempts 05H also preempts 05, the induction hypothesis guarantees that 05t~
executes to completion without blocking, as will any job that preempts 05H, transitively.
Since all of the jobs that preempt 05 execute to completion without blocking, the priority
inheritance policy will not permit 05 to resume execution until there are no higher priority
pending jobs. At this point, since the completing jobs must have released all their resource
holdings, the only resources outstanding will be those held by J and jobs preempted by
05. It follows that ~ cannot be blocked.

THEOREM 3. Condition (3.1) is sufficient for preventing deadlock.

Proof. Observe that a job cannot hold resources until it starts, and by Lemma 2 it cannot
be blocked after it starts. Since a job cannot be blocked while holding resources, there
can be no deadlock.

78 T.P. BAKER

THEOREM 4. Assuming condition (3.1) is enforced, condition (3.2) is sufficient to prevent
multiple priority inversion.

Proof Suppose there is multiple priority inversion. By Lemma 2, the only way a job ~n
can be subject to such multiple priority inversion is if there are two or more lower priority
jobs, ~ and ~ ', that execute while ~n = ~max. The priority inheritance policy only allows
such lower priority jobs to execute if they are blocking ~n. Both ~ and ~ ' must have
started executing before ~ arrives, and one of them must have preempted the other. Without
loss of generality, suppose ~ preempted ~ '. Condition (3.2) must have been violated when

was allowed to start.

The Stack Resource Policy enforces conditions (3.1) and (3.2) indirectly, by imposing
stronger conditions, that are simpler to check.

4. Stack resource policy

This section defines the SRP, and proves that it works; that is, it enforces direct blocking
requirements, without allowing multiple priority inversion or deadlock.

4.1. Ceilings

4.LL Abstract ceilings. The SRP enforces conditions (3.1) and (3.2) in terms of preemption
ceilings (ceilings). Each resource R is required to have a current ceiling, FR ~, which
is an integer-valued function of the set of outstanding allocations of R. The correctness
of the SRP does not depend on the exact definition of [-R] , but only requires that ceilings
be related to priorities and preemption levels by the following condition:

If J is currently executing or can preempt the currently executing job, and
may request an allocation of R that would be blocked directly by the outstand-
ing allocations of R, then a'(J) _< ~R 7 . (4.1)

The SRP will work with any definition of ceiling that satisfies these conditions. One
specific definition of ceiling, that satisfies condition (4.1), is given below. However, freedom
to choose a slightly different definition is a convenience when one implements the SRP.
For this reason, the definition and proofs of the SRP are based on abstract ceilings, char-
acterized only by condition (4.1).

4.1.2. Specif'u: ceilings. For a multiunit nonpreemptable resource R, rR 7 may be defined
to be rR 7 ~R' where vR denotes the number of units of R that are currently available and
~R -] ~R denotes the maximum of zero and the preemption levels of all the jobs that may

be blocked directly when there are vR units of R available. That is:

FR7 .R = max({0} O {~(Y) I ~R < ~(J)}) ,

STACK-BASED SCHEDULING OF REALTIME PROCESSES 79

R NR iuR(1) rRlo rR11 rRl FRI
R1 3 3 2 1 3 2 1 0
R2 1 1 1 0 2 0 0 0
R3 3 1 3 1 3 2 2 0

Figure 5. Ceilings of resources.

where/z R is the maximum requirement of job J for R. (Note that this definition satisfies
condition (4.1).)

Example. The ceilings of the resources for the example shown in Figures 1 and 2 are shown
in Figure 5, under the assumption that 7r(J i) = P(~i) = i for i = I, 2, 3.

4,L3. Ceilings and deadlock prevention. Given condition (4.1), the following relationships
can be established between the current ceiling of a resource and conditions (3.1) and (3.2)
of Section 3.

LEMMA 5. Suppose ~q = ~max, ~ is not executing, and R is a resource.

(a) If V R
imum

(b) If [-R
imum
J and

< r (J) then there are sufficiently many units of R available to meet the max-
requirement of J. (Condition (3.1) is satisfied for J and R.)

_< r (J) then there are sufficiently many units of R available to meet the max-
requirement of every job that can preempt 3. (Condition (3.2) is satisfied for
R.)

Proof. To show (a), suppose ['R-] < ~r(J) but the maximum request of J for R cannot
be satisfied. By condition (4.1), r (J) _< [-R-] --a contradiction.

To show (b), suppose VR ~ _< r (J) , but for some job ~n that can preempt ~ the max-
imum requirement of ~H for R cannot be satisfied. By condition (4.1), 7r(Jn) <- V R ~ ,
but for ~H tO preempt ~ we must have r (J) < r(JH)--a contradiction.

THEOREM 6. If no job J is permitted to start until [Ri7 < ~r(J), for every resource R i,
then:

(a) no job can be blocked after it starts;
(b) there can be no deadlock;
(c) no job can be blocked for longer than the duration of one outermost nontrivial critical

section of a lower priority job.

Proof. Part (a) follows directly from part (a) of Lemma 5 and Lemma 2. Part (b) follows
directly from part (a) of Lemma 5 and Theorem 3. Part (c) follows from part (b) of Lemma
5 and Theorem 4.

80 T.P. BAKER

4.2. Definition of the SRP

The Stack Resource Policy is defined as follows: Each job execution request ~ is blocked
from starting execution (i.e., from receiving its initial stack allocation) until ~ is the oldest
highest priority pending request, and if ~ would preempt an executing job,

VR i [Ri~ < 7r(J). (4.2)
VR i i=1 ,m

Thereafter, once ~ has started execution, all its resource requests are granted immediately,
without blocking.

This can be stated more simply, by introducing the concept of a system-wide current
ceiling. At any instant of time, let the current ceiling of the system, ~', be the maximum
of the current ceilings of all the resources. That is,

~r = max{ VRi-] I i = I, ..., m}.

The SRP preemption test (4.2) then reduces to

< ~(J). (4.3)

If ~ is blocked, it is blocked by the preemption test. The other jobs holding resources
R such that r (J) _< V R-~ are said to be blocking ~.

Note that the SRP does not restrict the order in which resources may be acquired, in
contrast to the ordered resource allocation approach of (Havender 1968). It is also less
restrictive than another approach of (Havender 1968), collective allocation. That is, even
though the condition ~" < 7r(J) is tested before the job J starts to execute, the SRP does
not at that time actually allocate all the resources that may ever be requested by J. They
are only allocated when requested, and are released as soon as they are not needed. Thus,
even if J will later request some allocation of R that would block a higher level job JH,
JH is free to preempt until J actually requests enough of R to block JH directly.

Note also that the SRP preemption test (4.2) has the effect of imposing priority inheritance
(that is, an executing job that is holding a resource resists preemption as though it inherits
the priority of any jobs that might need that resource), though the effect is accomplished
without modifying the formal priority of the job, p(~q). This is important for understanding
the meaning of the preemption test, above, and the rest of this article.

Example. Two possible executions of jobs Jr, ./2, and J3 under the SRP are shown in Figure
6 and Figure 7. The solid horizontal lines indicate which job is executing, while the barred
lines indicate the relative value of the current ceiling, ~'. Figure 6 shows what happens
if Jt acquires R2 before "]2 and J3 arrive. Since VR27 o = 2, "]2 is unable to preempt JI
after it acquires R2, and since VRt7 o = 3, J3 is unable to preempt J~ after it acquires
all ofRt. J3 preempts J~ as soon as Jt releases R~, and J2 preempts Jt as soon as J~ releases
R2. Figure 7 shows what happens if J3 arrives before J~ acquires R~; it is able to preempt
immediately, but J2 still has to wait for J1 to release R2. (Note that in both cases the current
ceiling happens not to change when J3 acquires R3; that is because J3 only needs one unit,
and VR37 2 = 2 in our example.)

STACK-BASED SCHEDULING OF REALTIME PROCESSES 81

i *

i i

i *

i

-H-I-Ht '~t - I -H-I+H' ,"

J 2 t " I ' H ' I ' H ' t ~ H ' H ' t ' H , ~ . :H-t.H-t-H~-H-t-H-f-~-t-H-t-H-t~f H-H- t -H:

I I I I I I 1 :
i

acquires arriv~ acquires arriv~ rdeases acquir~ rdeases complet~ rdenses
P~ R1 RI R3 R3 R2

Figure 6. J3 arrives after J~ acquires Rt.

i i
i i

, / 3 . :

*

i
i

i
i

32 l - t-H-f-H.t~ H-Ft-F-H~-H-I-H-I-~-I-H'f +~-t:H-F-H-t-F~-H-I-H-J-~: ~ - I - H + H - :

i i

* i

i i
i i

- t-H-t-H.I: .

I I I

i

i

!

s

i
*

0

t

.tl .I1
acquires releases
R1 RI

I I I 1 :
f

acquires arrivm arriv~ acquires rele~es complet~ rdeases
/~ R3 Rs R2

Figure 7. J3 arrives before Jl acquires Rt.

4. 3. Blocking properties of the SRP

The SRP enforces direct blocking, prevents deadlock, and strictly bounds priority inver-
sion. We shall prove this.

COaOLLARY 7. If no job J is permitted to start until ~- < lr(J), then:

(a) no job can be blocked after it starts;
(b) there can be no deadlock;

82 z~ BAKER

(c) no job can be blocked for longer than the execution time of one outermost nontrivial
critical section of a lower priority job.

Proof. This follows from Theorem 6, since [R] _< ~r for every resource R.

Since no job is blocked after it starts executing, there can be no transitive blocking. A
consequence of this and priority inheritance is that whenever the processor is not idle it
is executing either the oldest highest-priority request, ~max, or a job that is directly block-
ing ~q~ax- These facts and Lemma 1 enable us to prove the following theorem, which says
that the current job, Jcur, is the only job that may block ~,,~x.

THEOREM 8. If ~max is blocked, it will become unblocked no later than the first instant
that ~c,r is not holding any nonpreemptable resources.

Proof. Suppose ~max is blocked. Since ~max is not executing, it must have arrived after
~cur, and so by condition (2.1), 7r(Jc,r) < lr(J,,~x).

Consider the moment that ~cur releases the last resource allocation it was holding when
~,,~x arrived. Suppose ~ , ~ remains blocked. Since such resources are required to be
requested and released in LIFO order, the same resource allocations are outstanding as
when ~lc.r started, and ~" i s the same as it was then. Since ~cur was not blocked then,
~r < r(Jc,~). It follows that Jmax is not blocked now.

THEOREM 9. The SRP never grants a request that is directly blocked.

Proof. This is true because the SRP never allows a job to start unless it can be guaranteed
not to block, as shown by Corollary 7. More directly, suppose J makes a request for resource
R that is directly blocked. By condition (4.1), 7r(J) < rR 7 �9 By definition of if, rR "] < ~',
but the SRP would not let J start unless ~r < lr(J)--a contradiction.

5. SchedulabiHty with the SRP

Corollary 7 is sufficient to support the schedulability results for RM and EDF scheduling
cited in Section 1. We can also derive a tighter schedulability test for the EDF policy with
semaphores than the one proved in (Chen and Lin 1989). To show this, we restrict our
process model so that it more closely resembles that used in previous work (Liu and Layland
1973). In particular, let there be a one-to-one correspondence between processes and jobs.
Suppose there are n (periodic or aperiodic) processes, {(P~ (Pn}, ordered by increas-
ing relative deadlines of the corresponding jobs, {J~, . . . , Jn}. Let the relative deadlines
all be positive, and let each be less than or equal to the period of the corresponding proc-
ess. Let T/denote the period or minimum interarrival time of (Pi, let D i denote the relative
deadline of Ji, and let Ci denote the maximum execution time of Ji. Let Bi denote the max-
imum execution time of the longest nontrivial critical section of every job Jk such that Di
< D k and i ~ k, or zero if there is no such Jk. (This maximum includes all the critical
section of other jobs that might subject Ji to priority inversion.) Assume there is a system
start time, before which no jobs are requested, and that Di <- Ti for every process.

STACK-BASED SCHEDULING OF REALTIME PROCESSES 83

TnEOREra 10. A set of n (periodic and aperiodic) processes is schedulable by EDF shedul-
ing with SRP semaphore locking if

k=l , . . . ,n i=1

Proof. Assume the theorem is false. Let t be the first time a job misses its deadline. Let t '
be the last time before t such that there are no pending job execution requests with arrival
times before t ' and deadlines before or at t. Since no requests can arrive before system
start time, t ' is well defined. Since deadlines are all positive, t ' < t. By choice of t and
t', there is no idle time in [t', t].

Let 6~ be the set of jobs that arrive in [t', t] and have deadlines in [t', t]. By choice of
t', there are pending requests of jobs in ~ at all times during the interval [t', t]. Thus,
by the EDF priority assignment, the only jobs that will be allowed to start in [t', t] will
be in 1~. These jobs can only be preempted by other jobs in ~.

If a job not in (~ executes in [t', t] it must have started before t ' and have been preempted
while holding some resource allocation that is blocking a job in ~. Once such a job releases
the resources that are causing the blocking, it cannot execute further in [t', t].

Suppose there are two such jobs, ~b and ~c. Both of these jobs must have been holding
resources when they were preempted, and since they are blocking some job(s) in 6t, these
resources must have current ceilings higher than or equal to 7r(Ji) for some ~i in ~. (If
they are not both blocking the same job in 6t, we can choose the ~i with lower preemption
level.) Since both ~b and ~c are in nontrivial critical sections at time t', one must have
preempted the others; say ~b preempts Jc. For some resource R held by ~qb, we have r(Ji)
< [-R 7 �9 Since ~i is capable (transitively) of preempting ~c, we also have 7r(Jc) < FR 7 ,
but then Jc should not have been able to preempt ~b--a contradiction.

It follows that there can be at most one job, eqj, that blocks any job in 6~, and that this
job can only execute for as long as it takes to exit its outermost nontrivial critical section.
Therefore Jj is the only job not in ~ that can execute in [t', t]. (Actually, by Theorem 8,
we know that ~j must be the job that is executing at time t', if it exists.) If there is no
such job Jj, only the jobs in 6t can execute in [t', t].

Note that if Jj uses more than one nonpreemptable resource simultaneously it may exe-
cute more than once, since it may unblock several jobs in stages, as it releases successive
resources. However, the total execution time of Jj in [t', t] cannot be any longer than it
takes Jj to release its last resource, since after that Jj will be preempted continuously by
jobs in (~.

Let za = t ' - t. By choice of t', Di -< A, for every Ji in (~. If a job Jj is executing
at time t', then A < Dj. Since the jobs are ordered by increasing value of Di it follows
that there exists a k such that 1~ c {Jl Jk}, Dk --< A, and k < j.

The total length of time that Jj executes in [t', t] is bounded by the longest time Jj uses
a resource. This is bounded by Bi for each job Ji in (~, since Di < Dj. In particular, the
maximum execution time of Jj. in [t', t] is bounded by Bk.

For every Ji in (~, the demand for CPU time in [t', t] is not more than KCi, where

84 T.E BAKER

In [t', t] there is no idle time and the only jobs executing are Jj and those in 6t. Since
there is an overflow, the total demand for processor time in It', t] exceeds A, so

Bk+ +
i = 1

Since LX/ _< X, we have

A i=1 TiA C i = - A + + T i - D i Ci - .= S 7 > 1 '

and sinceDi -< A f o r i = 1, . . , k ,

D--k + + Di Ti Dk + ~// > 1.
i = l i = l

COROLLARY ll. A set of n (periodic and aperiodic) jobs with relative deadlines equal to
their respective periods is schedulable by EDF scheduling if

vk ~ + -~-~k ~ 1.
k = l ,n i = l

Proof. Since Di = Ti, Ti/Di = 1.

Note that this result is tighter than Chen and Lin's Theorem 4 (quoted in Section 1),
since there is only one blocking term in the sum. However, the proof does not appear to
depend on the use of preemption levels or early blocking. Thus, we believe it can also
be applied to the dynamic SRP as described in (Chen and Lin 1989).

6. Stack sharing

This section discusses the sharing of runtime stack space between jobs, and shows that
the SRP supports stack sharing without allowing unbounded priority inversion or deadlock.
Supporting stack sharing was the original motivation for the development of the SRP, and
in particular for the choice of early blocking.

61. The motivation for stack sharing

In a conventional process-based model of concurrent programming, such as Ada tasking,
each process needs its own runtime stack. The region allocated to each stack must be large

STACK-BASED SCHEDULING OF REALTIME PROCESSES 85

enough to accommodate the maximum stack storage requirement of the corresponding proc-
ess. Storage is reserved for the stack continuously, both while the process is executing and
between executions.

In some hard realtime applications there may be thousands of actions that are to be per-
formed at different times in response to appropriate triggering events. In a conventional
process model each action would be implemented by a process, which waits for a triggering
event and then executes the action. A problem with this kind of design is that a great deal
of storage may be required for the stacks of all the waiting processes--storage which is
unused most of the time.

For example, suppose that there are four processes (~1, (~)2, (~3, and (P4, with respective
priorities 1, 2, 2, and 3 (3 is the highest priority). Figure 8 shows the stack usage of these
processes during a possible execution sequence, assuming each process is allocated its own
stack space. In the figure, (Pl is running at time tl; (P2 preempts at time h, and completes
at time t3, allowing (Pl to resume; (P3 preempts at time t4; (94 preempts at time ts, and
completes at time t6, allowing (P3 to resume; (P3 completes at time tT, allowing (P~ to resume.
The top of each process's stack varies during the process's execution, as indicated by the
solid lines. The regions of storage reserved for each stack remain constant, as indicated
by the dashed lines.

The requirement for stack space can be dramatically reduced by using the featherweight
processes described in this article. A key feature of the featherweight process model is that
when a job execution completes, all resources required by that execution may be released.
In particular, stack space may be allocated when the job begins execution and completely
freed when it completes.

i

M

1 F-

I
t l t2

[~[_

t3 (time) t4

r a m - -

1 I_:
P4

1
ts t8 tr

Figure 8 One stack per process.

86 T.P. BAKER

6 2. How stack sharing works

One obvious way to allocate stack space is to partition jobs into groups that cannot preempt
one another, and allocate a stack to each group. The SRP provides a more elegant solution
than this, by allowing even jobs that preempt one another to share a single stack.

Suppose all jobs share a single stack. When a job J is preempted by a job J', J continues
to hold its stack space and J ' is allocated space immediately above it on the stack. Figure
9 shows what would happen to the jobs of Figure 8 if they shared a single stack. The space
between the two dashed horizontal lines represents space that will no longer be needed,
since the priorities of (92 and (P3 guarantee they will never need to occupy stack space
at the same time.

Stack sharing may result in very large storage savings if there are many more processes
than preemption levels. For example, suppose we have 100 jobs, with 10 jobs at each of
10 preemption levels, and each job needs up to 10 kilobytes of stack space. Using a stack
per job, 1000 kilobytes of storage would be required. In contrast, using a single stack,
only 100 kilobytes of storage would be required (since no more than one job per preemp-
tion level could be active at one time). The space savings is 900 kilobytes; that is, 90%.

6 3. Stack usage assumptions

Let us now assume stack sharing is allowed, and consider how it affects scheduling. Each
job may either have its own individual runtime stack, or share the use of a runtime stack

i
tt

J
r-

H
i
i

t2 t3

/ r-

|

t

(time) t,

Figure 9. Single stack, for all processes.

t5

r

t6 tr

STACK-BASED SCHEDULING OF REALTIME PROCESSES 87

with a collection of other jobs. Although runtime stack space is a nonpreemptable resource,
it must be treated differently from the other multiunit nonpreemptable resources we have
considered so far. The big difference is that the location of the requested space, rather
than the quantity, is what matters.

Based on the way in which programming language implementations typically use the
runtime stack, we make the following assumptions:

1. Every job requires an initial allocation of at least one cell of stack space before it can
start execution, and cannot relinquish that space until it completes execution. This means
the entire execution of each job is a critical section with respect to the stack which it
is using.

2. After a job starts execution, if it makes any request that is blocked it must continue
to hold its stack space while it is blocked.

3. A stack storage request can be granted to a job if and only if the job is not yet holding
any stack space or it is at the top of the stack it is using.

4. Only a job at the top of a stack may execute, since an executing job may need to increase
its stack size at any time.

Due to these assumptions, the request for the initial stack allocation of each job may be
treated as part of the request for job execution, and subsequent use of the stack by that
job may be allowed without explicit request and release operations.

64. How the SRP avoids stack blocking

The problem with stack sharing is that it can cause blocking. For a shared stack, a job
J is directly blocked iff there is another job J ' holding the space immediately above J on
the stack, so that J 's part of the stack cannot grow without overflowing into the holdings
of J'. For this situation to occur, J ' must have preempted J; J will be blocked until J ' com-
pletes and releases all of its stack space. That is, once a job is preempted by another job
on the same stack it cannot be resumed until the preempting job completes. Such stack
blocking effectively requires that use of the processor be allocated according to a LIFO
policy. Fortunately, since any job that preeempts must have higher priority than the job
it preempts, this requirement is consistent with priority preemptive scheduling.

When there are other nonpreemptable resources, stack blocking can easily lead to dead-
lock. For example, suppose jobs ~n and ~r both use a nonpreemptable resource (e.g.,
binary semaphore) R. Suppose ~n preempts while ~r is holding R. Job ~n will start to
execute, occupying the stack space above ~L, but will eventually try to obtain R. It cannot
do this, since ~t. is still holding R. Unfortunately, ~H is now also blocking ~. , by sitting
on top of its stack space.

Note that it is possible to solve the problem of stack deadlock without bounding priority
inversion very strictly. For example, reconsider the jobs ~n and ~L described above. Sup-
pose a deadlock prevention scheme is used, that prevents job ~n from preempting while
R is in use. Now suppose there is an intermediate priority job ~M, which preempts while
~r is holding resource R, but before ~n arrives. Since ~r cannot execute while ~M is sitting

88 T.P. BAKER

on its stack, ~t4 will suffer priority inversion until ~M completes its whole execution, and
then until ~L completes the section in which it is using R.

We showed in Section 4.3 that the SRP will prevent deadlock and bound priority inver-
sion to the duration of a single critical section. It does this by enforcing conditions (3.1)
and (3.2), using the preemption ceilings for all resources that can cause blocking. The
only requirement for preemption ceilings is condition (4.1). If we can define the ceiling
of a stack in a way that satisfies (4.1), the SRP will handle stack blocking.

Because of the assumptions we have made about stack usage, the stack space held by
a job J can only block jobs that it might preempt; that is, jobs with lower preemption levels.
It follows that condition (4.1) imposes no restriction on the current ceiling of a stack. There-
fore, the ceiling of a stack can be defined to be anything we want. We define it to be zero.

By defining the ceiling of a shared stack to be zero, we can ignore stack usage in com-
putation of if, and so stack usage can never cause blocking. Critical sections with respect
to stack usage are therefore trivial, and can be ignored in the computation of the priority
inversion bound, Bi. Note, however, that this does not mean stack resources can be ignored
completely; where there is stack sharing, the preemption operation must be treated as a
request for stack resources, and may block.

7. Comparison to PCP

Since the SRP is a refinement of the PCP it is natural to compare the two techniques, to
see what the differences are and what consequences they have.

7.1. Review of the PCP

As a basis for the comparison, we review the definition of the PCE Each job is assumed
to be requested cyclically, with a fixed priority. There is a fixed set of semaphores, each
of which has a priority ceiling.

Sha, Rajkumar, and Lehoczky (1987) define the priority ceiling of a semaphore to be
"the priority of the highest priority job that may lock this semaphore." They refine this
concept for readers and writers in (Sha, Rajkumar and Lehoczky 1988), defining the "abso-
lute priority ceiling" of an object to be the priority of the highest priority job that may
lock the object for reading or writing, and the "write priority ceiling" of an object to be
the priority of the highest priority job that may lock it for writing. Chen and Lin (1989)
define the "dynamic priority ceiling" of a semaphore to be "the priority of the highest
priority task that may lock S in the current effective task set."

If S is a semaphore, let c(S) denote its priority ceiling. Let S* be the semaphore that
has the highest priority ceiling among all semaphores locked by jobs other than ~cur, if
there are any. For notational simplicity, let c(S*) be defined to be zero when S* is undefined
(i.e., when there are no locked semaphores).

The Priority Ceiling Protocol consists of the following policy: When a job ~ requests
a semaphore S it will be blocked unless

c(S*) < p(~).

STACK-BASED SCHEDULING OF REALTIME PROCESSES 89

(That is, ~ is blocked until it has strictly higher priority than all the priority ceilings of
all the semaphores locked by jobs other than 3.) If ~ blocks, the job that holds S* is said
to be blocking ~q and inherits ~'s priority. A job ~ can always preempt another job execut-
ing at a lower priority level as long as ~q does not request any semaphore.

7.2. Differences of the SRP

In most respects, the SRP is a consistent extension of the PCP. The SRP relaxes restric-
tions of the PCP in the following ways:

1. The PCP assumes that the preemption level of each job is the same as its priority, which
is fixed, except for mode changes (Sha, Rajkumar and Lehoczky 1989). With the SRP,
the preemption level of a job may be different from its priority, and while the preemp-
tion level of a job is required to be static, the priority may be dynamic. Ceilings are
based on preemption levels, rather than priorities. This allows the SRP to be applied
directly to EDF scheduling without resort to dynamic recomputation of ceilings.

2. The PCP model views each process as a sequence of requests for the same type of job.
We make the same assumption for the purposes of EDF schedulability analysis, but
do not make this assumption in the other proofs. Thus, an SRP process may consist
of requests for several different jobs, with different preemption levels.

3. The original PCP handles binary semaphores, and has been extended to handle reader-
writer locks by distinguishing two kinds of priority ceilings. The SRP allows multiunit
resources, by treating the ceiling of a resource as a function of the number of units cur-
rently available.

4. The PCP does not allow stack sharing. The SRP treats a shared stack as a resource
with ceiling zero.

The only way in which the SRP is not a consistent extension of the PCP is in earlier
blocking. When the PCP blocks a job it does so at the time it makes its first resource re-
quest, which is some time after it has started execution. In contrast, the SRP schedules
every job as though it starts by requesting use of a shared stack (whether or not it actually
does). This eliminates the possiblity of a job blocking after it has started execution, and
eliminates the extra context switches associated with blocking and unblocking. (This issue
of context switches is discussed further in Section 7.5.)

A technical difference between the SRP and PCP is Theorem 8, which says that if a
job is blocked by the SRP, it is blocked while trying to preempt, and only by the one job
it is trying to preempt. In contrast, the PCP only guarantees that if a job is blocked it
will be blocked at its first resource request and then will not be blocked again.

7.3. A comparative example

To illustrate the differences between the PCP and SRP, we present an example, involving
three jobs with the structure shown in Figure 10. Consider the following scenario, in which
the jobs execute under the PCP:

90 T.P. BAKER

JH JM
~176176

r eques t (JH, S, 1); ...

release;

~176

reques t (JL , S, 1); ...

release;

Figure 10. The jobs Jtl, JM, JL.

1. A high priority job, JR preempts the processor from a lower priority job, Ju, and exe-
cutes for a while.

2. JR is forced to allow a lower priority job JL (preempted earlier by JM) to resume execu-
tion, because JL is holding a resource needed by JH-

3. JL releases the resource needed by JR, and JH resumes execution.
4. JR completes, and JM resumes execution.

This is illustrated in Figure 11. The solid horizontal lines indicate which job is executing.
The barred horizontal lines indicate the relative value of c(S*), the current ceiling as de-
fined for the PCP.

For comparison, consider the corresponding scenario under the SRP:

1. Jn waits until ,r(Jn) > ~', then begins execution, preempting JL. (Note that JM and JH
are forced to wait until JL releases S, since Ir(Jn) <_ ~r.)

2. Jn completes and JM resumes execution.

This is illustrated in Figure 12. The solid horizontal lines indicate which job is executing.
The barred horizontal lines indicate the relative value of ~'.

i

JH -4t -H-Q-H~, , , : I I I I , , , , , ~ 4-}'H-F-H't+H-H-L+

JL

IIIIIIII
i

JL
l o c k s
S

. • . t • J

III:

JM
n~-rives

I l l l l l l ~ l l l l l l l t l l l l l l l t l l l

JH J~I Jr Jx JH JM
a r r i v e s r e q u e s t s u n l o c k s u n l o c k s completes completes

S S S

Figure 11. Execution with PCP.

STACK-BASED SCHEDULING OF REALTIME PROCESSES 91

J ~ t-t-H.t-I-~-t }- N-l- H-H ~-I-~-t-I- H-F: I l l l l l l ,
I l l l i l [D

I . k

t111:
i

locks
s

JM J~
arrives arrives

i

i

I IIIIIIIIIIIIII I I I I I I I l l l l l l l l l l l l l l l l i l l l
i

3n 3x 3n
unlocks locks S unlocks corapletes completes
S S

Figure 12. Execution with SRE

Note that the two ceilings, c(S*) and ~', differ slightly, since c(S*) does not include the
semaphores held by the current job. However, this makes no practical difference, since
for both the PCP and SRP, whenever a job performs its first potentially blocking operation
c(S*) = ~r. That is, it would be a valid optimization of the PCP to ignore c(S*) after the
first potentially blocking operation, just as the SRP does.

7.4. Priority inversion

One weakness of the SRP is that it will block a job in some situations where the PCP
would not. This is a consequence of early blocking, and consequent pessimistic assump-
tions about resource usage. It is not a major problem, since we have shown that the priority
inversion due to such blocking is bounded by the execution time of the longest nontrivial
critical section of a lower priority job. However, it does mean that a comparison of the
effectiveness of the SRP and PCP in preventing unbounded priority inversion must take
into account the characteristics of specific jobs.

The most obvious situation where the SRP will block and the PCP would not is when
a job uses no nonpreemptible resources. This is illustrated by job JM in the example of
Figures 11 and 12. JM is subject to priority inversion with the SRP, but not with the PCE
The example also shows that this difference is not a clear-cut advantage for the PCP, since
the extra priority inversion for JM can sometimes reduce the priority inversion for Jr/.

This problem cannot arise if there is stack sharing, since the stack is a nonpreemptable
resource. If there is no stack sharing, the defect can be reduced by modifying the SRP
to exempt jobs that are known to use no nonpreemptable resources from the preemption
requirement ~" < 7r(J). However, there will remain some cases where whether a job uses
such resources is decided by data dependent logic within the job. On the average, such
a job may suffer less priority inversion with the PCP than with the SRP. Moreover, if the
data-dependent control flow of the job causes it to have the longest execution time in the

9 2 T.P. BAKER

cases where it uses no nonpreemptable resources, the unnecessary blocking may cause
the worst-case combined execution and blocking time of that job to be longer with SRP
than PCP, reducing schedulability.

The comparison is simpler if we assume every job uses at least one nonpreemptable
resource. We can prove that in this case the SRP doesn't allow any longer priority inver-
sion than the PCP.

THEOREM 12. Under the SRP the maximum priority-inversion time of any job that uses
a nonpreemptable resource is no longer than it would be under the PCP.

Proof Suppose a set of jobs and a sequence of job execution requests is given. We will
compare the maximum priority-inversion time of some job J under both policies. Since
we are comparing against the PCP, which only supports binary semaphores and static pri-
orities, we will assume that the only resources are semaphores and that the priority of
each job execution request is the same as the preemption level of the job. Under these
assumptions, the only significant difference between the SRP and the PCP is that the SRP
blocks earlier.

Let o5 be a request for J that achieves the maximum priority inversion under the SRP.
From Theorem 8 we know that ~ can only be subject to priority inversion from the current
job, ~cur. Thus, ~qcur is holding a semaphore S that blocks ~q from preempting. That is,
7r(J) _< [-S]. Since we are assuming preemption level equals priority, p(~) _< [-S].

The same order of events may happen with the PCP. That is, a higher-priority job execu-
tion request for J may arrive while Jcur is holding S. Under the PCP, J would preempt.
Suppose J later requests some resource. We havep(~q) < [-S 7 < [-S'7. Since this is the
blocking condition for the PCP, this request by J would be blocked, o5 would therefore be
subject to priority inversion until Jc, r releases S, which is at least as long as under the SRP.

7.5. Context switches

A positive consequence of the early blocking policy of the SRP is a reduction in unnecessary
context switches, as compared with the PCP. The cost of context switches can be signifi-
cant for certain processors. Architectural features that increase the relative cost of context
switching include large register sets, address-translation lookaside buffers, instruction pipe-
lining, prefetching, and cache memory for data and instructions. For such architectures,
the early blocking property of the SRP may be important, because it reduces the need for
context switches.

For comparison, consider resource allocation policies that bound priority inversion but
allow late blocking, such as the PCP and the Priority Limit Protocol (Sha, Rajkumar and
Lehoczky 1987). These policies all permit the scenario shown in Figures 10, 11, and 12.
The diagrams reveal that with the PCP the execution of JH requires four context switches,
but with the SRP it only requires two context switches. This generalizes.

THEOREM 13. The SRP requires at most two context switches for a job execution request.

STACK-BASED SCHEDULING OF REALTIME PROCESSES 93

Proof This is a consequence of early blocking, and can be seen immediately from the
definition of the SRP. Since a job cannot be blocked after it starts execution, the only con-
text switches are one switch from the job that is preempted to the job that is requested
and one switch back when the preempting job completes.

THEOREM 14. The PCE and any other policy that waits to block a job until it makes a resource
request, may require four context switches for a job execution request, for any job that
shares a nonpreemptable resource with some lower-priority job.

Proof Let J be any job such that there is a lower-priority job Jz. and a resource R such that
both J and JL lock R. If J is requested while JL is running and has locked R, there will
be four context switches: (1) from J to JL, when J preempts; (2) from JL to J, when J tries
to lock R; (3) from JL to J, when Jz unlocks R; (4) from J back to JL, when J completes.

Together, Theorem 13 and Theorem 14 say that the upper bound on the number of con-
text switches caused by a request with the SRP is half of the maximum for the PCP. This
improvement is due to earlier blocking.

Note that this improvement is dependent on the preempting job being one that requires
a nonpreemptable resource--which we are assuming to be the normal case. If the job uses
no nonpreemptable resources, there would be no extra context switch with the PCP. More-
over, it is possible that whether a job uses such resources is determined by data-dependent
control flow. If the control flow causes the job to have the longest execution time in the
cases where it uses no nonpreemptable resources, the cost of the extra context-switches
may not contribute to the worst-case combined execution and context-switching time of
that job, and so it may not be considered significant with respect to schedulability.

8. Minimal SRP

The SRP was designed to solve the problem of stack blocking, but it is not an optimal
solution to that problem, in the sense of causing no unnecessary blocking. If we are will-
ing to make the blocking test more complicated, we can define such an optimal resource
management policy. The Minimal SRP (MSRP) imposes the minimum blocking necessary
to insure there is no deadlock or multiple priority inversion, assuming there is a single
stack and RM or EDF priorities are used.

8.1. Definition of the MSRP

The Minimal SRP is defined as follows: Each job execution request J is blocked from
starting execution (i.e., from receiving its initial stack allocation) until J is the oldest highest
priority pending request, and if ~ would preempt an executing job, one of the following
conditions is satisfied:

~- < r (J) ; (8.1)

~- = 7r(J) and the presently available resources are sufficient for J to
execute to completion without direct blocking. (8.2)

94 T.P. BAKER

Once J has started execution, all subsequent resource requests by J are granted immedi-
ately, without blocking.

Note that for the specific definitions of ceilings given here, condition (8.2) is equivalent to

~- = r (J) and vR (~R(J) - PR).

&2. Blocking properties of the MSRP

Outside of the extra complexity of its preemption test, the MSRP has the same desirable
properties as the SRP.

THEOREM 15. The MSRP prevents deadlock and multiple priority inversion.

Proof. To show that the MSRP prevents deadlock and multiple blocking, we need to show
that it enforces conditions (3.1) and (3.2). Lemma 5 shows that condition (8.1) enforces
conditions (3.1) and (3.2). The second part of condition (8.2) is equivalent to (3.1), so the
only remaining question is whether (8.2) enforces (3.2).

Suppose (8.2) is satisfied by J,,~ax, but (3.2) is not. Let Jn be a job that might preempt
J,,ax, such that there are not sufficient resources available for JH to execute to completion
without direct blocking. That means JH may request an allocation of some resource R that
is blocked directly by currently outstanding allocations. Since Jn must also be able to pre-
empt the current job, by condition (4.1), 7r(JH) <- rR 7 �9 By definition of ~, [-R 7 < ~r.
It follows that ~'(JH) -< lr(J,,~), but then JH would not be able to preempt J, ,~--a
contradiction.

Theorems 8 and 9 also apply to the MSRP, with the same proofs, except that the relation
< w(J) is replaced by ~r _< lr(J).

8,3. Minimality of the SRP

We will show that the MSRP imposes the minimal blocking necessary to prevent unbounded
priority inversion and deadlock under conditions of stack sharing. We will start by showing
that the conditions (3.1) and (3.2), which were shown in Section 3 to be sufficient to prevent
deadlock, are necessary to prevent deadlock if there is stack sharing.

THEOREM 16. Deadlock prevention condition (3.1) is necessary if there is a single stack.

Proof. To see that condition (3.1) is necessary, suppose there is a single stack, and ~ is
allowed to start execution while there are insufficient resources to meet its maximum re-
quirements. If ~ makes its maximum requests for all resources, it will be blocked for some
request. The resources required to unblock ~ will be held by jobs that sit below ~ on the
stack, and these jobs are in turn blocked by the stack allocations of the jobs above them,
culminating in ~--a deadlock.

STACK-BASED SCHEDULING OF REALTIME PROCESSES 95

THEOREM 17. Assuming condition (3.1) is enforced, deadlock prevention condition (3.2)
is necessary if there is stack sharing.

Proof. To see that condition (3.2) is necessary, suppose there is a single stack and ~ is
permitted to start while there are insufficient resources available to meet the maximum
requirements of some job ~/~ that can preempt ~. Condition (3.1) guarantees that ~H will
be blocked if it attempts to preempt ~. Due to stack blocking, no other job may execute
to release resources until ~ completes, but then ~n will still be blocked. Thus, ~H will be
forced to wait for at least two lower priority jobs--a multiple priority inversion situation.

Up to now, the only assumption made about preemption levels is condition (2.1), from
which it follows that J can preempt J ' only if ~r(J') < ~r(J). With RM or EDF scheduling,
if preemption levels of jobs are assigned based on relative deadlines, we also have

7r(J') < 7r(J) r some execution of J can preempt some execution of J'. (8.3)

The only i f direction follows directly from (2.1). To see that the if direction holds, suppose
arrives after ~ ' has started and J has a shorter relative deadline that J'. By RM, EDF,

or deadline monotone scheduling, ~ will have higher priority than ~' and preempt. This
will happen unless J and J ' have harmonic periods and there is precise control over phasing
of requests.

THEOREM 18. Under the assumption of a single shared runtime stack, and condition (8.3),
any resource allocation policy that does not permit deadlock or multiple blocking must
block every request that is blocked by the MSRE

Proof. Suppose a resource allocation policy is given, and it does not block some request
that would be blocked by the MSRP. We will show that a job may be blocked by more
than one other job, or be deadlocked. Like the SRP, the MRSP only blocks jobs before
they start. Suppose job J is allowed to start when one of the two MSRP blocking condi-
tions is true and job Jcur is executing. We know that P(~cur) < P(~), and since ~cur is exe-
cuting we know ~ arrives after ~qcur starts. By condition (2.1), this means lr(Jcur) < r(J).
Since J is blocked from preempting by the MSRP, we have two cases:

1. 7r(J) < ~r. There is some outstanding resource R and a job JH such that r (J) < r(JH),
and JH can be blocked directly by the currently outstanding allocations of R. By condi-
tion (8.3), JH may preempt J and be blocked directly by R. Since the allocations out-
standing when J started were already enough to block JH directly, JH will be blocked
until some job J', below J, resumes execution and releases its allocation of R. J ' cannot
resume execution until J completes, due to stack blocking. Thus, Jn will be blocked
by both J and J'. This is at least double blocking, and if JH is allowed to start before
blocking, it will deadlock, since it will be blocking J's stack.

2. ~r(J) = ~" and J may make a request, for some resource R, that is blocked directly.
Since we are assuming stack sharing, we know that Jcur will be blocked by J's stack
allocation if it tries to resume execution before J completes. By assumption, J 's request

96 T.P. BAKER

for R may be blocked directly. The resource allocations blocking J must be held by
jobs that are on the stack. Jcur must complete before any of these jobs can resume and
release their allocations of R. There is deadlock.

9. Practical considerations

9.1. Implementation of the SRP

The SRP can be implemented very simply and efficiently. The implementation is similar
to that of the PCP (Sha, Rajkumar and Lehoczky 198"/), but the locking operations are
simpler, since they cannot block, do not require any blocking test, and never require a
context switch. The blocking test is also simplified slightly, since it does not need to dis-
tinguish the ceilings of resources held by the current job from those of resources held by
other jobs. The ceilings are static, and so may be precomputed and stored in a table. A
stack may be used to keep track of the current ceiling. When a resource R is allocated
its current state, PR, is updated, and ~- is set to rR -] ~R iff ~" < rR -] ~R" The old values
of uR and ~" are pushed onto the stack. When resource R is released, the values of ~" and
vR are restored from the stack. If the restored ceiling is lower than the previous ceiling,
a dispatching procedure is invoked to check whether a waiting higher level job should be
allowed to preempt.

The dispatching procedure checks the priority queue to see if oSm,,x is different from ~cur
and satisfies the preemption criterion, ~" < 7r(Jmax). If J,,~x passes this test, the identity
of ~c,r is pushed on the stack, runtime stack space is allocated to ~,,~x, and ~,,~x starts
execution. If ~max fails the test, the dispatcher simply returns. Whenever a job completes,
~qcur is restored from the stack. The dispatcher is called whenever ~max changes, due to
arrival of a higher priority request or completion of the old Jmax.

9. 2. Relationship to conventional process models

As realtime systems grow in complexity they strain the limits of existing software technology.
One response to this increasing complexity has been movement toward process-based models
of concurrent programming. Such models have been very successful in the design of oper-
ating systems and interactive computer applications. One manifestation of this movement
is the multitasking model of the Ada programming language (Military Standard Ada Pro-
gramming Language 1983). Ada has been mandated by the U.S. Department of Defense
for all mission-critical software. Another manifestation is the development by the IEEE
of a proposed realtime extension to its standard POSIX operating system interface (IEEE
Computer Society 1988), which is derived from the UNIX 2 process model.

Unfortunately, these conventional process models are too general to permit direct applica-
tion of the SRP. The SRP is based on a featherweight process model. We view this model
as an alternative, which is superior to conventional process models for hard realtime appli-
cations, because it allows better a priori schedulability analysis. However, there are situa-
tions where other considerations may dictate the use of a less restricted model.

This problem of mismatching models has already been addressed by people who have
attempted to apply the PCP to Ada (Borger and Rajkumar 1989). Their approach has been

STACK-BASED SCHEDULING OF REALTIME PROCESSES 97

to identify a set of restrictions that define a subset of the more general model that can
be mapped into the PCP's model. This same approach can be applied with the SRP, with
very little difference.

A conventional process can be viewed as a featherweight process if the sequence of in-
structions between each blocking operation (e.g., rendezvous, delay) and the next is bounded,
no nonpreemptable resources are retained while the process is blocked, and resources are
released in LIFO order. Such a process can use the SRP to synchronize with other proc-
esses, if no attempt is made to share stack space. The SRP preemption test is applied each
time a process becomes unblocked; that is, the next sequence of instructions executed by
the process from that point to the next blocking operation is viewed as a new job.

The SRP appears to be applicable to the same range of Ada task systems as the PCP.
Passive tasks, sometimes also called monitor or server tasks, may be implemented as collec-
tions of procedures, interlocked via semaphores. Other tasks can be treated as featherweight
processes, if they satisfy the restrictions stated in the previous paragraph. Stack sharing
may be possible between such tasks, if further restrictions are imposed, such as that the
tasks do not block within any subprogram calls or declare blocks. In this fashion, a suffi-
ciently simple Ada task system may be transformed into a system of featherweight processes
and semaphores.

This idea of doing optimizing transformations on special kinds of Ada tasks, based on
idioms, is well known and has been discussed by several authors (Borger and Rajkumar
1989; Habermann and Nassi 1989; Hilfinger 1982; Giering and Baker 1989). However,
it has not yet been widely implemented. It is not yet clear how far it will be practical to
go with this approach for the SRP.

10. Conclusions and further research

Starting from the motivation of supporting stack sharing, we have shown that the PCP can
be extended in three ways, and that earlier blocking may be advantageous in some situa-
tions. We have defined the SRP and MSRP, two extensions of the PCP that incorporate
these extensions and early blocking.

One strength of the SRP and MSRP is that they support EDF priorities, as well as fixed
priorities. EDF scheduling permits higher utilization than fixed-priority scheduling, but
fixed-priority scheduling has an advantage of stability--that is, it guarantees lower priority
jobs will not prevent higher priority jobs from meeting their deadlines during periods of
processing overload. Since the SRP supports both fixed and EDF priorities, it is possible
to run EDF jobs as background in a system where the critical jobs are scheduled in fore-
ground according to a RM policy. In particular, it appears that the schedulability result
of (Liu and Layland 1973) on using a mixture of RM and EDF policies can be applied
to this situation, if B k is subtracted from the processor availability function.

The SRP has been implemented. In continuing research, we plan to conduct some empiri-
cal studies of the SRP versus other scheduling and resource allocation policies. We also
hope to extend the theory in several directions.

Several of the ideas presented in this article, which are embodied in the SRP, appear
to have wider applicability. These ideas are:

98 T.P. BAKER

1. Distinguishing preemption level from priority.
2. Early blocking.
3. Stack sharing.

Further research, to explore wider application of these ideas, seems warranted. More
specifically, it seems that the concepts of preemption level and early blocking can be applied
to much of the work that has been done on RM scheduling and the PCE including the
multiprocessor version of the PCE Already, we have observed that the SRP is compatible
with the aperiodic server concepts of (Sprunt, Sha and Lehoczky 1989).

While this article was being reviewed, Ghazalie (Ghazalie 1990) has shown that the
deferred and sporadic server models can be adpated to improve average response times
with EDF scheduling, as they are known to do with RM scheduling. The basic idea is to
associate a deadline with each replenishment of server execution time. This enables the
server to be scheduled within the EDF paradigm. For a sporadic server, there is no reduc-
tion in schedulability. For a deferred server, a special term must be added to the schedula-
bility test, to account for the effect of the server.

Acknowledgments

This article is a more formal development of ideas first proposed in (Baker, Malec and
Wilson 1989). The motivation to reduce wasted space for stacks of inactive tasks came
from discussions with Russ Wilson of Boeing Aerospace and Electronics (BAE), regarding
a BAE project which involved thousands of tasks. The importance of avoiding unnecessary
context switches, due to the increasingly high relative cost of context switches in recent
generations of 32-bit microprocessors, also came from conversations at BAE, with Russ
Wilson, Carl Malec, and Greg Scallon. The idea of modifying the idea of the PCP to ad-
dress these two issues crystalized during a discussion of the need for lighter-weight alter-
natives to Ada tasking at the July 1989 meeting of the Ada Runtime Environment Working
Group, in Seattle.

Mike Victor, of Raytheon, pointed out that an executive based on the basic stack-sharing
model described here has been in use at Raytheon for over fifteen years, though there are
apparently no published descriptions of that executive. Lui Sha pointed out the possible
advantage of the PCP in the case where there is no stack sharing and resource usage depends
on data-dependent control flow. Ted Giering pointed out that the proof of Theorem 10 does
not require early blocking.

The author is indebted to the referees for their careful readings of this article and their
constructive criticisms. In particular, the author is especially thankful to the referees for
suggesting that the applicability to multiunit resources be made more explicit, and that
schedulability results such as Theorem 10 should be explicitly included.

Notes

1. The abbreviation " i f f ' is used for "if and only if."
2. UNIX is a registered trademark of AT&T.

STACK-BASED SCHEDULING OF REALTIME PROCESSES 99

References

U.S. Department of Defense. 1983. Military Standard Ada Programming Language, ANSI/MILSTD1815A, Ada
Joint Program Office.

Baker, T.P., and Scallon, G.L. 1986. An Architecture for Real-Time Software Systems. IEEE Software, 50-59;
reprinted in Hard-Real-Time Systems, Washington, DC: IEEE Press (1988).

Baker, T.P. 1989. A Fixed-Point Approach to Bounding Blocking Time in Real-Time Systems. Technical Report,
Department of Computer Science, Florida State University, Tallahassee, FL 32306.

Baker, T.P., Malec, C., and Wilson, R. 1989. Practical Tasking. Boeing Aerospace and Electronics Company
white paper.

Baker, T.P. 1990. Preemption vs. Priority, and the Importance of Early Blocking. Proceedings of the Seventh
IEEE Workshop on Real-Time Operating Systems and Software, Charlottesville, VA (May): 44--48.

Baker, T.P. 1990. A Stack-Based Resource Allocation Policy for Realtime Processes. Proceedings of the IEEE
Real-Time Systems Symposium.

Borger, M.W., and Rajkumar, R. 1989. Implementing Priority Inheritance Algorithms in an Ada Rimtime System.
Technical report, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

Chert, M.I., and Lin, K.J. 1989. Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-Time Systems.
Technical report UIUCDCS-R-89-15U, Department of Computer Science, University of Illinois at Urbana-
Champaign.

Coffman, E.G. Jr., and Denning, EJ. 1973. Operating Systems Theory. Englewood Cliffs, N J: Prentice-Hall.
Garey, M.R., and Johnson, D.S. 1979. Computers and Intractability. New York: W.H. Freeman.
Ghazalie, T. 1990. Improving Aperiodic Response with Deadline Scheduling. Master's Thesis, Florida State

University.
Giering, E.W. HI, and Baker, T.E 1989. Toward the Deterministic Scheduling of Ada Tasks. Proceedings of the

IEEE Real-Time Systems Symposium, 31-40.
Habermann, A.N., and Nassi, I.R. 1980. Efficiem Implementation of Ada Tasks. Technical report, Department

of Computer Science, Carnegie Mellon University.
Havender, J.W. 1968. Avoiding Deadlock in Multitasking Systems. IBM Systems Journal 7, 2: 74-84.
Hilfinger, EN. 1982. Implementation Strategies for Ada Tasking Idioms. Proceedings of the AdaTEC Conference

on Ada, Arlington, VA: 26-30.
Holt, R.C. 1971. On Deadlock in Computer Systems. Ph.D. Thesis, TR 71-91, Department of Computer Science,

Cornell University.
IEEE Computer Society. 1988. IEEE Standard Portable Operating System Interface for Computer Environments,

Washington, DC: IEEE Press.
Leung, J.Y.-T., and Merrill, M.L. 1980. A Note on Preemptive Scheduling of Periodic, Real-Time Tasks. Informa-

tion Processing Letters 11, 3: 115-118.
Leung, J.Y.-T., and Whitehead, J. 1982. On the Complexity of Fixed-Priority Scheduling of Periodic Real-Time

Tasks. Performance Evaluation 2: 237-250.
Liu, C.L., and Layland, J.W. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-

ment. JACM 20.1: 46-61.
Mok, A.K.-L. 1983. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment.

Ph.D. Thesis, MIT.
Rajkumar, R., Sha, L., Lehoczky, J.P., and Ramamritham, K. 1989. An Optimal Priority Inheritance Protocol

for Real-Time Synchronization. Technical report, Carnegie Mellon University (submitted for publication).
Rajkumar, R., Sha, L., and Lehoczky, J.E 1988. Real-Time Synchronization Protocols for Multiprocessors. Pro-

ceedings of the Real-Time System Symposium, IEEE, 259-272.
Sha, L., Lehoczky, J.E, and Rajkumar, R. 1986. Solutions for Some Practical Problems in Prioritized Preemptive

Scheduling. Proceedings of the IEEE Real-Time Systems Symposium, 181-191.
Sha, L., Rajkumar, R., and Lehoczky, J.E 1987. Priority Inheritance Protocols, An Approach to Real-Time Syn-

chronization. Technical report CMU-CS-87-181, Carnegie Mellon University.
Sha, L., Rajkumar, R., and Lehoczky, J. 1988. A Priority Driven Approach to Real-Time Concurrency Control.

Technical report, Carnegie Mellon University.
Sprnnt, B., Sha, L., and Lehoczky, J. 1989. Aperiodic Task Scheduling for Hard-Real-Time Systems. Real Time

Systems 1, 1: 27-60.
Sha, L., Rajkumar, R., and Lehoczky, J. 1989. Mode Change Protocols for Priority-Driven Preemptive Schedul-

ing. Real Time Systems 1, 3: 243-264.
Bic, L., and Shaw, A.C. 1988. The Logical Design of Operating Systems. Englewood Cliffs NJ: Prentice-Hall.

