Recent advances in plant cell cultures in bioreactors

J.-J. Zhong,* J.-T. Yu and T. Yoshida

Two key issues in the application of plant-cell-culture technology to the production of valuable secondary metabolites are reviewed: the selection of cell lines with suitable genetic, biochemical and physiological characteristics: and the optimization of bioreactor environments. Although great progress has been made in recent years in the design, selection and optimization of bioreactor hardware, optimization of environmental factors such as medium components, light irradiation and $O₂$ supply needs detailed investigations for each case. With a better understanding of plant cell metabolism and physiology, further developments in cultivation processes, such as process integration and on-line monitoring and control, can be expected in the near future.

Key words: Bioprocess development, bioreactor optimization, environmental factors, modelling, monitoring and control, plant cell culture, secondary-metabolite production.

Although the history of plant cell culture, here taken as the culture of plant organs, tissue, cells, protoplast, embryos and plantlets, dates back to the beginning of this century, a great deal of progress has been achieved since the 1930s. The associated technology now has three main applications: the production of secondary metabolites; micropropagation; and the study of plant cell genetics, physiology, biochemistry and pathology. In this article, we review recent advances in the application of plant-cell-culture technology to metabolite production, new research on the optimization of bioreactor configurations and environmental factors and developments in plant cell bioprocesses.

Applications of Plant Cell Cultures to Production of Secondary Metabolites

Plant cell culture has several advantages as a method of producing useful metabolites. Plants produce more than 20,000 compounds, including pharmaceuticals, pigments and other fine chemicals, and this four times more than can be obtained from microbes. Some of these chemicals are difficult to synthesize chemically and it may also be difficult to produce them at all, or in significant amounts, using

@ 1995 Rapid Communications of Oxford Ltd

genetically engineered microorganisms. Cultures of plant cells are not limited by extrinsic environmental, ecological or climatic conditions and can therefore proliferate at higher growth rates than whole plants in cultivation. As shown in Table I, some metabolites also accumulate at higher concentrations in cultured cells than in the parent plants. However, as the productivity of the cell cultures is low, their use is only economically viable if the metabolites are of high value, such as the anti-neoplastic drug, taxol, and related taxanes produced by Taxus cuspidata and Tax. canadensis callus and suspension cultures (Fett-Neto et al. 1992), and the new anti-malarial drug, artemisinin, produced in shoot cultures of Artemisia annua L. (Woerdenbag et al. 1993).

Generally, one main problem in the application of plantcell-culture technology to secondary-metabolite production is a lack of basic knowledge about the biosynthetic routes and mechanisms regulating metabolite accumulation. However, there has been some recent progress in this field, in studies on elicitation, hairy-root culture, cell line modification through traditional and genetic engineering approaches, as well as the biochemistry.

Elicitation can effectively enhance metabolite synthesis in some cases, such as in thiophene production by hairy roots of Tagetes patula (Buitelaar et al. 1991) and tropane alkaloid production by suspension cultures of Datura stramonium cells (Ballica et al. 1993). Dunlop & Curtis (1991) also demonstrated that addition of fungal elicitors to hairy-root cultures of Hyoscyamus muticus enhanced the specific produc-

 $G-S$. Enong and $G-T$, it are with the research institute of Blochemica Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; fax: 86 21 4776164. T. Yoshida is with the International Center of Cooperative Research in Biotechnology (ICBiotech), Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan.
*Corresponding author.

Product	Plant	Yield (% dry wt)		Yield ratio
		Culture	Plant	(culture/plant)
Anthocyanin	Vitis sp.	16	10	1.6
	Euphorbia milli	4	0.3	13.3
	Perilla frutescens	24	1.5	16.0
Anthraquinone	Morinda citrifolia	18	2.2	8.2
Berberine	Coptis japonica	13	4	3.3
	Thalictrum minor	10	0.01	1000
Rosmarinic acid	Coleus blumei	27	3	9.0
Shikonin	Lithospermum erythrorhizon	14	15	3.3

Table 1. Product yields from plant cell cultures compared with those of the parent plants.*

* From Zhong (1992).

tivity of solavetivone about 200-fold compared with that of non-elicited cultures. Increasing the activity of metabolic pathways by elicitation, in conjunction with end-product removal and accumulation in an extractive phase, has proven to be the most successful way of increasing metabolite productivity in general (Brodelius & Pedersen 1993).

The use of transformed roots is rapidly emerging as a viable alternative to the cultivation of whole plants for the production of plant secondary metabolites (Signs & Flores 1990; Toivonen et al. 1991; Christen ef al. 1992). Transformed roots have inherent advantages over suspended-cell cultures and whole plant cultivation, including greater biochemical and genetic stability, faster growth rates than in whole plant cultivation, an alkaloid productivity reflecting that of the parent plant, and greater amenability to genetic manipulation. As the roots release a proportion of their intracellular products into the surrounding medium, continuous extraction is also possible. Hu & Alfermann (1993) used hairy-root cultures of Salvia miltiorrhiza for diterpenoid production and Toivonen ef al. (1991) and Bhadra ef al. (1993) successfully produced indole alkaloids, for possible vinblastine production, in hairy-root cultures of Cafharanthus roseus.

Cell line selection is one of the traditional and effective approaches to enhancing metabolite accumulation. Wickremesinke & Arteca (1993), for example, established fastgrowing callus and root cultures for potential production of harringtonine and related alkaloids. Genetic engineering is another promising tool for increasing the biosynthetic ability of plant cells. Hashimoto ef al. (1993) increased scopolamine production in an Afropa belladonna hairy-root culture by expressing Hyoscyamus niger recombinant hyoscyamine-6- β -hydroxylase. In a model system, Gao & Lee (1992) demonstrated the efficient production of foreign protein $(\beta$ glucuronidase) by genetically modified tobacco cells.

Biochemical studies provide the fundamental information for the intentional regulation of secondary metabolism in plant cells. In a carrot suspension culture regulated by 2,4- α there represents was a complete was a complete and the synthesis and the synthesis and the synthesis and the s

morphological differentiation for somatic embryogenesis. They also demonstrated that the induction and repression of phenylalanine ammonia lyase (PAL) and chalcone synthase correlated with formation of the respective mRNA. Two biosynthetic enzymes, PAL and 3-hydroxymethylglutaryl-CoA reductase, were also related to shikonin formation in Lithospermum erythrorhizon cultures (Srinivasan & Ryu 1992).

Although plant cell culture appears to be a useful method for the production of valuable secondary metabolites in the laboratory, many problems arise during bioprocess scale-up (Table 2). Thus there are only a few industrial-scale processes in operation, producing shikonin, phosphodiesterase, rosmarinic acid and ginseng. Whether or not more products produced in this way will reach the market largely depends on the economics of the process involved. This, in turn, is heavily dependent on the productivity of the culture. Selection of cell lines with suitable genetic, biochemical and physiological characteristics, is important. Optimization of bioreactor configurations and environmental conditions, which will be discussed later, is also definitely necessary to realize the commercial production of more useful metabolites by plant cells.

Optimization of Bioreactor Configurations and Culture Conditions

Design, Selection and Optimization of Bioreactor Hardware

Most of the bioreactors used to grow plant cells are directly derived from microbial fermenters. The choice and design of the most suitable reactor is determined by many factors, including shear environment, O_2 -transfer capacity, mixing mechanism, the problem of foaming (Zhong et al. 1992b) and the need for aseptic conditions, all of which have to be tailored to the type of plant cells used and the purpose of the experiment. Understanding how to promote better cell culture through reactor modification, such as the use of impeller designs that produce reduced shear and the efficient use of light, is a major challenge (Treat et al. 1989).

Bioreactors of various types have been developed, including spin filter, continuously stirred turbine, hollow fibre,

two-step immobilization, stirred tank, air lift, rotating drum, and photo, Bioreactor modifications include replacing a flatbladed turbine with a marine impeller or a single, large, flat paddle or blade to permit higher cell-growth rates (Treat et al. 1989; Hooker et al. 1990). Kim et al. (199la), after developing a hybrid reactor with a cell-lift impeller and a sintered stainless-steel sparger for Thalictrum rugosum cell cultures, obtained cell densities of ≤ 31 g/l by perfusion, without any mixing problems or loss of cell viability; the specific berberine productivity was comparable with that in shake flasks. Su & Humphrey (1991) conducted a perfusion cultivation in a stirred-tank bioreactor fitted with an internal cross-flow filter which provided $O₂$ without bubble; a cell density of 26 g dry wt/l and a rosmarinic acid productivity of 94 mg/l/day were achieved. A double helical-ribbon impeller reactor with a working volume of 11 1 was successfully developed for high-density cultivation of Cat. roseus cells (Jolicoeur et al. 1992). Yokoi et al. (1993) also developed a new type of stirred reactor, called a Maxblend fermenter, for high-density cultivation of plant cells, and they demonstrated its usefulness in cultivations of rice and shear-sensitive Cat. roseus cells.

Trickling film and 'mist' reactors, in which the roots are in contact with air most of the time and the medium is sprayed over the roots, have been used for root cultures (Whitney 1992). Hairy-root cultures of Trigonella foenumgraceum have been grown in modified 9-l airlift and 9-l column-mesh bioreactors (Rodriguez-Mendiola et al. 1991). Hairy-root cultures of Dafura stramonium were grown in a stainless-steel cage inside a stirred-tank reactor for hyoscyamine production; the cage prevented direct contact between the roots and the stirrer and also provided a good support matrix, allowing a more even distribution of the roots in the reactor (Hilton & Rhodes 1990). There have room in the reactor μ mion ∞ reports μ , filter im abo been reports on the ase of bioreactors for individual $\sum_{i=1}^{n}$ $\frac{1}{2}$ fully used a dual hold $\frac{1}{2}$ to $\frac{1}{2}$ function to maintain $\frac{1}{2}$ fully used a dual hollow-fibre bioreactor to maintain high densities of immobilized *L. erythrorhizon* cells and continu-
ous operation.

Opimization of Chine Environments

Medium Components. The effects of the medium components, both inorganic and organic, including hormones,

employed in various plant cell cultures, such as the cultivation of the hairy roots of Cat. roseus (Bhadra et al. 1993) and suspended cells of Coffea arabica (Bramble et al. 1991), have been reported. A relatively high concentration of sucrose was reported to be favourable for rosmarinic acid production (Su & Humphrey 1990; Martinez & Park 1993). Carbon and nitrogen sources are often significant factors, affecting the accumulation of alkaloids by suspension cultures of Holarrhena antidysenterica (Panda et al. 1992), of anthocyanins by Vitis vinifera cell suspensions (Do & Cormier 1991), and of shikonin by L. erythrorhizon cell cultures (Srinivasan & Ryu 1993).

Light Irradiation. The spectral quality, intensity and period of light irradiation may all affect plant cell cultures in one way or another (Zhong et al. 1991). The stimulatory effect of light irradiation on the formation of several compounds, including anthocyanins, vindoline, catharanthine and thiophene, has been demonstrated (Kurata et al. 1991; Mukandan & Hjortso 1991; Zhong et al. 1991; Hirata et al. 1992). Zhong et al. (1991), who investigated the quantitative effect of light intensity on anthocyanin formation by Perilla frutescens cell cultures, found that 27.2 W/cm' favoured pigment production in a bioreactor.

Shear Stress. The effect of shear on biological cells has been investigated in various studies. Plant cells are usually sensitive to hydrodynamic stress as each usually has a large volume and a rigid, inflexible cell wall. Shear stress above a certain level reduces culture viability, cell mass and secondary-metabolite productivity, as demonstrated in cellcultures of tobacco, Cat. roseus and P. frutescens (Scragg et al. 1988; Hooker et al. 1989; Leckie et al. 1991; Zhong et al. 1994a). However, different cell suspensions show different degrees of sensitivity to shear stress.

Oxygen Supply. O_2 supply affects both growth and metabolite production in a number of plant cell cultures, including those of P. frutescens (Zhong et al. 1993b) and Cat. roseus (Leckie ef al. 1991). tn flask cultures of T. minus cells, berberine-producing cells were observed to take up twice as much Oz as non-producing cells (Kobayashi et al. 1991). $\frac{1}{2}$ as non-providing tems (need) also transitions. Gao & Lee (1992) also demonstrated that an increase in the O_2 supply improved the specific O_2 uptake rate and the σ_2 supply improved the specific σ_2 upture the underly α metabolites (phenolic state and biology α and biology cultivation cul ary metabolites (phenolics) in flask and bioreactor cultivations of tobacco cells. In contrast, $O₂$ starvation was claimed to stimulate pigment release in hairy-root cultures of red
beet (Kino-oka et al. 1992).

 ω and metabolism in some catchering after the grown and metabolism in some cases. Both gases, for example, affect berberine formation in T . $minus$ cell cultures; the specific berberine content was increased 2-fold when a

J.-l. Zkong, I.-T. Yu and T. Yoskida

mixture of $CO₂$ and ethylene was added to an airlift system (Kim et al. I99Ib). Gas composition was also found to be important in scale-up of the ajimalicine production process using Cat. roseus cultures (Schlatmann et al. 1993). Ethylene also affects root and shoot propagation and leafexplant cultures of petunia (Dimasi-Therion ef al. 1993).

Rheology. Knowledge of the rheology of plant cell cultures may help resolve various problems because culture viscosity, mixing, mass transfer, shear stress and cell growth, as well as metabolite production, all interact in a bioreactor cultivation (Zhong et al. 1992a). Cell cultures of P. frufescens were found to exhibit Bingham-plastic fluid characteristics, and the size of the individual cells, not the cell aggregates, affected the cultures' rheological characteristics (Zhong ef al. 1992a). Ballica et al. (1992) studied the rheological properties and determined the yield stress value of Daf. stramonium cell suspensions, factors considered to be helpful in the bioprocess engineering of plant cells for high density, particularly in determining reactor operating strategies. Curtis & Emery (1993), investigating the rheological characteristics of 10 different plant-cell suspension cultures, claimed that most plant cell suspensions displayed Newtonian behaviour at moderate cell densities and that the relatively rare non-Newtonian behaviour was a result of cellular elongation.

Advances in Bioreactor Cultivation Processes

Confinuous Culfure

Van Gulik ef al. (1992) investigated the use of a chemostat culture technique to obtain reliable data on the stoichiometry of the growth of plant cells in a stirred tank reactor. Several other groups have also studied the growth kinetics and stoichiometry and modelled the growth of suspensioncultured plant cells, using semi-continuous or fed-batch cultures to achieve steady-state growth. Westgate ef al. (1991), for example, presented fed-batch cultivation kinetics for continuous approximation in Cephalotaxus harringtonia cultures.

Two-sfage Culture

The most well-known example of two-stage culture is that adopted by the Japanese Mitsui Petrochemical Company in the commercial production of shikonin. In a study of biotransformation by plant cells, Kreis & Reinhard (1990) $\frac{d}{dx}$ developed a process in which D_3 must mum cens were then propagated in a growth medium and then transferred to the appropriate production medium, where the cells converted digitoxin into $12-\beta$ -hydroxylated products. Jung et $al.$ (1994) also utilized a two-stage culture process, for hairy-root cultures of Cat. roseus, optimizing the inorganic salts and enhancing catharanthine productivity up to 5.4-
fold compared with that in a one-stage culture.

Cell hmobilizafion

There have been many publications on the immobilization of plant cells since the first report in 1979 (Brodelius ef al. 1979) and the methods now available include gel entrapment, adsorption, and foam (e.g. polyurethane) immobilization. The possible advantages of immobilization include the ability to use continuous-flow processes, the easy separation of biocatalysts from the reaction medium, the cell-to-cell contact, which may be beneficial to secondary metabolite synthesis, and the protection of sensitive plant cells against shear stress. Some potential problems are the introduction of gradients in the gel beads which are often used, the necessity for product excretion, and loss of cell viability in many cases.

Secretion of secondary metabolites is a pre-requisite for cell immobilization. Several methods, such as temperature adjustment, electrical permeabilization, altering medium composition, and permeabilization with chemicals such as dimethylsulphoxide (DMSO), can be used to improve product recovery (Buitelaar & Tramper 1992). Park & Martinez (1992) reported a new approach to plant-cell permeabilization in which DMSO treatment was coupled with preconditioning; this resulted in substantial rosmarinic acid secretion by and a high viability of permeabilized Coleus blumei cells.

Process Integration

Two-phase culture is used to selectively remove the desired product from a reactor. One phase is the aqueous medium and the second either a water-immiscible organic solvent or a solid compound. Kim & Chang (1990) reported that in sifu extraction and immobilization greatly increased cellular and volumetric shikonin productivities. The isolation of shikonin by in sifu extraction, with n-hexadecane, was also studied in hairy-root cultures in shake-flask cultures and a bubble column (Sim & Chang 1993). Buitelaar et al. (1991) observed good growth and thiophene production in hairyroot cultures of Tagetes patula in various two-liquid-phase bioreactors. Similarly, Byun ef al. (1992) used a compounded silicone-fluid two-phase culture system to enhance production of sanguinarine by Eschscholtzia california.

Process Monitoring, Modelling and Control

In spite of a great need for better monitoring and control in the optimization of plant cell bioprocesses, few studies have been published in this area. The monitoring parameters most been published in this area. The momenting parameters more requesting reported in plain can existence are the concentrations of cells and NAD(P)H (Asali et al. 1992) in the reactor and of O_2/CO_2 in the inlet and outlet gases (Rho et al. 1990; Zhong et al. 1994b). Cell concentration is monitored as conductivity (Taya et al. 1989b; Ryu et al. 1990), osmotic pressure (Tanaka et al. 1993), dielectric (Markx et al. 1991) or turbidimetry (Tanaka et al. 1992;
Zhong et al. 1993a). For example, Zhong et al. (1993a)

cell cultures did not interfere with measurement of the system. turbidity at 780 nm, using a laser sensor, and succeeded in There is reason to believe that great advances in process the real-time in situ monitoring of the cell mass in a stirred control and the optimization of plant cell cultures will be bioreactor. Furthermore, a computer-aided, on-line, real-time achieved in the relatively near future. At present, there are monitoring system for plant cell processes was established and applied to the cultivation of P. frutescens cells in the bioreactor (Zhong et al. I994b). The system was found to be useful for the identification of the physiological states (such as the respiratory quotient and specific $O₂$ uptake rate) of the plant cells during cultivation. In studies of somatic embryogenesis, Cazzulino et al. (1990) classified carrot somatic embryos using an image analyzer, and Hamalainen et al. (1993) presented specific features suitable for the classification of birch somatic embryos and developed a classifier using these features for possible automatic processing.

Mathematical models of biological processes are often used for hypothesis testing and process optimization. Using physical interpretations of results to obtain greater insights into process behaviour is only possible when structured models, in which several parts of the system are considered separately, are employed. Several dynamic mathematical models of plant cell growth and metabolite production have been developed (Bailey & Nicholson 1989; Bramble et al. 1991; Curtis et al. 1991; Hooker & Lee 1992; Van Gulik et al. 1993). Hooker & Lee (1992) produced a basic structured kinetic model, applicable to batch suspension cultures of tobacco, in which the interactions between structural component production, secondary metabolite synthesis and cellular respiration are considered. In characterizing the hairy-root growth of carrot (Daucus carota), horseradish (Armoracia lapathifolia), senna (Cassia torosa) and pak-bung (Ipomoea aquafica), Taya ef al. (1989a) proposed a kinetic model based on the linear extension and lateral branching of the growing point at the root tip. Cazzulino et al. (1990) proposed a segregated kinetic model to describe substrate utilization, culture growth, and embryo development, in an embryogenic culture of carrot, in a rigorous, quantitative manner.

Several interesting parameter-control models or systems have been reported in recent years: a five-state mathematical model for temperature control (Bailey & Nicholson 1990); a mathematical-model description of the phenomenon of light absorption by Cof. arabica suspension-cell cultures in a photo-culture vessel (Kurata & Furusaki 1993); and a bioreactor control system for the simultaneous control of the concentrations of dissolved O_2 and CO_2 (Smith et al. 1990). In addition, a physiological-state control approach, in which the current physiological state of a cell culture is monitored (Zhong et al. 1994b), may be a powerful method for the control of plant cell processes, because, being based on artificial intelligence methods, particularly fuzzy sets and pattern recognition theory, no conventional mathematical

showed that the redness of the anthocyanin in P. frutescens model is required for the synthesis of such a control

two main obstacles in these research areas: the lack of an adequate on-line process monitoring system for plant cells; and the heterogeneity and instability of the cells. However, it has been demonstrated that the first problem can be solved and we expect that the recent developments in plant cell biology, particularly those in biochemistry and molecular biology, will soon help to resolve the second. Close co-operation between biologists and biochemical engineers is necessary and both groups must expand their fields of knowledge and research fields to create a common cutting-edge.

Acknowledgements

The authors' research described in the review was conducted at ICBiotech, Osaka University. Preparation of the manuscript was supported by a grant to JJZ from the Foundation of State Education Commission of China for Returned Scholars from. Abroad.

References

- Archambault, J., Volesky, B. & Kurz, W.G.W. 1990 Development of bioreactors for the culture of surface immobilized plant cells. Biotechnology and Bioengineering 35, 702-711.
- Asali, E.C., Mutharasan, R. & Humphrey, A.E. 1992 Use of NAD(P)H-fluorescence for monitoring the response of starved cells of Catharanthus roseus in suspension to metabolic perturbations. Journal of Biotechnology 23, 83-94.
- Bailey, C.M. & Nicholson, H. 1989 A new structured model for plant cell culture. Biotechnology and Bioengineering 34, 1331-1336.
- Bailey, C.M. & Nicholson, H. 1990 Optimal temperature control for a structured model of plant cell culture. Biotechnology and Bioengineering 35, 252-259.
- Ballica, R., Ryu, D.D.Y. & Kado, C.I. 1993 Tropane alkaloid production in Datura stramonium suspension cultures: elicitor and precursor effects. Biotechnology and Bioengineering 41, 1075-1081.
- Ballica, R., Ryu, D.D.Y., Powell, R.L. & Owen, D. 1992 Rheological properties of plant cell suspensions. Biotechnology Progress 8, 413-420.
- Bhadra, R., Vani, S. & Shanks, J.V. 1993 Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnology and Bioengineering 41, 581-592.
- Bramble, J.L., Graves, D.J. & Brodelius, P. 1991 Calcium and phosphate effects on growth and alkaloid production in Coffea arabica: experimental results and mathematical model. Biotechnology and Bioengineering 3 7, 859-868.
- Brodelius, P., Deus, B., Mosbach, K. & Zenk, M.H. 1979 Immobilized plant cells for the production and transformation of natural products. FEBS Letters 103, 93-97.
- Brodelius, P. & Pedersen, H. 1993 Increasing secondary metabolite production in plant-cell culture by redirecting transport. Trends in Biotechnology 11, 30-36.
- Buitelaar, R.M., Langenhoff, A.A.M., Heidstra, R. & Tramper, J.

1991 Growth and thiophene production by hairy root cultures of Tagetes patula in various two-liquid-phase bioreactors. Enzyme and Microbial Technology 13, 487-494.

- Buitelaar, R.M. & Tramper, J. 1992 Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. Journal of Biotechnology 23, 111-141.
- Byun, S.Y., Ryu, Y.W., Kim, C. & Pedersen, H. 1992 Elicitation of sanguinarine production in two-phase cultures of Eschscholtzia california. Journal of Fermentation and Bioengineering 73, 380-385.
- Cazzulino, D.L., Pedersen, H., Chin, C.-K. & Styer, D. 1990 Kinetics of carrot somatic embryo development in suspension culture. Biotechnology and Bioengineering 35, 781-786.
- Christen, P., Aoki, T. & Shimomura, K. 1992 Characteristics of growth and tropane alkaloid production in Hyoscyamus albus hairy roots transformed with A. rhizogenus A4. Plant Cell Reporfs 11, 597-600.
- Curtis, W.R. & Emery, A.H. 1993 Plant cell suspension culture rheology. Biotechnology and Bioengineering 42, 520–526.
- Curtis, W.R., Hasegawa, P.M. & Emery, A.H. 1991 Modeling linear and variable growth in phosphate limited suspension cultures of opium poppy. Biotechnology and Bioengineering 38, 371-379:
- Dimasi-Therion, K., Economon, A.S. & Sfakiotakis, E.M. 1993 Promotion of petunia (Petunia hybrida L.) regeneration in vitro by ethylene. Plant Cell, Tissue and Organ Culture 32, 219-255.
- Do, C.B. & Cormier, F. 1991 Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Reports 9, 500-504.
- Dunlop, D.S. & Curtis, W.R. 1991 Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biofechnology Progress 7, 434-438.
- Facchini, P.J. & DiCosmo, F. 1991 Plant cell bioreactor for the production of protoberberine alkaloids from immobilized Thalictrum rugosum cultures. Biotechnology and Bioengineering 37, 397-403.
- Fett-Neto, A.G., DiCosmo, F., Reynolds, W.F. & Sakata, K. 1992 Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Bio/Technology IO, 1572-1575.
- Gao, J. & Lee, J.M. 1992 Effect of oxygen supply on the suspension culture of genetically modified tobacco cells. Biofechnology Progress 8, 285-290.
- Hamalainen, J.J., Kurten, U. & Kauppinen, V. 1993 Classification α plant somatic embryos by computer vision. Biotechnology under vision. Biotechnology under vision. Biotechnology under vision α of plant somatic embryos by computer vision. Biotechnology and Bioengineering 41, 35-42.
- $\mathcal{L} = \mathcal{L}$, $\mathcal{$ t_{min} is generically engineered root cultures. tropane alkaloids in genetically engineered root cultures. Phyto-
chemistry 32, 713-718.
- Hilton, M.G. 81 Rhodes, M.J.C. 1990 Growth and hyoscyamine production of hairward, rooted above chomat and hydrogramme production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Applied Microbiology and Biotech-
nology 33, 132-138. $H_{\text{HOM}}(x)$, Horizo, M., $H_{\text{HOM}}(x)$
- α , α , 1992 α , α , α , α and α alloid production by α . Miura, Y. 1992 Stimulation of dimeric alkaloid production by near-ultraviolet light in multiple shoot cultures of Catharanthus roseus. Journal of Fermentation and Bioengineering 74, 222-225.
- Hooker, B.S. & Lee, J.M. 1992 Application of a new structured model to tobacco cell cultures. Biotechnology and Bioengineering 39, 765-774. \mathcal{L} , \mathcal{L} ,
- α kel, D.J., Lee, J.W. α /M, G. 1909 Response of plant uss culture to a high shear environment. Enzyme and Microbial Technology 11, 484-490.
- Hooker, B.S., Lee, J.M. & An, G. I990 Cultivation of plant cells in a stirred vessel: effect of impeller design. Biotechnology and Bioengineering 35, 296-304.
- Hu, Z.B. & Alfermann, A.W. 1993 Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 32, 699-703.
- Jolicoeur, M., Chavarie, C., Carreau, P.J. & Archambault, J. 1992 Development of a helical-ribbon impeller bioreactor for highdensity plant cell suspension culture. Biotechnology and Bioengineering 39, 511-521.
- Jung, K.-H., Kwak, S.-S., Choi, C-Y. & Liu, J.R. 1994 Development of two stage culture process by optimization of inorganic salts for improving catharanthine production in hairy root cultures of Catharanthus roseus. Journal of Fermentation and Bioengineering 77,57-61.
- Kim, D.-I., Cho, G.H., Pedersen, H. & Chin, C.-K. 199la A hybrid bioreactor for high density cultivation of plant cell suspensions, Applied Microbiology and Biotechnology 34, 726–729.
- Kim, D.-I., Pedersen, H. & Chin, C.-K. 1991b Cultivation of Thalictrum rugosum cell suspension in an improved airlift bioreactor: stimulatory effect of carbon dioxide and ethylene on alkaloid production. Biotechnology and Bioengineering 38, 331-339.
- Kim, D.J. & Chang, H.N. 1990 Enhanced shikonin production from Lithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnology and Bioengineering 36,460-466.
- Kino-oka, M., Hongo, Y., Taya, M. & Tone, S. 1992 Culture of red beet hairy root in bioreactor and recovery of pigment released from the cells by repeated treatment of oxygen starvation. Journal of Chemical Engineering of Japan 25, 490-495.
- Kobayashi, Y., Fukui, H. & Tabata, M. 1991 Effect of carbon dioxide and ethylene on berberine production and cell browning in Thalictrum minus cell cultures. Plant Cell Reports 9, 496-499.
- Kreis, W. & Reinhard, E. 1990 Two-stage cultivation of Digifulis lanata cells: semicontinuous production of deacetyllanatoside C $\frac{1}{2}$ and $\frac{1}{2}$ are also at $\frac{1}{2}$ and \frac ...
...
- Kurata, H. & Furusaki, S. 1993 Nonisotropic scattering model for estimation of light absorption rates in a suspension culture of Coffea arabica cells. Biotechnology Progress 9, 86-92.
- Kurata, H., Seki, M., Furusaki, S. & Furuya, T, 1991 Influence of light irradiation rates and irradiation modes on caffeine production and cell growth in suspension culture of Coffea arabica cells. Journal of Chemical Engineering of Japan 24, 783-788.
- Leckie, F., Scragg, A.H. & Cliffe, K.C. 1991 Effect of bioreactor $\frac{d}{dx}$ and $\frac{d}{dx}$ and $\frac{d}{dx}$ are growth and alkaloid accumulation and alkaloid accumulation by cultures of Cuthurunfhus roses in the Microbial Microb tion by cultures of Catharanthus roseus. Enzyme and Microbial Technology 13, 296-305. $M_{\rm{max}}$ denotes the Morrison density of $M_{\rm{max}}$
- directed permittivity at $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ dielectric permittivity at radio frequencies and the Bruggeman probe: novel techniques for the on-line determination of biomass concentrations in plant cell cultures. Journal of Biotechnology
20, 279-290. M_{ν} B.C. 81 Park, C.-H. 1993 Characteristics of batch suspenses o
- α cultures, β . C. α T and C.-11. 1999 Characteristics of patch suspension sion cultures of preconditioned Coleus blumei cells: sucrose effect. Biotechnology Progress 9, 97-100.
- Mukandan, U. & Hjortso, M.A. 1991 Effect of light on growth and thiophene accumulation in transformed roots of Tagetes patula. Journal of Plant Physiology 138, 252-255.
- Ozeki, Y., Komamine, A. & Tanaka, Y. 1990 Induction and repression of phenylalanine ammonia-lyase and chalcone synthase enzyme proteins and mRNAs in carrot cell suspension cultures regulated by 2,4-D. Physiologia Plantarum 78, 400-408.
- Panda, A.K., Mishra, S. & Bisaria, V.S. 1992 Alkaloid production by plant cell suspension cultures of Holarrhena anfidysenterica: (I) effect of major nutrients. Biofechnology and Bioengineering 39, 1043-1051.
- Park, C.-H. & Martinez, B.C. 1992 Enhanced release of rosmarinic acid from Coleus blumei permeabilized by dimethyl sulfoxide (DMSO) while preserving cell viability and growth. Biofechnology and Bioengineering 40, 459-464.
- Rho, D,, Bedard, C. & Archambault, J. 1990 Physiological aspects of surface-immobilized Cafharanthus roseus cells. Applied Microbiology and Biotechnology 33, 59-65.
- Rodriguez-Mendiola, M.A., Stafford, A., Cresswell, R. & Arias-Castro, C. 1991 Bioreactors for growth of plant roots. Enzyme and Microbial Technology 13, 697-702.
- Ryu, D.D.Y., Lee, S.O. & Romani, R.J. 1990 Determination of growth rate for plant cell cultures: comparative studies. Biofechnology and Bioengineering 35, 305-311.
- Schlatmann, J.E., Nuutila, A.M., Van Gulik, W.M., Ten Hoopen, H.J.G., Verpoorte, R. & Heijnen, J.J. 1993 Scaleup of ajmalicine production by plant cell cultures of Catharanthus roseus. Biotechnology and Bioengineering 41, 253-262.
- Scragg, A.H., Allan, E.J. & Leckie, F. 1988 Effect of shear on the viability of plant cell suspensions. Enzyme and Microbial Technology 10,361-367.
- Signs, M. & Flores, H. 1990 The biosynthetic potential of plant roots. BioEssays 12, 7-13.
- Sim, S.J. & Chang, H.N. 1993 Increased shikonin production by hairy roots of Lithospermum erythrorhizon in two-phase bubble column reactor. Biotechnology Letters 15, 145-150.
- Smith, J.M., Davison, S.W. & Payne, G.F. 1990 Development of a strategy to control the dissolved concentrations of oxygen and carbon dioxide at constant shear in a plant cell bioreactor. Biotechnology and Bioengineering 35, 1088-1101.
- Srinivasan, V. & Ryu, D.D.Y. 1992 Enzyme activity and shikonin production in Lithospermum erythrorhizon cell cultures. Biotechnology and Bioengineering 40, 69-74.
- Srinivasan, V. & Ryu, D.D.Y. 1993 Improvement of shikonin productivity in Lithospermum erythrorhizon cell culture by alternating carbon and nitrogen feeding strategy. Biofechnology and Bioengineering 42, 793-799.
- Su, W.W. & Humphrey, A.E. 1990 Production of rosmarinic acid in high density perfusion cultures of Anchusa officinalis using a high sugar medium. Biotechnology Letters 12, 793-798.
- Su, W.W. & Humphrey, A.E. 1991 Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membraneaerated bioreactor. Biotechnology Letters 13, 889-892.
- Tanaka, H., Aoyagi, H. & Jitsufuchi, T. 1992 Turbidimetric measurement of cell biomass of plant cell suspensions. Journal of Fermentation and Bioengineering 73, 130-134.
- Tanaka, H., Uemura, M., Kaneko, Y. & Aoyagi, H. 1993 Estimation of cell biomass in plant cell suspensions by the osmotic pressure measurement of culture broth. Journal of Fermentation and Bioengineering 76, 501-504.
- Taya, M., Kino-oka, M., Tone, S. & Kobayashi, T. 1989a A kinetic model of branching growth of plant hairy root. Jouma! of Chemical Engineering of Japan 22, 698-700.
- Taya, M., Tone, S. & Prenosil, J.E. 1989b Plant cell culture by medium circulating bioreactor and on-line estimation of cell mass. Plant Tissue Culture Letters (Japan) 6, 179-181.
- Toivonen, L., Ojala, M. & Kauppinen, V. 1991 Studies on the optimization of growth and indole alkaloid production by hairy

root cultures of Catharanthus roseus. Biotechnology and Bioengineering 37,673-680.

- Treat, W.J., Engler, C.R. & Sojtes, E.J. 1989 Culture of photomixatrophic soybean and pine in a modified fermenter using a novel impeller. Biotechnology and Bioengineering 34, 1191-1202.
- Van Gulik, W.M., Ten Hoopen, H.J.G. & Heijnen, J.J. 1992 Kinetics and stoichiometry of growth of plant cell cultures of Catharanthus roseus and Nicofiana tabacum in batch and continuous fermenters. Biotechnology and Bioengineering 40, 863-874.
- Van Gulik, W.M., Ten Hoopen, H.J.G. & Heijnen, J.J. 1993 A structured model describing carbon and phosphate limited growth of Cafharanthus roseus plant cell suspensions in batch and chemostat culture. Biofechnology and Bioengineering 41, 771-780.
- Westgate, P.J., Curtis, W.R., Emery, A.H., Hasegawa, P.M. & Heinstein, P.F. 1991 Approximation of continuous growth of Cephalotaxus harringtonia plant cell cultures using fed-batch operation. Biotechnology and Bioengineering 38, 241-246.
- Whitney, P.J. 1992. Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzyme and Microbial Technology 14, 13-17.
- Wickremesinke, E.R. & Arteca, R.N. I993 Establishment of fastgrowing callus and root cultures of Cephalotaxus harringfonia. Plant Cell Reports 12, 80-83.
- Woerdenbag, H.J., Luers, J.F.J., Van Uden, W., Pras, N., Malingre, T.M. & Alfermann, A.W. 1993 Production of the new antimalarial drug artemisinin in shoot cultures of Arfemisia annua L. Plant Cell, Tissue and Organ Culture 32, 247-257.
- Yokoi, H., Koga, J., Yamamoto, K., Seike, Y., Tanaka, H. 1993 High density cultivation of plant cells in a new aeration-agitation type fermenter, Maxblend Fermenter. Journal oj Fermenfafion and Bioengineering 75, 48-52.
- Zhong, J.-J. 1992 Bioprocess engineering studies on suspended cultures of Perilla frutescens in bioreactors for anthocyanin production. PhD Thesis. Osaka University, Japan.
- Zhong, J.-J., Fujiyama, K., Seki, T. & Yoshida, T. 1993a On-line monitoring of cell concentration of Perilla frutescens in a bioreactor. Biofechnology and Bioengineering 42, 542-546.
- Zhong, J.-J., Fujiyama, K., Seki, T. & Yoshida, T. 1994a A quantitative analysis of shear effects on cell suspension and cell culture of Perilla frutescens in bioreactors. Biofechnology and Bioengineering 44, 649-654.
- Zhong, J.-J., Konstantinov, K.B. & Yoshida, T. 1994b Computeraided on-line monitoring of physiological variables in suspended cell cultures of Perilla frutescens in a bioreactor. Journal of Fermentation and Bioengineering 77, 445-447.
- Zhong, J.-J., Seki, T., Kinoshita, S. & Yoshida, T. 1991 Effect of light irradiation on anthocyanin production by suspended culture of Perilla frutescens. Biofechnology and Bioengineering 38, 653-658.
- Zhong, J.-J., Seki, T., Kinoshita, S. & Yoshida, T. 1992a Rheological characteristics of cell suspension and cell culture of Perilla frutescens. Biotechnology and Bioengineering 40, 1256-1262.
- Zhong, J.-J., Seki, T., Kinoshita, S. & Yoshida, T. 1992b Effects of surfactants on cell growth and pigment production in suspension cultures of Perilla frutescens. World Journal of Microbiology and Biofechnology 8, 106-109.
- Zhong, J.-J., Yoshida, M., Fujiyama, K., Seki, T. & Yoshida, T. 1993b Enhancement of anthocyanin production by Perilla frufescens cells in s stirred bioreactor with internal light irradiation. Journal of Fermentation and Bioengineering 75, 299-303.