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Abstract. A model for motor learning, generalization, 
and adaptation is presented. It is shown that the 
equations of motion of a limb can be expressed in a 
parametric form that facilitates transformation of de- 
sired trajectories into plans. These parametric equa- 
tions are used in conjunction with a quantized multi- 
dimensional memory organized by state variables. The 
memory is supplied with data derived from the ana- 
lysis of practice movements. A small computer and 
mechanical arm are used to implement the model and 
study its properties. Results verify the ability to ac- 
quire new movements, adapt to mechanical loads, and 
generalize between similar movements. 

Introduction 

After two decades of intensive study, control theorists, 
interested in controlling more complicated non-linear 
devices (Bryson and Ho, 1969), and physiologists, 
guided by experimental findings (Hammond, 1956; 
Melvill Jones and Watt, 1971a), have begun to look 
beyond the servo feedback mechanism in order to 
examine the merits of pre-plannin 9 and the central 
program (Evarts et al., 1970; Melvill Jones and Watt, 
1971b). For a limb comprised of interacting degrees of 
freedom, the transformation from a desired trajectory 
to such a motor plan, a set of actuator control signals, 
is a computationally expensive operation. Yet the 
nervous system's ability to use motor plans inter- 
changebly with a number of effector systems argues 
that the problem has been efficiently solved (Raibert, 
1976). Moreover, the biological solution allows the 
organism to learn through practice, to generalize 
training between similar movements, and to adapt to 
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mechanical and sensory changes (Held and Hein, 
1963; White, 1970; Miles and Fuller, 1974; Gonshor 
and Melvill Jones, 1976). 

Experiments by Held (1961) and Hein and Held 
(1963), and a model proposed by Marr (1969) have 
combined to motivate a new model for motor control, 
motor learning, and sensorimotor integration. The 
idea that an internal signal, Helmholtz's efference copy 
(1867), distinguishes an organism's self-produced 
movements from externally induced movements lead 
to Held and Hein's now classical experiments. Their 
results, showing that active movement is essential to 
motor learning and sensorimotor adaptation, suggest 
that the nervous system assesses the response charac- 
teristics of a limb using an input-output analysis. The 
problem remains to formulate the extremely com- 
plicated equations of motion characterizing a limb's 
mechanical behavior in a way that permits such an 
input-output analysis. Marr supplies the clue in his 
cerebellar model by stating that the context in which 
an elemental movement is made influences the 
movement's execution. Extensions of this idea show 
that using state variables as parameters produces 
dramatic simplifications in the equations of motion, a 
result which lays the groundwork for the present 
model (Raibert, 1977b). 

In this model two interacting processes plus auxi- 
liary memory functions explain learning of new move- 
ments, transfer of training between similar movements, 
and adaptation to mechanical and sensory changes. 
Parameterization, the process of restating an equation 
with a subset of the independent variables held con- 
stant, recasts the equations of motion into a very 
simple form that allows learning based on practice. 
The parameterized equations, however, must be used 
in conjunction with a multi-dimensional memory in 
which constants of mechanical description are stored. 
Learning, the process which supplies data to this 
tabular memory, takes place when torque vectors 
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applied to the limb, Tin, are correlated with resulting 
acceleration vectors, 0. Properties of the memory, its 
time-constant and accessing function, contribute to 
adaptation and generalization. 

The proposed mechanism compensates for the 
kinematic and dynamic nature of a limb so that higher 
level motor processes can be free from such responsibi- 
lities. Since the movements specified by higher level 
processes need not be tailored to a particular limb, 
mechanically dissimilar limbs may be used inter- 
changeably in the production of movement. 

Model Description 

When each of the terms contributing to the torque 
acting on the joints of a limb are included, Newton's 
equation for rotary motion may be expressed 
schematically as : 

T m - G(O)- B(O)- C(O, O) = J(O)O, (1) 

where T m is the actuator torque vector; G is a vector- 
function for gravitational torque; B is a vector-function 
for frictional torque; C is a vector-function for Coriolis 
torque ; d is a matrix-function for moment of inertia ; 0, 
0, and 0" are the position, velocity, and acceleration 
vectors. 

The full set of time-varying, non-linear equations 
with explicit expression of 0- and 0-dependence has 
been worked out by Kahn (1969). His equations 
involve about 1600 terms and 13000 multiplications 
for a general 3 degree of freedom limb. 

The Translation Equations 

By treating the state variables 0 and 0 as parameters 
(i.e. letting them assume a number of fixed values), a 
simplified parametric form of Kahn's equations can be 
found: 

zm-al(o=~)-Bl(o=~)--C (o=~ O=B)=J (o=~)O, (2a) 

where c~ is a parametric position vector; fi is a param- 
etric velocity vector. 

Or, more compactly: 

T m-  G~- B~ - C~ = J~O. (2b) 

Here each of the vector-function relationships G(O), 
B(O), C(O, 0), and J(O) has become a parameterized set of 
constants. By grouping terms and making the equation 
explicit in muscle torque one further simplification can 
be made : 

Tm=J .O+ K ~ ,  (3) 

where K~  = G~ + B~ + C~. 

Equation (3) is the translation equation. It is linear 
in 0 and without hidden dependencies on 0 or 0. 

We now define a state space having 2N dimensions, 
and associate one state variable {01, 02...ON, 01, 02...ON.} 
with each dimension. For any point in this space, (0, 0), 
there exists a set of values for J~ and K~ ,  such 
that (3) describes behavior of a limb passing through 
that point. Furthermore, since the values of the com- 
ponents of J and K vary smoothly throughout the 
space, i.e. : 

[7jij,~<oo ( i = I , 2 . . . N ; j = I , 2 . . . N )  

Vki.~ < oo (i = 1, 2... N) 

the space can be divided into a large number of hyper- 
regions throughout each of which the behavior of the 
limb, and the corresponding values of J a n d  K, are 
reasonably uniform. This approach becomes useful 
when values of J and K corresponding to particular 
(0, 0) are available from a tabular memory that is also 
organized by state variables : Desired trajectories, OD(t), 
are processed by (3) after division into intervals of 
duration A t, where values for J and K for each interval 
are obtained from the state space memory. 

Since data will not always be available for every 
hyper-region (assuming the system begins tabula rasa), 
performance will be more robust if a memory access- 
ing function is used that takes into account the gradual 
variations of mechanical behavior through state 
space--if data from a particular hyper-region are not 
available, data from neighboring regions may be used 
instead. In addition to robustness, transfer of training 
between similar practiced and unpracticed movements 
is an expected consequence of such an accessing 
function. 

The Inversion Equations 

Von Holst and Mittelstaedt used the efference copy, an 
internal copy of the motor command, to account for 
the fly's ability to distinguish between internally and 
externally produced changes in sensory stimulation 
(yon Holst, 1954; Mittelstaedt, 1958). Their notion was 
that the relationship between an externally generated 
signal describing changes in sensory stimulation and 
an internally generated signal describing impending 
changes in the position of the sensory surface would 
always give unambiguous information about move- 
ment in the external world. In Held's model, (1961; 
Hein and Held, 1962) the Holstian view was augment- 
ed to allow attainment of perceptual accuracy even 
after changes were made to the meaning of the sensory 
signals. The efference copy was used to elicit the trace 
of previous reafference, which in turn was compared to 
the current afference. In 1965 Young and Stark model- 



31 

HIGHER 
LE VE L 

PROCESSES 

Tm= Ja" t)'+ Ka, 8 
DESIRED [ MOTOR 
MOVEMENT I b'TRANSLATOR COMMANDJ ^oA~ I 

Ja & Ka B l Tm 

I BUFFER Y 
J = T. ~ - I  [ 

K = Tav - IT- ~-11 . Oav 

Fig. 1. Major components of the model. The translator converts 
descriptions of desired trajectories into motor commands suited to 
the kinematic and dynamic properties of a particular limb. The 
operation employs the tabular equations of motion in conjunction 
with the state space memory. Each movement of the limb generates 
data which, when processed by the inversion equations, contribute 
to the state space memory, and consequently, to future translations 

led the ability of humans performing a tracking task to 
change control strategies when there were changes in 
the dynamics of the controlled element (Young and 
Stark, 1965). In that model the efference copy was used 
to drive an internal dynamic model of the controlled 
element, the output of which was compared with 
afference from the control task. 

Though designed to explain perception, MacKay's 
idea of evaluation rather than elimination (MacKay, 
1972) is similar to the mechanism described here. In the 
present model the relationship between efference copy, 
T m and reafference, 0, is used to compute descriptions 
of the mechanical properties of the limb, represented in 
(3) by J and K. Reafference is obtained when the limb's 
sensors, (or other sensors which can monitor the limb's 
activity), are used to measure the acceleration vector 
during a movement. Efference copy is a record of the 
actuator torque vector, internally available from the 
source of motor commands or possibly from actuator 
sensors. The use made of the efference copy in this 
model is somewhat unique in that there is no compara- 
tor, no error signal is calculated, and no error correction 
procedure is used. Rather, the limb's properties are 
found by examining the relationship between input 
and output, command and response. As a result the 
local minima problems associated with search pro- 
cedures are avoided (Tsypkin, 1971). 

Since the simplified equations of motion are linear, 
values of J and K can be found in a straightforward 

,manner, provided that sets of measurements {(Tm, 1, 01), 
(Tm, 2, 02)... } are available: 

J = "c. 0 -  i ,  (4a) 

K = Ta~ - J r - O -  i].  0a~,, (4b) 

where 

Z'= IT1! T2i ...! TN]--[TN+ 1' I TN+I ~, ...! TN+I] ; 

= [01i 02!'" "ii 0N] -- [ON'+ 11 ON+ 111 "" .i! ON + 1] ; 

T~ and 0/ are the i'th measurements of T and 0; Xa~ 
denotes the average: (X 1 +X 2 + ... +XN+ I) / (N+ 1). 
(Note : all torques are motor torques--the m subscript 
has been dropped.) 

Equation (4) is the inversion equation. These calcu- 
lations can be performed if N +  1 input-output pairs, 
(Tm,i, Oi), also called measurement vectors, are avail- 
able. All measurements contributing to such a calcu- 
lation must have been made while the limb was near a 
single hyper-region of interest. A temporary buffer is 
postulated to store such measurements until appropri- 
ate sets are available for inversion. The resulting values 
of J and K are then stored in the state space memory in 
combination with previously stored data. The dynamic 
updating of the state space memory, adding data as 
they are available and combining them with old data, 
allows the system to adapt to changes in the limb's 
kinematic and dynamic properties, in addition to 
improving immunity to the effects of inverting noisy 
measurements, typically a problem when inverting 
physical data. 

The block diagram shown in Figure 1 summarizes 
the model's operation: High level processes produce 
descriptions of desired movements, Ov(t ), which are 
presented to the translator. The desired movement is 
sectioned into time intervals, each of duration A t. For 
each time slice (3) the translation equations, used in 
conjunction with the constants of mechanical de- 
scription, J and K values from the state space memory, 
generate a motor plan that will replicate the desired 
trajectory. The calculated force commands are issued 
to the limb and, during the movement, a copy of the 
command, Tm, and a copy of the sensory signals that 
indicate progress of the movement, 0, are stored in a 
temporary buffer. Subsequently, the contents of the 
buffer and the inversion equations, (4), are used to 
calculate values of J and K, which are stored in the 
state space memory in combination with data that 
might have been stored there previously. 

Properties of the Model 

Initial performance will be quite poor since every 
attempt to use information about the mechanical 
character of the limb will be frustrated--the state space 
memory will be tabula rasa--empty. As movements of 
the limb are made, data describing the mechanics of its 
operation become available. During this period of data 
acquisition the quality of translations will gradually 
improve. Practice will facilitate mastery of a practiced 
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Fig. 2. Layout of the first three joints of the MIT-Vicarm manipu- 
lator. The manipulator is about the size of a human arm ; base-to- 
shoulder = 0.273 m, shoulder-to-elbow = elbow-to-wrist = 0.203 m. 
Each joint is provided with a DC torque motor, a potentiometer, a 
tachometer, and a clutch-type brake 

movement, while similar (but not identical), move- 
ments will be improved more slowly. If the mechanical 
properties of the limb or sensors should change then 
the model adapts, since new constants of mechanical 
description are continuously being computed and 
stored. 

The State Space Model can control limbs having a 
wide variety of dynamic and kinematic properties. A 
single translator can learn to control almost any limb 
or body part. This is a direct result of the tabular 
nature of the equations which describe the mechanical 
system. Though the development given above deals 
with torques applied to the joint, the actuator terms 
given in (3) and (4) can be force applied to a tendon. In 
fact, actuators and sensors need not be affiliated with 
any one joint or subset of joints. Reafference can take 
the form of visual feedback just as readily as joint 
oriented proprioceptive feedback, provided the choice 
is made before learning commences and desired trajec- 
tories are described in the chosen coordinate system. 

In order to evaluate and verify the power of the 
model, a set of computer programs embodying the 
various elements are used to control a mechanical arm. 
Tests of this implementation reveal the model's weak- 
ness and illustrate its strengths. 

M e t h o d s  

A PDP-11/45 computer is used to perform all computations, to issue 
commands to the manipulator, and to make measurements. The 
three joints of the MIT-Vicarm manipulator that allow the wrist to 
be positioned arbitrarily within the arm's work space, are used 
(N = 3) (Horn and Inoue, 1974). See Figure 2. Each joint is powered 
by a DC torque motor and provided with a potentiometer and 
tachometer. When a movement is made the computer specifies the 
torque delivered by each motor and measures angular position and 

o INERTIAL LOAD 
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Fig. 3a and b. Two methods of applying loads in order to disturb the 
manipulator's behavior are shown, a A 0.19 kg weight is attached to 
the third link of the manipulator, h A 1.85 kg/m spring is attached 
from the second link to "ground". ~Vhen movements start the spring 
is stretched 0.83 m and runs from coordinates (0.17 m, 0.0 m, 0.25 m) 
to (0.02m, 0.70m, 1.20m); see Figure 2 

velocity every l0 ms. In addition, velocity samples taken every 500 p.s 
allow the limb's average accelerations to be estimated over 60 ms 
intervals using least-mean-square error techniques (A t = 60 ms). 

State Space Memory 

Though only N + 1 measurement vectors are theoretically required 
for each inversion (here N + 1 = 4 ) ,  improved noise immunity is 
obtained by using the generalized inverse (Rust et al., 1966; Albert, 
1972) to invert sets of 8 vectors. The resulting data are stored in a hash 
coded disk memory in weighted combination with data previously 
stored for the same hyper-region. Each new entry receives a weight of 
l/c, and previous data a weight of (~ - 1)/% where �9 is the memory's 
time constant. 

The memory is 6 dimensional, (one dimension for each state 
variable), and quantized. Each dimension is partitioned into 10 
ranges producing 106 possible hyper-regions. A single hyper-region 

measures (15 deg) 3 by 13 These regions are quite small and 

the mechanical properties of the arm are fairly constant throughout. 
Each access of the memory yields a weighted average of data from 
the desired hyper-region and all closest neighbors. Data from the 
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Fig. 4. Left: Acquisition of prototype PR-12 is shown as 3000 
practice trials are executed and analyzed. Arrow: One of the two 
loads shown in Figure 3 are applied. Right:  The time course of 
adaptation to the two types of load is recorded (r = 10) 

desired hyper-region are given a weight equal to the number  of times 
data were stored in that region. Neighbors are given a weight of 1 
if any data are present, otherwise zero 

Practice and Test 

Input-output  data are generated by exercising the arm under control 
of a practice program. This program generates a sequence of 
approximations to a pre-specified desired movement,  called a pro- 
totype. Periods of practice, analysis of practice data (4), and execu- 
tion of test movements,  generated by (3) to test performance, are 
alternated during a learning session. Each test movement  is evaluat- 
ed by finding the root-mean-square position-error (RMSPE)  or 
final-position-error (RMS FPE) for the three joints. 

Adaptat ion is measured by manipulat ing the mechanical state 
of the arm during a training session. These manipulat ions are 
accomplished by applying inertial and elastic loads to the a rm so 
that the static and dynamic properties are affected (see Fig. 3). 
Generalization of training is measured by testing performance of a 
set of prototypes, after practice of only one. The members of this set 
vary systematically in similarity to the practiced prototype. A 
learning index, LI, facilitates presentation of the generalization data:  

LI = X(e~ - el) 
~,eo ' 

where e~ is the RMS FPE for the i'th test movement ;  e o is the pre- 
training performance value; X is the sum from i =  1 to n -  1 ; n is the 
number  of test movements.  

Further details of the implementation are available in Raibert 
(1977a). 

Results 

The left half of Figure 4 is a learning curve for 3000 
practice trials. As predicted, performance improves as 
more practice data are generated and analyzed. Rapid 
jumps in performance arise when new hyper-regions of 
the memory are first provided with data, (asterisk in 
Fig. 4). When a load is applied to the arm (arrow in 
Fig. 4), adaptation slowly takes place during the next 
2500 practice trials under the new mechanical regime, 
as shown on the right side of Figure 4. Modification of 
~, the memory's time constant, results in improved 
rates of adaptation, though very small values of z also 
introduce some instability (see Fig. 5). 
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Fig. 5a and b. The memory's  t ime-constant is systematically varied. 
Smaller values of r yield more rapid, but noisier adaptations, a 
inertial load ; b spring load (prototype PR-11). Closed circles indicate 
pre-adaptation leveIs 

Verification of the model's ability to generalize 
data derived from the practice of one movement to 
other similar movements is illustrated in Figures 6 and 
7. Throughout a 2400 trial learning session perfor- 
mance of the practiced prototype, PR-20, improves the 
most (Fig. 6a). Each of the other prototypes exhibit 
various degrees of improvement depending on their 
similarity to PR-20 (see caption to Fig. 6). These 
generalization data are summarized quantitatively in 
Figure 7 (diamonds), where the learning index, LI, is 
plotted for each prototype. To control for the possi- 
bility of gradients due to the particular choice of 
prototypes, a different member of the prototype set, 
PR-23, was practiced. The results, shown in Figures 6b 
and 7 (triangles), reveal a similar pattern: the practice 
prototype shows the most improvement, with other 
movements improving according to their similarity to 
the practice prototype. 

Figures 4 through 7 verify the model's basic 
attributes : 

1) Motor  commands are generated suited to the 
kinematic and dynamic properties of the effector 
mechanism. 

2) The quality of the motor commands improves 
with practice, though no error correction is used. 
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Fig. 6a and b. Five prototypes were used to generate these learning 
curves so that generalization could be shown. The prototypes share a 
common ending position and duration, but vary systematically in 
starting position ; [0.285 m, -0.145 m, 0.12 m), (0.265, -0.145, 0.1), 
(0.245, -0.145, 0.3), (0.245, -0.165, 0.6), (0.245, -0.185, 0.4), 
respectively], a Prototype PR-20 was practiced and prototypes PR- 
20, PR-21, PR-22, PR-23, and PR-24 were tested, b Prototype PR-23 
was practiced and the entire set was tested 

3) Practice of one movement improves perfor- 
mance of others, provided they are similar to the 
practice prototype. 

4) Control of the arm is maintained or reattained, 
despite changes in its mechanical properties. 

Discussion 

Examination of (4) reveals that 0 D is absent from the 
computation of J and K, the constants of mechanical 
description. Without knowledge of the desired re- 
sponse an error signal cannot be computed. The 
present system is able to learn without error infor- 
mation and is, therefore, somewhat unique among 
models for control. Systems that do use error cor- 
rection rely on the signed magnitude and sometimes 
the derivatives of error in selecting the next, and 
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Fig. 7. Generalization curves summarizing the data of Figure 5 are 
shown. (Diamonds) Prototype PR-20 was practiced. (Triangles) 
Prototype PR-23 was practiced 

hopefully, better command (Fu, 1971 ; Tsypkin, 1971). 
Unfortunately, local error data are not always useful in 
finding global maxima that correspond to best com- 
mands, and hill-climbing problems may result. The 
parametric equations are so simple, however, that a 
search procedure is not required for solution. 
Application of (4) only requires that N + 1 independent 
measurements be available for the same hyper-region. 

The power and simplicity of the model derive from 
the combined use of parameterization and learning. 
Without learning, the constants that make the para- 
meterized equations usable can only be found by 
evaluating extremely complicated differential equa- 
tions. Learning without parameterization, on the other 
hand, requires inversion of non-linear trigonometric 
differential equations comprised of thousands of terms. 
Parameterization makes learning possible, and learn- 
ing makes parameterization usable. 

A mechanism has been described that pre- 
computes a set of motor commands that are executed 
in the absence of feedback. Few practical applications 
(biological applications included), can tolerate the 
imprecision of such open-loop operation, yet the prob- 
lems of motor planning can probably be best de- 
veloped in this type of isolation. Ultimately it will be 
necessary to find a compromise between pre-planning 
and serve control, and the compromise will yield 
dividends: The same data that are so useful in plan- 
ning will facilitate on-line error correction, both pro- 
cesses benefitting from experience. For the sake of 
clarity of results and presentation, however, consider- 
ation of plan+serve models has been postponed for 
future study. 

Young and Stark (1965) and others have proposed 
the use of an internal dynamic model to allow learning 
and adaptation. Their idea is that information describ- 
ing the response of the plant to,commands can be used 
to adjust an internal dynamic model that will be used 
in future selection of commands. Although this idea 
can be made to work, another concept which repre- 
sents a different point of view is stressed here--the 
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internal inverse dynamic model (Paul, 1972; Waters, 
1974). The idea of the inverse is that a motor learning 
system should have a transfer function which converts 
responses into commands--the inverse of the oper- 
ation performed by the mechanical device. When the 
inverse and the device are operated in cascade the 
transfer function is the identity matrix--the desired 
result. The internal dynamic model allows simulation 
of the inverse function with an approach similar to 
analysis by synthesis (Eden, 1962). Because it uses sets 
of extremely simple equations to describe the plant's 
behavior, however, the present model calculates the 
required inverse functions directly, for each region of 
space. We remind the reader that this is an argument of 
"point of view" rather than "computational approach". 
Iterative techniques for computing an inverse, Young 
and Stark's approach, are quite common and 
legitimate. 

Summary 

A model is proposed that translates descriptions of 
desired trajectories into motor plans. The processes 
which provide input to this translator need not deal 
with the mechanical properties of the manipulator, and 
the specified trajectories may be expressed in a coor- 
dinate system appropriate to the available sensors. The 
translator's outputs are motor commands suited to the 
kinematic and dynamic properties of a particular 
manipulator and its actuators. 

The model employs parameterized equations of 
motion in conjunction with a multi-dimensional me- 
mory organized by state variables. The memory is 
supplied with data derived from the analysis of prac- 
tice movements. The analysis performed is quite simple 
and does not employ error correction or search tech- 
niques, as do many learning schemes currently in use. 
Since iterative methods are avoided, problems involv- 
ing local minima are not encountered. 

A small computer and three joints of the MIT- 
Vicarm manipulator were used to implement the mo- 
del and assess its properties. Tests have verified the 
ability to : 

1) Acquire usable mechanical descriptions of the 
manipulator, and to use those descriptions to pre-plan 
effective trajectories. 

2) Adapt to mechanical disturbances caused by 
inertial and elastic loads, and acquire control after the 
gravity vector is modified. 

3) Generalize information derived from the prac- 
tice of one movement to the execution of other similar 
movements. 

4) Use a Cartesian coordinate system for specifi- 
cation of desired trajectories when measurement data 

are provided in that system, even though motor com- 
mands are expressed in joint coordinates. 
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