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Abstract. A novel method for the multiple crack problems in a finite plate is proposed in this paper. The basic stress functions 
of the solution consist of two parts. One is the Fredholm integral equation solution for the crack problem in an infinite plate, 
and the other is that of the weighted residual method for general plane problems. The combined stress functions are used in 
the analysis and the boundary conditions on the crack surfaces and the boundary are considered. After the coefficients of the 
functions have been determined, the stress intensity factors (SIF) at the crack tips can be calculated. Some numerical examples 
are given and it was observed that when the cracks are very short, the results compare very favorably with the existing results 
for an infinite plate. Furthermore, the influence of the boundary can be considered. This method can be used for arbitrary 
multiple crack problems in a finite plate. 

1 Introduction 

Because of inherent defects that occur in the material or damage incurred during the service life 
of the components, cracks may appear in a plate. The number of cracks, sizes, locations, crack 
number and the boundary conditions may vary in practice. Some multiple crack problems in an 
infinite plate have been solved analytically, for example by complex variable method (Benthem 
et al. 1973) and integral equation method (Sneddon 1973). The solutions obtained are usually valid 
for some special cases, such as collinear, parallel or star cracks where the boundary conditions are 
usually rather simple. However, in practice, the fracture problems may have finite dimensions and 
complex boundary conditions, and it is difficult to use these analytical methods. Although the 
finite element method may also be used for multiple crack problems, it requires elaborate data 
preparation and long computing time. The accuracy of the results is usually not very satisfactory 
unless a large number of elements are used. 

Meanwhile, the boundary collocation method has a series of advantages. It is especially suitable 
for the finite dimension cases. Because of the difficulty of choosing the stress functions, it is usually 
used for some simple geometric crack problems, such as an edge crack (Gross et al. 1964), central 
crack (Kobayashi et al. 1964) and double edge crack (Cheung et al. 1988) etc. 

For the general multiple crack problems an efficient numerical method is therefore needed to 
deal with the complex geometry. In an infinite plate, Fredholm integral equation method (Chen 
1984) may be used for some simple loading cases. Although it may also be applicable to some 
special finite plates, it is not easy to choose the additional stress functions. On the other hand, 
although the weighted residual method has been used for a general plane case (Xu et al. 1982), it 
is not suitable for analyzing crack problems. However, these two sets of stress functions are linearly 
independent, and they can be combined for the analysis of general multiple crack problems in a 
finite plate. 

2 Elementary solutions 

In this section the elementary solutions of the problem are discussed at first. They will then be 
combined to construct the stress functions of the general crack problems. 
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2.1 Solution for crack surface forces 

According to the complex variable method of plane elasticity (Muskhelishvili 1975), the stresses 
are related to the two analytical functions, ~(z) and ~(z), as indicated by 

t T x x  -t- O'yy = 4 Re ~(z) (1) 

%y - iTxy = ~ ( z )  + t2 (e )  + (z - e )a) ' (z) .  (2) 

As shown in Fig. 1, two pairs of forces are applied at a point of the crack, (s, 0). The stress functions 
�9 (z) and g2(z) can be defined as (Chen 1984). 

P - iQ X(s) 
�9 (z) = .O(z) = - - -  (3) 

2r~i X(z)(z - s)' 

where 

X(z)= , / - ~  - a =. 

Using the elasticity theory, it can be shown that the equilibrium equations and the single- 
displacement condition (without rigid body motion) have been satisfied. To obtain a solution, 
only the boundary conditions needed to be considered. The normal and tangential stresses of a 
point, z, located on the o'x' axis in Fig. 1 can be obtained as 

O'y,y, - -  izx,y, - 
P + 

iQ x(s)[G(z)(1 - e-  
2hi 

where 

P iQx(s)  [G(z) + e-  2 i ~  G(Z)] 
2Zd 

2ia) .~_ e -  2i~(2 _ z) G ' ( z ) ] ,  

(4) 

1 a 2 + s z  - 2 z  2 
6 ' ( z )  - (5) 

~ ( z )  = X ( z ) ( z  - s)' (z - s ) ~ [ X ( z )  ] 3" 

Now let's consider two basic cases. At first, let P = 1 and Q = 0, then the corresponding normal 
and tangential tractions at point z are (Chen 1984): 

O ' y , y ,  - -  izx,y, = f , ,  - i f . t  - ~ s2 2n [G(z) + G(z) + e-zi~(z - ~)G'(z)]. (6) 

In f . .  and f~t of the above equation, the first subscript n indicates that the tractions are due to a 
pair of normal forces acting at the point (s, 0), the second subscript denotes the traction direction 
according to line o'x', in the normal or tangential direction. 

Secondly, let P = 0 and Q -- 1, the corresponding normal and tangential tractions at point z 
are (Chen 1984): 

tYy,y, - -  i Z x , y ,  = f i n  - -  i f ,  X / ~  - -  s 2  - -  - 2~zi [G(z)(1 - 2e -2i~) - G(z) + e-  2i~(z - ~)G'(z)]. (7) 

Similarly, in ft ,  and f ,  of the above equation, the first subscript t indicates that the tractions are 
due to a pair of tangential forces acting at the point (s, 0), the second subscript denotes the traction 
direction according to line o'x'. 

The above stress functions can be used for an infinite cracked plate with the vanishing remote 
stress condition. For a finite cracked plate, they must be superposed with other stress functions. 

2.2 Solution by weighted residuals method 

For the plane elastic problem, the stress components are related to the Airy stress function ~ as 

a x x - - - - -  t~y2, O ' y y -  0X2,  "L'xY- ~xOy" (8) 
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L__oJ/'P ] Fig. 1, Stresses at Point z according to the loading on the crack surface 

A set of trial functions for plane problem (Xu et al. 1982) is taken as 
I 

d? = ~ [sinax(Ci,le~Y + Ci,2e-~r + Ci.3ye~r + Ci,4ye -~y) 
i = 1  

+ cos ~x(Ci, 5 e ~r + Ci,6 e-~ty "I'- Ci,7Ye ~r + Ci, sye -~r) 

C e -~'x + sin ~y(Ci.9e~':' + i,10 + Ci,11xe=X + Ci,12 xe-~:') 
C e - ~  d- COS o~Y(Ci,13 e~x + i,14. + Ci,15 xe~x + Ci,16xe-~X)], 

where 

in 

d 

(9) 

in which d is the maximum dimension in the x or y direction of the plate, C~, (n = 1, 2 . . . .  ,16) are the 
coefficients to be determined. 

3 Calculation formulae 

It can be verified that the two sets of stress functions given above are linearly independent. They 
can be combined as a general function for a multiple crack problem in a finite plate. It can be 
shown that the equilibrium equations and the compatibility equations have been satisfied for the 
assumed stress functions. Therefore, only the boundary conditions are to be considered. 

As shown in Fig. 2, a finite plate contains L cracks. The loading may be applied on the crack 
surfaces and the boundaries. For a point on the boundaries, the total forces acting include: the 
forces acting on the point itself, the forces caused by action on the other cracks calculated by 
Eqs. (6) and (7), the forces calculated by Eq. (9). Using the principle of superposition, the force 
components at this point in the x and y directions (assume that the point is on the kth crack) can 
be obtained as: 

L az L a l  

ek(Sk)+ ~ '  S P~(sl)f~".tk(S~'Sk)dS'+ ~ '  ~ Q~(st)ft",'k(Sl'Sk)dSt 
/ = 1  - a l  / = 1  - a z  

- (  ~2(9 ~ cos(n,x)+( t32q~'] COS(n,y)=pk(Sk), (--a k <s k <ak), k =  1,2, . . . ,L 
\ dx~y J===,, \ t3x 2 .,Is=s," 

L at L at 

ak(Sk) -}- ~~, ~ P~(s,)f~t,tk(S~, Sk) ds, + ~ ,  ~ O,(st)f, jk(S,, Sk) ds~ 
1 = 1  - a z  l = 1  - a t  

--(- t32q~ ~ cos(n,Y)+(~qb') COS(n,x)=qk(Sk), (--ak <Sk <ak), k= 1,2 . . . .  ,L, (10) 
\ ~xay /= ==,, \ ~y2 )===,~ 

where the symbol E, means that l = k has been excluded in the summation. The functions f can be 
found in Eqs. (6) and (7). Pk(Sk) and qk(Sk) are the applied normal and tangential forces on the kth 



338 

1 

Computational Mechanics 10 (1992) 

Fig. 2. Loading conditions of a rnultiple crack plate 

a l  

I 
- - a t  

a l  

I Qt(st)f,.,t (st, sk) as, = 
- - a  z 

where 

Su = at cos (2i - 1)Tr 1)n, - - ,  Slm= a 1 COS ( 2 m -  
2M 2M 

crack. Pk(Sk), Qk(Sk) and Pl(st), Qt(st) are the forces which are to be determined on the crack surfaces. 
The cos (n, x) and cos (n, y) are the direction cosines of the point  on the crack. 

If a point  on the boundary,  a formula similar to Eq. (10) can be written, except that  Pk(sk) and 
Qk(Sk) are taken to be zero, the summat ion  terms should be from 1 to L and that  there should be 
no exclusion. 

The integrals in Eq. (10) can be written in Chebyshev integral form. For  example, 
M 

Pt(st)f,,,zk(St, Sk) dst = ~ Pl(Slm)fnn,lk(Slm Ski)(.O 
,,=1 (11) 

M 

i =  1,2 . . . . .  M, 
m=l  

real 1)zc = sin (2m -- (12) 
M 2M 

Therefore, the unknowns  are Pt(st,,,), Qt(st,,,) and Ci,. If the crack number  is L, the summat ion  
number  of the function ~b is I, then 2 • L + 16 • I unknowns  are to be determined. For  the crack 
surfaces, the number  of points taken is 2 x M, the positions are determined by Eq. (12). On the 
boundary,  the number  of points can be chosen arbitrarily but  the number  must  be larger than 
8 • I. The points  are arranged with equal intervals on every boundary  for simplicity, and finer 
meshes are used for higher accuracy. The least square method  is then used in the calculation. 

After solving for Pt(stm), Qt(slm)(l = 1, 2, . . .  ,L) and Ci, (i = 1, 2, . . .  ,I, n = 1, 2 , . . . ,  16), the stress 
functions ~(z), 12(z) and ~ (x, y) can be determined. Note  that  only the functions Pt(Slm), Qt(stm) 
represent the stress singularity at the crack tips, and the SIF can be calculated by the formula: 

K I - iK u = lim 2x/2~(z ~ a) q~(z). 

The SIF at the crack tips of t h e / t h  crack are 

K + - 1 ~' , , ,  , ~ t + s t  K+ _ 1 i' " ~ + s t  = 7 - -  J r l l s d . /  -- dsl, 11.1 - Qz(st) - dsl, 
1,1 x~ nat -al ~[ al -T- st x ~ t  - ' T sl 

(13) 

where the upper  and the lower signs refer to the right and left crack tips respectively. 
In the calculation of Eq. (13), the following numerical integral formulae is used (Erdogan 1978): 

~ f ( x )  d x ~ r C  ~-, f ( a t c o s ( 2 m _ - l ) r c ~ .  (14) 
~ ~ x 2 M ~"~x 2M J 
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4 Numerieal examples 

Three examples are presented to show the validity of the present method. The first one is for the 
crucifix crack in a plate with bi-axial loading. The second one is for two perpendicular cracks 
which do not cross. The third one is for the star-shaped crack in a finite plate. 

4.1 Crucifix crack 

As shown in Fig. 3, the problem of a crucifix crack in the form of a cross in a finite plate with 
bi-axial loading is analyzed. The half length and width of the plate are: h = w -- 0.5, the half crack 
length a is varied from 0.05 to 0.40. The number of summation terms I for function ~b is taken as 
4, the number of the discrete points of the integral equation M is 16, the number of collocation 
points on the entire boundary N is 60. The computed results are shown in Table 1. Because of 
symmetry, the SIF values for the four crack tips are the same, and all the K u are equal to zero. 
Therefore, only the results of Kz for one tip are presented. 

For the crucifix crack in an infinite plate, the result obtained by an analytical method (Sneddon 
1973) is given as: 

K J K o  = 0.8636, K r J K  o = O, 

where K0 = ax//-~. 
When a/w is rather small, the computed results of a finite plate should approach those of the 

infinite case. This has been verified in Table 1 and shown graphically in Fig. 4. For the case 
a/w = 0.1, the computed values by the present method are: 

KI /K  o = 0.8641, K H / K  o = O. 

From the table and figure it can also be seen that the SIF values increase with increasing values 
of a/w. Therefore, if the crack length becomes large comparing with the plate dimension, it would 
be unsafe to use the SIF values from infinite plate. 

In order to analyze the convergence of the present method, analyses have been carried out for 
various parameters involving the number of crack integral points, the number of summation terms 
of the function ~b in Eq. (9), and the number of collocation points on the boundary. For convenience, 
only one of the parameters is examined at a time. The related dimensions are kept the same in the 
calculation: w = h = 0.5, a/w = 0.1. The computed results are presented graphically in Figs. 5 to 7. 
It can be seen that the SIF values converge satisfactorily although ~. small number of terms and 
collocation points are used. 
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l a 1./,- 

y~ 1.3 

r I 
~ - ~  "-a 1 a'-=~" - ~  ~ ~ 1.1 

1.0 

_ j ~ 0.9 

0.8 . . . . . . .  
i - - 2 w --- 0 0 .2  0./, 0.6 018 

ct/w ) 

3 4 

Figs. 3 and 4. 3 Crucifix crack in a finite plate. 4 SIF for the crucifix crack 
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Table 1. Calculated results for the crucifix crack 

Computational Mechanics 10 (1992) 

t /  
- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
w 

KI 
- -  0.8641 0.8800 0.9092 0.9537 1.0223 1.1300 1.2866 1.4857 
Ko 

KI/Ko J 

Kl /Kol  1.0 

0.8 / 0.8 - 

0.6 0.6 

0.4 0.4 

0.2 0.2 

o , , , , - ~  o . . . . . . . . . . . . .  
2 3 ~ s ~  o 4 8 ~2 ~6 2o 2 ~ M  

5 6 

Figs. S and 6. K~/Ko as a function 5 of summation terms of ~b; 6 of crack integral points 
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'0 . . . .  20 & 60 80 100 120 140 Fig. 7. Kt/Ko as a function of boundary collocation points 

4.2 Two perpendicular cracks 

As shown in Fig. 8, two perpendicular cracks in a plate is analyzed. One of cracks is on the x-axis, 
with the crack center coincides with the origin, and the other is on the y axis with an eccentric 
distance to the origin. This example is chosen to represent an asymmetric case. 

The plate dimensions and the parameters are the same as in the above example. The crack 
length 2a is varied from 0.1 to 0.40, and the eccentric distance e = 1.2a. The computed results are 
summarized in Table 2 and Fig. 9. For the case of small crack length, the present results agree 
very well with those of the infinite plate (Chen 1984). Because of the symmetry of the plate about 
the y axis, the SIF for crack tips A and B have the same values, and K H for the crack tips C and 
D are equal to zero. As long as the crack length increases, the K t values at the crack tips A, B and 
the absolute values at C become larger. For the crack tip D, it decreases slightly at first and then 
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Figs. 8 and 9. 8 Two perpendicular cracks in a finite plate. 9 SIF for the two perpendicular cracks 

Table 2. Calculated results for two perpendicular cracks 

Crack a 
- 0.05 0,10 0,15 0.20 0.25 0.30 

tip w 
0.35 0.40 

K! 
- -  1.0085 1.0193 1.0374 1,0626 1.0947 1.1337 1,1801 1.2338 
Ko 

glt -0.0118 -0.0124 -0.0134 -0.0146 -0.0159 -0.0169 -0.0171 -0.0175 
Ko 

K1 
- -  1.0085 1.0193 1.0374 1.0626 1.0947 1.1337 1.1801 1.2338 
Ko 

Kit 
0.0118 0.0124 0.0134 0.0146 0.0159 0.0169 0.0171 0.0175 

Ko 

K! 
- -  --0.2305 --0.2369 --0,2472 --0.2608 
Ko 

Kn 0.0 
Ko 

--0.2766 --0.2920 --0.3030 --0.3091 

D 

K! 
- -  0.0544 0.0520 0.0497 0.0507 
Ko 

Kn 0.0 
Ko 

0.0605 0.0886 0.1532 0.2773 
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Figs. 10 and 11. 10 Star-shaped cracks in a finite plate. 11 SIF for the star-shaped crack 
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increases. For K u values at A and B, the absolute values increase as long as the crack length 
increases. 

4.3 Star-shaped crack in a finite plate 

As shown in Fig. 10, the star-shaped crack crossing at a point consists of three equal length cracks. 
Assuming that a pressure p act on the crack surfaces, the SIF values for an infinite plate may be 
calculated using the formula (Finn Ouchterlong 1976): 

K J K o  = 0.7454, K u / K  o = O, 

where Ko = p V/~ .  

Table 3. Calculated results for star-shaped crack 

Crack a 

tip w 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

B 

KI 0.74078 0 . 7 5 6 9 9  0 . 7 8 4 5 9  0.82551 
Ko 

KII 
- -  0.0 
Ko 

0.88515 0 . 9 7 5 8 1  1.11419 

D 

KI 
- -  0.74083 0 . 7 5 7 7 9  0 . 7 8 8 4 0  0 , 8 3 6 4 9  1 . 9 0 8 7 6  1 . 0 1 8 1 7  1.19360 
Ko 

Ku 0.00003 0 . 0 0 0 4 5  0 . 0 0 2 2 4  0 . 0 0 7 0 0  0 . 0 1 6 8 4  0 . 0 3 3 8 1  0.05292 
Ko 

F 
KI 0.74083 0 . 7 5 7 7 9  0 . 7 8 8 4 0  0 . 8 3 6 4 9  0 . 9 0 8 7 6  1 . 0 1 8 1 7  1.19360 
Ko 

K11 -0.00003 -0.00045 -0.00224 -0.00700 -0.01684 -0.03381 -0.05292 
Ko 
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This problem is analyzed assuming a/w = 0.1, and the other calculation parameters are: I = 4, 
M = 30, N = 80. The computed SIF values are: 

Kf fK  o = 0.7408, K I J K  o = O, 

It can be seen that the proposed method gives good accuracy. 
For bi-axial loading as shown in Fig. 10, the problem is analyzed with the crack lengths a/w 

varying from 0.1 to 0.7. The results are summarized in Table 3 and plotted graphically in Fig. 11. 
Because of symmetry, the SIF values for the opposite sides of each crack are identical. It can be 
seen that K I values are slightly higher for the two inclined cracks CD and EF. The K I values 
increases significantly with increasing crack length. The K H values for the horizontal crack AB 
are obviously equal to zero while the two inclined cracks CD and EF have opposite values. 

5 Conclusions 

In this paper two kinds of the stress functions are combined and used for the multiple crack 
problems in a finite plate. By using Fredholm integral equation method and boundary collocation 
method, the unknown coefficients of the functions can be determined. Then the SIF at every crack 
tip can be calculated by the formulae. 

Some examples have been used to show the advantages of the method: 
(1) The method provides a general treatment to different multiple crack problems, including 

crack number, crack position, boundary shape and loading conditions. 
(2) The calculation procedure is relatively simple, and involves little data preparation to define 

the plane dimensions and calculation parameters. It can be programmed and executed on a PC 
computer very efficiently. 

(3) Satisfactory accuracy and convergence are achieved with small number of collocation 
points and summation terms. 
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