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Prediction of statistical strengths of twisted 
fibre structures 

NING PAN 
Division of Textiles and Clothing, University of California, Davis, CA 95616, USA 

A new approach, based on Daniels' statistical model for a parallel fibre bundle and the recent 
results on yarn mechanics by the present author, is introduced to predict the strengths of twisted 
yarns including the effects of interfibre friction and the fibre fragmentation mechanism during yarn 
extension. By calculating the lateral pressure in a twisted yarn, the critical fibre length of the fibre 
fragmentation process has been determined, and was found to decrease together with the 
increasing yarn strain. This, according to the Weakest link theorem, will lead to a substantial 
increase of fibre strength. Incorporating this conclusion into Daniels' result yielded a more realistic 
prediction of the strength and its boundary for a twisted fibre structure. The key differences 
between a filament yarn and a short-fibre yarn and their effects on strengths are also discussed. 
The major results from the study are illustrated schematically. 
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N o m e n c l a t u r e  
The helix angle of a fibre in a yarn 
Fibre helix angle at the yarn surface 
The lateral pressure acting on a fibre 
The fibre strain, the mean fibre strain 
and the yarn strain 
The fibre tensile stress and breaking 
stress 
The expected fibre strength, the 
strength of a parallel fibre bundle 
and the strength of a yarn 
The standard deviations of the fibre 
strength, the parallel fibre bundle 
strength and the yarn strength 

p The interfibre frictional coefficient 
lc and l~ The critical fibre length and the ef- 

fective fibre length 
Vf The fibre-volume fraction (the speci- 

fic volume) of the yarn 
n The cohesion factor reflecting the 

fibre gripping effectiveness of the 
yarn 

GTL The longitudinal shear modulus of 
the yarn 

VLT The yarn Poisson's ratio governing 
induced transverse strains of the yarn 
due to axial extension. 

1. In troduc t ion  
In industrial practice, there exist two categories of 
twisted fibre structures in terms of fibre length used, 
i.e. the continuous long-fibre (filament) system and the 
short-fibre (staple) system. For brevity, these struc- 
tures will often be referred as "yarns" in this article. 
Study of the yarn strength has been a topic of many 
research reports [14] .  
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The role of twist in continuous flament yarn is 
mainly to produce a coherent structure that cannot 
readily be disintegrated by lateral actions. Twist, 
therefore, is not essential in offering tensile strength to 
the structure, and it will, in fact, lower the strength of 
the yarn because of the induction of fibre obliquity 
[1]. However, yarn twist in short-fibre yarns has the 
primary function of causing the fibres to be bound 
.together by friction to form a strong yarn. Twist is 
hence fundamental to provide a certain minimum 
coherence between fibres, without which a staple fibre 
yarn having a significant tensile strength cannot be 
made. This coherence is dependent on the frictional 
forces brought into play by the lateral pressures be- 
tween fibres arising from the applicatio n of a tensile 
stress along the yarn axis. Nevertheless, it has been 
widely accepted that when twist level is high enough, 
the effect of the fibre ends will become negligible. As 
a result, both filament and staple yarns can be treated 
as being equivalent. Because of this equivalence, the 
approach proposed in this article should be applicable 
to both cases when the twist level is high. 

It is well known that, because of the variations in 
fibre strength, the breaking stress of a parallel fibre 
bundle deviates from that of its constituent fibres. On 
the other hand, prediction of strength of a twisted 
fibre structure is also different from that of a parallel 
fibre bundle because in the latter case, the effect of fibre 
interaction is negligible, and also as fibres are all 
parallel to the axis of the assembly (the loading direc- 
tion) in the parallel bundle, the fibre obliquity factor is 
excluded. Moreover, strength prediction of a fibre 
structure is unlike its modulus prediction, because the 
strength of a material is not a volume-average quant- 
ity but rather an extremum quantity, dictated by the 
weakest cross-section of the structure. This so-called 
weakest link theorem was first elucidated by Peirce 
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[-5] in 1926 and has since been thoroughly discussed 
by numerous authors. 

Daniels [6] demonstrated through some rather 
cumbersome analysis that the asymptotic strength dis- 
tribution of a parallel fibre bundle when the bundle 
size, N, is large enough, is of normal type. This con- 
clusion has been accepted by the latter studies. 
Harlow and Phoenix ['7] proposed the concept of the 
chain-of-bundles model of the strength of fibrous 
structure to tackle the issue of statistical nature of 
strength of individual filament, the size (length) effect 
on filament strength, as well as the load-sharing mech- 
anism during structure breakage. Phoenix [-8] also 
extended their method to the analysis of twisted fibre 
bundles by incorporating the fibre helical paths into 
his model. However, exclusion of the effects of fibre 
interaction, such as interfibre friction and lateral con- 
straint in his model, brings serious limits to his theory 
in terms of the applicability and the accuracy of pre- 
diction. 

In order to better understand and more accurately 
predict the strength of twisted fibre structures, besides 
the properties of the constituent fibres, the inter- 
actions between fibres as well as between fibre and the 
yarn structure have to be considered because these 
interactions will significantly alter the in situ fibre 
properties. Research on the prediction of yarn 
strength hence involves the investigation of the flaw 
distribution along the fibre length and its effect of yarn 
strength, the fibre in situ mechanical properties, and 
the stress transfer from the broken fibre into still 
surviving fibres during yarn extension. Some of these 
issues are also of interest for researchers in fibre 
composite materials, and some are fundamental to 
materials science. 

Besides the weakest link mechanism, there is 
another mechanism known as the fragmentation pro- 
cess which relates to but acts differently from the 
weakest link mechanism. It was observed during the 
fracture process of both composites ['9] and yarns 
[10] that the constituent fibres break repeatedly with 
increasing strain of the structure before overall mater- 
ial failure. This phenomenon indicates a fact that, 
contrary to common assumption, a broken fibre can 
again build up tension, carry load, break into even 
shorter segments and contribute towards the overall 
system strength. 

On the other hand, because of the length-strength 
dependency implied by the weakest link theory, the 
strengths of these fibre segments will become higher 
with the decreasing length. It was reported by the 
present author and others [11] that even excluding the 
fibre obliquity effect, which will lower the contribution 
of individual fibres towards the yarn strength, the 
experimentally determined yarn breaking load is still 
greater than the prediction based on the pre-deter- 
mined breaking force of all its fibres. We, therefore, 
proposed a new mechanism to account for this dis- 
crepancy. Given the fact that the shorter fibre will show 
a higher breaking strength, we suggested that because 
of the fragmentation process, the twist-induced lateral 
pressure substantially increases the overall strength of 
a filament yarn by increasing the apparent strengths of 
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the segments of each individual fibre. This also sug- 
gests the assistance of a structure to its constituent 
components during loading. 

However, there is a difference in the fragmentation 
process between fibre composites and yarns. For 
a fibre composite, because the bond adherence 
between fibres and the matrix remains largely un- 
changed as tension on the composite is increasing, the 
critical fibre length, Ic, which determines the final 
length of the fibre fragments can be treated as con- 
stant. However, in the case of twisted yarns, as the 
lateral pressure in the yarn which provides lateral 
constraint on fibres is dependent on the external ten- 
sile loading, the length of the fibre fragments hence 
changes (decreases) along with the increasing lateral 
pressure during yarn extension up to the ultimate yarn 
failure. This mechanism will vary for different yarn 
structures and will also be strongly influenced by the 
geometric, mechanical and surface properties of fibres 
(includng their variations) [11]. All of this consider- 
ably complicates the analysis of yarn strength. 

It should be pointed out that the significance of the 
fibre fragmentation effect is dependent on the differ- 
ences between the breaking strains of the structural 
components. Although this effect is more noticeable 
in fibrous structures where the breaking strains of the 
structure components (fibre and matrix material in 
composites or distinct fibre types in blended yarns) are 
remarkably different, it should also play a role in other 
fibre structures as long as there is a disperson in fibre 
breaking strain. 

By incorporating the fibre fragmentation mechan- 
ism into analysis, the present author and others [11] 
have developed a computer stochastic model to simu- 
late the actual fracture process of a blended filament 
yarn. The yarn was treated as a chain of fibre bundles; 
the length and hence the breaking stress of the bundle 
changes constantly during yarn extension. The yarn 
strength is predicted numerically by calculating the 
strength of its weakest cross-section. The present art- 
icle proposes a statistical theory based on Daniels' 
model [6] for a parallel fibre bundle and the results on 
yarn mechanics by the present author [12] to study 
theoretically the relationships between the properties 
of the constituent fibres, the structural parameters of 
a twisted fibre structure, and its statistical strength. 

There are certain assumptions adopted in this study 
to simplify the analysis. 

1. The fibre helix angles in the yarn are uniformly 
distributed from zero up to the value at the yarn 
surface, and the fibre migration effect (change of the 
radial position of a fibre in the yarn) is negligible. 

2. Fibre strength distribution is of the Weibull 
form. 

3. When a fibre breaks, the load it was carrying is 
equally shared among the surviving fibres. The effects 
of stress concentration and dynamic wave propaga- 
tion are ignored. 

2, The critical fibre length /c, 
in the fragmentat ion phenomenon 

It is known I l l ]  that the in situ properties of the 
constituent fibres in a yarn structure deviate from 



those tested before the constituents are incorporated 
into the structure. The yarn and its tensile loading 
situation will affect the fibre mechanical behaviour in 
two ways. One is due to the fact that fibres within the 
yarn are under bilateral loading conditons of axial 
tension and lateral compression. This will lead, as 
expected, to a different fibre behaviour from a uniaxial 
case. The second is due to the fragmentation phenom- 
enon mentioned above, that under the constraint of 
lateral compression, a fibre behaves as a chain of 
mechanically independent segments, each of which 
possesses different mechanical properties both from 
those of other segments of the same fibre owing to the 
non-uniformity of the fibre, and from those of the 
whole fibre due to the size effect. In the present model, 
only the second factor is included and the deformation 
of fibres due to lateral pressure is ignored. 

As revealed in the fragmentation process, during the 
yarn extension process, the fibre breakage will con- 
tinue, until the length of the fibre fragments reaches 
a minimum value where load can no longer bui ldup  
to its broken strength. This length is well known as the 
critical length. If (Yfb is the tensile stress which causes 
the fibre to break, it follows that this critical length, 
lc is given by Kelly and MacMillan [13] as 

Io - rflTfb (1) 
gg 

where rf is the fibre radius, la the frictional coefficient 
between fibres, and g the local lateral pressure. 

It will be shown later that the lateral pressure, g, on 
fibres is increasing during the yarn extension process 
until yarn failure. Thus the critical fibre length defined 
above will continuously decrease. Also, the lateral 
pressure on a fibre is dependent on the relative posi- 
tion of the fibre in the yarn, and will be different for 
fibres with different orientation angles, O. As a result, 
we will have various critical length values along a yarn 
cross-section unless we use their statistical mean 
value. 

3. The lateral pressure in a yarn 
The lateral pressure is a key parameter in calculating 
the critical fibre length. However, as shown by Hearle 
[1], because of the differences of the fibre helical paths 
in the yarn, this pressure is not uniformly distributed 
along the cross-section of the yarn. 

Although there have been a few expressions [1, 14] 
governing the distribution of the lateral pressure with- 
in a yarn, the present author proposed a new and 
simpler result [12] based on the shear lag theory first 
introduced by Cox [15]. Let us assume that the fibres 
in the yarn are all identical of radius rf and length If. 

The shear stress, ~f, acting at point x away from 
the centre of a fibre whose strain due to yarn tension 
is ar is 

Tf = g f ~  

n 

2 EfEf 
sinh(nx/rr) 

cosh(ns) 
(2) 

where gf is the lateral pressure on the fibre, s = lf/2rf is 

the so-called fibre aspect ratio. The factor, n 

= ( G T L  2 X] U2 

n \ Ef In 2 ] (3) 

is an indicator of the gripping effect of the yarn struc- 
ture on each individual fibre. It was therefore named 
the yarn cohesion factor and is related as shown in 
Equation 3 to the ratio of yarn longitudinal shear 
m o d u l u s ,  GTL , and the fibre tensile modulus, El,  as 

well as the fibre arrangement within the yarn l"eflected 
by the analysis in [-12]. 

It is seen from Equation 2 that the shear stress on 
fibres is not a constant. It will change along the radial 
position in the yarn with the fibre strain, el, which is 
a function of the radial position of the fibre in the yarn, 
and also along the fibre length. As illustrated in [12], 
the shear stress possesses the maximum value at fibre 
ends, decreases towards the fibre centre and reaches 
zero at the fibre Centre. However, because the fibre 
migration effect is excluded so that the fibre radial 
position in the yarn remains unchanged, it is very 
unlikely the lateral pressure will be different along the 
fibre length, and will become zero at the fibre centre. 
Considering the fact that the tendency of relative 
movement between fibres varies at different fibre por- 
tions along its length which governs the value of the 
frictional coefficient between fibres, we can hence as- 
sume that the frictional coefficient, g, is not a constant 
and changes accordingly along the fibre length to 
make the lateral pressure constant. This constant lat- 
eral pressure should be equal to the maximum value of 
gf occurring at the fibre ends, i.e. x = If~2 

g = gfmax 

- Ef~f tanh(ns) (4) 
21a 

For a long-fibre yarn or a continuous filament yarn 
whose twist level is reasonably high so that ns > 1, 
there is tanh(ns) ~ 1. We then have 

n 
g = ~ Efs (5) 

4. Relat ionship  b e t w e e n  f ibre  strain,  
~f, and yarn strain,  ~v 

It shows in Equation 5 that the lateral pressure is 
related to fibre strain, ef, which is caused by the yarn 
strain, ~y. For  a fibre with orientation angle, 0, respect- 
ive to yarn axis, if we include the Poisson's effect, we 
have. according to Hearle [1] the relationship 

I?.f = ~y(eOS 2 0 - -  VLT sin 2 0) (6) 

where VET is the yarn Poisson's ratio governing in- 
duced transverse strains of the yarn due to axial exten- 
sion. It is apparent that because of the dispersion in 
orientation of fibres in the yarn, a given yarn strain 
will lead to different fibre strains and eventually the 
different lengths of the critical fibre length, lc. To 
simplify the theoretical analysis, we need to use the 
mean fibre strain. This mean fibre strain has been 
calculated and provided elsewhere by the present 
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author [16] based on the assumption of a uniform 
distribution of 0 value 

{af> = ~q[2q(1 - VET) + (1 + VLT) Sin2q] 

= I~y T~q (7) 

where 

2q(1 - -  VLT ) Jr- (1 -~- VLT)Sin2q 
qq = (8) 

4q 

is called the orientation efficiency factor, and q is the 
helix angle at the yarn surface and can be taken as 
a constant for a given yarn structre. It can be easily 
proved that when q ~ 0, qq = 1. The minimum value 
of rlq = (1 - V L T ) / 2  is achieved when q ~ ~/2. Thus 
the mean or the expected lateral pressure on fibres in 
the yarn can be written as 

n 
g = ~Ef~yqq  (9) 

of the fibre strength, and therefore is a more interest- 
ing variable. A greater [3 value indicates a small fibre 
strength variation or fibres more mechanically uni- 
form. When [3 ~ oo, there would be no variation and 
fibre strength would also become independent of its 
length. 

As stated above, during the yarn extension process, 
a fibre works as a chain of segments with each segment 
being tensioned to break. Because the length of the 
segment, as defined by the critical length, lc, in Equa- 
tion 1, decreases along with the increasing lateral 
pressure, g, the in situ strength of the fibre segments, 
afb, will increase according to Equation 11. 

Note that in Equation 1, the "current" fibre 
strength, C~fb, updated according to the new length of 
the fibre segment, should be used. In addition, al- 
though both lateral pressure, 9, and C~fb are increasing 
during yarn extension, g increases much faster and in 
Equation 1 the net effect still leads to a decreasing 
value for the critical length, Ic. 

5. Fibre strength versus fibre length 
As revealed by the fragmentation phenomenon, the 
presence of multiple breaks along a single fibre illus- 
trates the invalidity of the common perception that 
a broken fibre in a yarn ceases to contribute to yarn 
strength. The fact that one break at a position of 
a fibre does not prevent other parts on the same fibre 
length from being tensioned and successively broken, 
again implies the independence of each fibre segment 
in terms of mechanical response to external load 
owing to the constraint from the lateral pressure, 
although these fibre segments are physically connec- 
ted to each other. In other words, the fibre is stretched 
segment by segment because of the lateral pressure. 
The length of each fibre segment is determined accord- 
ing to Equation 1 by the lateral pressure, the interfibre 
frictional property, as well as the fibre breaking 
strength. 

On the other hand, Colemen [17], using the 
weakest link theory [5] and certain other general 
hypotheses, showed that the cumulative probability 
distribution function of fibres is of the Weibull type 
[18]. That is, for a given length, tf, the probability of 
the fibre strength being cy is 

F(~) = 1 - e x p ( - l f r  ~) (10) 

where r is the scale parameter and 13 the shape para- 
meter, and both of them are independent of fibre 
length, lf. It shows clearly that when the fibre length 
decreases, the statistical strength of the fibre will in- 
crease. The mean or the expected value of the fibre 
strength < O'f ) is 

<(~f> = (lfzt)-l/~F(1 + ~ )  (11) 

and the standard deviation 

F[1 + (2/[3)3 _ 1 (12) 
o f  = <~f> F2[1 + (1/[3)3 

The fibre shape parameter, 13, represents the dispersion 
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6. The statistical strength of a 
parallel f ibre bundle 

Let us consider a bundle made of a very large number, 
N, of parallel fibres of Weibull type with equal length, 
If. Because it is a parallel bundle without any twist, we 
can expect all fibres to have the same strain ef -- ~y 
where ay is the yarn (the bundle) strain. It is evident 
that if all the fibres were of the same strength, the 
strength of the bundle would be equal to that of its 
constituent fibres. However, because in reality there is 
a certain dispersion in the strength of the fibres, this 
bundle strength will hence obey a statistical distribu- 
tion as well. This problem was first tackled by Daniels 
[6]. In his analysis, it is assumed that when a fibre 
breaks, the load it was carrying is instantaneously 
sheared equally among all the surviving fibres. Thus 
neither stress concentration nor dynamic wave propa- 
gation effects are considered. Based on Daniels' ana- 
lysis, the density distribution function of the bundle 
strength approaches a normal form 

1 - -  < ~ p  > ) 2  

h(cy) = (2rc)a/zoveXp[ (cY -2~  p ] (13) 

where Op is the standard deviation of the strength 

x l l -  e x p ( - ~ ) l N - 1  (14) 

and (cyv) is the expected value of the bundle strength 

<Cyp> = ( / f ~ [ 3 ) - l / ~ e x p ( - ~ )  (15) 

For a normal distribution, < cyp > will be the maximum 
likelihood estimate of the bundle strength. It can be 
seen by comparing Equations 11 and 15 that because 
of fibre strength dispersion, the bundle strength < C~p > 
is lower than the fibre strength < cyf). The difference 
between the two will diminish when the shape para- 
meter [3 ~ oo. 



7. The statistical strength of a 
twis ted  f i lament  yarn 

Because the strength of a yarn equals the strength of 
its weakest cross-section, if we take into account the 
structural irregularities which exist especially in short 
fibre yarns and are caused mainly by the non-uniform- 
ity of fibre numbers at yarn cross-sections, the weakest 
yarn cross-section will be the one with minimum fibre 
number, N. Then the yarn can be treated as a chain of 
fibre bundles of length I| as defined in Equation 1. The 
expected strength of the yarn ( % )  is obtained by 
replacing the fibre length, lf, with the critical length, l~, 
into Equation 15. Furthermore, for a twisted real yarn, 
the fibre orientation and the fibre-volume fraction, Vf, 
have to be considered. Using the orientation efficiency 
factor, qq, for the same reason in deriving the relation- 
ship, Equation 7, of fibre strain and yarn strain, the 
expected strength ( % )  for a yarn can hence be ex- 
pressed as 

( ( Y y )  --~" qqVf(lca~3)-l/~exp(--~) (16) 

and is discounted by a factor Vf due to the yarn 
density effect. It is readily proved according to the 
statistics theory that the standard deviation for 
twisted yarn, | is related to Op of the parallel bundle 
case as  

|  = Vf q q |  (17) 

When the yarn surface helix angle q = 0 so that 
qq = 1, and the fibre-volume fraction Vr = 1, ,we have 
a parallel bundle case and this value, Oy will reduce 
to | 

Because of the normality of the yarn strength distri- 
bution, there is over 99% chance thai, the actual yarn 
strength will fall into the range of ( a y )  _+ 3| i.e. 

O'y ~- ( O ' y )  ~ 3 0 y  (18) 

8. The statistical strength of a 
twis ted  short - f ibre  yarn 

For strength prediction purpose, the only important 
difference between a filament yarn and a short-fibre 
yarn is in fibre length. As mentioned earlier, at high 
twist level, the effect of fibre length will become negli- 
gible so that a short-fibre yarn can be treated as 
a continuous filament yarn. Here we would like to 
further elucidate this issue. The effect of fibre length is 
reflected by the fibre ends effect, that for short-fibre 
yarn the yarn stress is transmitted to fibres through 
a frictional mechanism, and it takes a certain length 
for fibre tension to climb to the level determined by 
the yarn tension. There will be fibre slippage taking 
place along this length during yarn extension. This 
length is called the load transfer length [19] or effect- 
ive length [1], and is given as 

le __ rfcyf (19) 
g9 

Although this equation seems similar to the definition 
of the critical length, they are entirely different con- 

cepts. The ratio cyf/9 was given by Pan [12] 

(5'f 2g 
- tanh (ns/2) (20) 

g n 

This equation becomes 

2rf  
l~ - tanh(ns/2) (21) 

According to the result given elsewhere [12] for fibre 
aspect ratio s = 500, when yarn twist factor is reason- 
ably high so that q = ~/3, there is n = 0.54. We then 
have l~ = 3.7rf. In other words, l~ approaches the same 
order of the fibre radius, rf, when the yarn twist is high 
enough. This proves that the fibre length effect can 
indeed be neglected at high twist level so that short- 
fibre yarn becomes equivalent to continuous filament 
yarn. 

9. Calculat ion and discussion 
The fibre properties used for the calculation are pro- 
vided in Table I which also includes the assumed 
shape and scale parameters of the Weibull distribution 
for the fibres. 

Using the fibre scale and shape parameters, the 
expected fibre strength can be calculated from Equa- 
tion 11 as (cr f )  = 0.5 GPa. 

The yarn shear modulus has been derived by the 
present author [12], which has been found to be 
a function of fibre properties, yarn twist level (q value) 
and the yarn fibre-volume fraction. For  simplicity, 
instead of using its expression, we apply the ratio of 
the moduli GTL/Ef to our calculation. From [12], it is 
shown for q = re/3, GxL/Ef = 0.1,. 

Next we need to determine the length of the fibre 
segment to be used in Equation 11 for determination 
of the fibre segment strength. Any fibre fragment with 
length longer than l| is still able to break somewhere 
along its centre section as its stress exceeds its current 
strength, t~fb. So the next lengths of the fragments 
actually vary in the range of lc/2 to Ic, with the mean 
length being 31~/4. Therefore, the mean ]ength before 
fibres break into lr will be 41c/3. This will be the length 
by which the value of ~fb for the new fibre segment is 
to be determined. 

It was also demonstrated [12] that the yarn Pois- 
son's ratio, vtT, is dependent on the yarn surface helix 

T A B L E  I The fibre properties used for the calculation 

Item Typical value Unit 

Fibre radius, rf 3 x 10 e 
Fibre length, If 30 
Fibre modulus, Ee 5 
Fibre frictional coefficient, g 0.3 
Fibre number in yarn, N 200 
Fibre shape parameter, ]3 10 
Fibre scale parameter, cx 20 
Fibre aspect ratio s - I f / 2 r  f 500 (short fibre) 
Yarn helix angle, q ~/3 
Yarn cohesion factor, n 0.54 
Yarn fibre volume fraction, Vz 0.8 

mm 
mm 
GPa 

mm I GPa-~ 
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angle, q. For q = n/3, VLT = 0.9. Hence the orientation 
efficiency factor 130 = 0.4428 for the following calcu- 
lations. 

First of all, using the values of the Weibull para- 
meters in Table I and Equation 11, we can plot Fig. 1 
to show the relationship between the fibre length and 
its (expected) tensile strength for fibres with different 
13 levels. It is seen from the figure that when fibre 
length approaches zero, fibre strength will increase 
infinitely, whereas for a given length, the fibre with 
a greater 13 value will possess a higher strength. In 
other words, improvement of the fibre uniformity will 
yield strong fibres. 

Fig. 2 shows, based on Equation 9, the connection 
between the mean lateral pressure, g, and the yarn 
strain, ~y, at three GTL/Ef ratio levels which, in fact, 
represent the three yarn twist levels because of the 
dependency of GTL/Ef ratio on yarn twist. For con- 
venience, the axis for pressure in the figure represents 
a relative scale of ratio g/Ef. As yarn strain increases, 
it increases the lateral pressure. The GTL/Ef ratio has 
the similar effect. 

The relationship between the yarn strain and the 
critical fibre length, lc, is illustrated in Fig. 3 by com- 

0.8 

0"7 ~ ~ l  ~ ' ~  [3=15 

0.6 
A v ~ o . 5  

0.4 

5 
0.3. 

I I I t I 

0 5 10 15 20 25 30 
/ f (mm)  

Figure I The fibre length, It, versus its expected strength (~f). 

bining the results in Equations 1 and 9 at three differ- 
ent/3 levels. The breaking stress of the fibre segment, 
Cyeb, is calculated from Equation 11 by replacing the 
fibre length, lf, with the fibre segment length 41~/3. As 
yarn strain increases, the value of Ir decreases rapidly 
in the begining and then approaches a more stable and 
very small value. The strength of the fibre segment will 
hence increase to a much higher level, as indicated in 
Fig. 1. Also, a higher 13 level leads to a larger l~ value, 
meaning a more uniform fibre will break into fewer 
fragments eventually. 

The ratio between the expected strengths of the yarn 
and its constituent fibres can be derived from Equa- 
tions 11 and 16 as 

<ere) \ l c J  13'/~exp(1/13)F[1 + (1/13)3 

(22) 

This ratio is plotted against the length ratio of lf/lr at 
three 13 levels and shown in Fig. 4. (Note that in Fig. 4, 
the vertical axis is located at position lf/l~ = 1 instead 
of the origin on the horizontal axis.) For a given fibre 
strength, when the effect of lateral pressure is neg- 

0.8 

0.6 

~ 0.4 

0.2 ~ 

0 t I I I i ~ 
0.05 0.10 0.15 0.20 0.25 0.30 

ey 

Figure 3 The critical fibre length, lo, and the yarn strain, cy. 
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Figure 2 Dependency of g/Ef on the yarn strain, ~;y. 
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lected, we have the length ratio If/le--- 1. The yarn 
strength is as low as around one-fifth of the fibre 
strength, depending on the 13 value. When the effect of 
the lateral pressure is considered which makes the 
length ratio If/lc > 1, the yarn strength will increase as 
much as twice. It is interesting to see that when the 
yarn strain, which changes the lateral pressure and 
eventually the lf/Ic ratio, increases to break the yarn, it 
simultaneously reinforces it. It is also interesting to 
note the reverse effect of the [3 value on the yarn 
strength taking place at a critical ratio (If/lc)c (around 
10 as depicted in Fig. 4). 

Fig. 5 gives the prediction from Equation 18 of the 
expected yarn strength and its + 3 |  boundary as 
well as their relations with [3. It is shown that increase 
of [3 value will increase both (Cry) and, slightly, its 
standard deviation | The latter is unexpected be- 
cause one would assume a yarn made of more uniform 
fibres (with greater [3 value) would have a small 
strength Variation. This will be further discussed in 
Fig. 6. 

The variations of the yarn strength defined by the 
-b 3 |  boundary in the figure seem much smaller 

than expected. This is because we have ignored the 
variations of yarn cross-sectional area and the yarn 
twist (reflected in fibre volume fraction, Vf, and the 
surface helix angle, q, respectively). If these variations 
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Figure 5 The predicted yarn strength (O'y) and its + 3Oy bound- 
ary. 
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Figure 6 The standard deviation of the yarn strength (~y and the 
yarn-size effect. 

are known, they can be superimposed directly on to 
the curves to give a more realistic prediction. 

Fig. 6 shows the standard deviation of the yarn 
strength, | plotted against the shape parameter at 
three different levels of fibre number, N. It can be seen 
from Equation 14 that a larger yarn size (a larger 
N value) will lower the variation. There is also a 
critical value (below 10 as seen in Fig. 6). When the 
shape parameter 13 increases to this critical value, the 
standard deviation values will increase to maximum. 
Once [3 is beyond the critical value, a larger [3 value, 
meaning more uniform fibres, will lead to a smaller 
variation in yarn strength. 

10. Conclusion 
Twisted fibre structures have a unique strength- 
generating mechanism, in which the force that is 
breaking the structure is, at the same time, strengthen- 
ing it. This study stresses the fact that fibre strength is 
not strictly an intrinsic property but rather dependent 
on the structure and loading environment it is utilized 
for. Because of the lateral constraint, fibres in a yarn 
are stretched segment by segment as indicated by the 
fragmentation process. Because the lateral pressure 
increases together with the increasing yarn strain, the 
length of each fibre segment is hence decreasing to 
a much shorter value than the original fibre length. 
This will increase the strength of the fibre segment as 
well as the ultimate yarn strength, due to the fibre 
strength and length dependence. There is little differ- 
ence between filament yarn and staple yarn at high 
twist level for strength prediction purposes. They 
can be treated exactly the same using the method 
proposed in this paper. Yarn strength can be more 
accurately predicted using the present theory if the 
variations in yarn fibre-volume fraction and in yarn 
twist value are provided. 
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