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Abstract. We focus on stable and attractive states in a 
network having two-state neuron-like elements. We 
calculate the connection matrix which guarantees the 
stability and the strongest attractivity of p memorized 
patterns. We present an analytical evaluation of the 
patterns' attractivity. These results are illustrated by 
some computer simulations. 

1 Introduction 

The ability to recall memorized patterns is a very 
important human feature. Many models of neural 
networks include it, and the capacity of memory is 
usually spatially distributed throughout the network. 
It is exactly contained in the "efficiencies" of synaptic 
junctions. 

The study of Distributed Associative Memory 
Networks was initiated in the fifties. We refer e.g. to 
Rosenblatt (1958); Caianiello (1961); Kohonen (1970, 
1972, 1976); Nakano (1972); Kohonen et al. (1974, 
1977) etc . . . . .  

In these models, the state of each neuron is 
represented by output spike frequencies. The memoriz- 
ation of patterns relies upon changes in the synaptic 
efficiencies according to the presentation of patterns. 
The further presentation of a perturbed pattern (or a 
part of it) leads to its recollection. This is the property 
of selective recall. 

This theory is largely developed in Kohonen (1984). 
This kind of models can also be used for construct- 

ing some associative memory which need not be a 
realistic model of neural network. They can be con- 
ceived for memorization and retrieval of patterns in 
another context, e.g. error corrections in trans- 
missions. In this case, the like-neuron automata may 
have continuous- or discrete-valued states. They must 
just work as required. The simplest networks with two- 
state threshold "neurons" were studied by many 

authors: Little (1974), Hopfield (1982), Peretto (1984), 
Amit et al. (1985a, b), Weichbuch and Fogelman- 
Souli6 (1985), Personnaz et al. (1985), etc . . . . .  

The use of conceptual tools of statistical mechanics, 
especially spin glasses models, has allowed 'a good 
advance in understanding their behavior, and led to 
asymptotic results, when the number of units grows to 
infinity (Amit et al. 1985a, b). 

In all these papers, the networks are used for 
recognizing, i.e. retrieving a given set of configurations 
referred to as patterns. However these patterns, 
whether deterministically or stochastically chosen, are 
not always attractors, and not even stable states, in the 
network defined by the classical connections suggested 
by Hebb (1949) and advocated by Cooper et al. (1978). 

On the other hand, these connections are sym- 
metric, and this is an unpleasant restriction, even if it 
allows to define one Hamiltonian whose local minima 
contain the patterns (Hopfield 1982; Peretto and Niez 
1985). 

All contributions have studied either a determin- 
istic algorithm, with temperature T = 0 (Hopfield 1982; 
Personnaz et al. 1985; Weichbuch and Fogelman- 
Souli61985) or a stochastic one with temperature T > 0 
(Amit et al. 1985a, b; Peretto 1984). 

In this paper we shall study the deterministic 
algorithm. We consider a network consisting of N two- 
state units. We define a configuration or network state 
as an element S=(S1, $2, ...,SN) of the hypercube 
{ -1 ,  +1} N, with Si= +1 (or - 1 )  if the i-th unit is 
active (or inactive). The configuration at time t is  
denoted by S ~. 

The collective behavior of such a network is 
entirely specified by the strengths of the connections 
Co, between the sourcej and the receiver i, and by the 
threshold values. The N • N matrix C = (C 0 acts as a 
decoding machine and will be called connection matrix. 

Each unit receives inputs from all the others 
weighted by the strengths of connections. Like in 
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neural networks, the sum of the weighted inputs 
represents the "membrane potential of the neuron": it 
becomes (or remains) active if this potential is higher 
than the threshold, and it becomes (or remains) 
inactive if this potential is smaller than the threshold. 

There are p learned, previously known configur- 
ations referred to as the patterns, denoted by S 1 . . . . .  S p. 
We wish, starting from a configuration S, which 
contains some errors, to retrieve one of the S", 
m =  1, . . . ,p, which is to be the nearest one. 

Thus it is necessary to determine how to choose the 
(C 0 matrix in order to get the patterns as attractive as 
possible. Moreover we have to use an iteration mode, 
either the serial one, or the parallel one. 

Dynamic Description 

At time O, the initial configuration in S ~ issued from 
one of the patterns, but containing some errors 
(transmission errors, miscellaneous disturbances). 

We call S t= (S~) the configuration at time t. 
At time t, the unit i receives the signal 

Ec s +l it ~ 2 ) the variable - ~ - -  is equal to + 1 if the 
\ 

uni t j  is active, 0 if not. If unit i receives a signal greater 
(resp. smaller) than the threshold, then it becomes 
active (resp. inactive). We shall choose, as usual, the 
threshold O~=�89 for this choice implies that: 

J 

Then the two types of algorithm are: 

a) Sequential Iteration Algorithm. At time t, pick at 
random a unit i �9 {1,..., N}, with uniform distribution, 
or in any case, in such a way that all the units can be 
selected. Then 

if EGjS}>0, s~+1=+1 
J 

if ZCijS}<O, S~ +a= - 1  
1 

if E C~jS} = O, S~+1 = ~ .  
J 

At each step, only one unit is checked.  
b) Parallel Iteration Algorithm. At time t, calculate all 
the sums ~ C i ~  and set S~+1= +1, - 1 ,  or S~ as 

1 
ZC~jS}>O, <0,  or =0.  
i 

The system evolves by lining up the state S, with the 
local field defined as l Z  Cir. 

J 
For  the two kinds of dynamics, two notions are 

interesting: 

The stability. A configuration S O is stable iffS t=  S O for 
every t. 

The attractivity. A configuration S o is a k-attractor 
(for 1 < k < N) iff starting from a configuration S which 
presents k errors with respect to S ~ the dynamic leads 
to S ~ 

Obviously the stability and the attractivity of a 
configuration S are defined for each kind of iteration 
mode and for each given matrix. 

In this paper we attempt to solve the following 
problem: Given patterns $1,.. . ,  S p, build a matrix C (i.e. 
an algorithm) in such a way that the S x . . . .  , S p are stable 
and k-attractors with k as great as possible. 

The paper is organized as follows: 
In Sect. 2, we give exact definitions of stability, 

attractivity, domain of attraction of a configuration. 
Section 3 is devoted to the study of orthogonal 

patterns. 
In Sect. 4, following Personnaz et al. (1985), we give 

the general formulation of the connection matrix C 
which provides stability to patterns S 1 . . . . .  S p. Then in 
Sect. 5, we get the mathematical expression of patterns 
attractivity for a given matrix C. 

Section 6 describes a construction of the matrix C, 
that maximizes all the patterns attractivity. 

In Sect. 7, we come back to the case where all 
patterns are pairwise orthogonal, and stress the inter- 
est of that situation. 

In Sect. 8, we solve the settled problem, by con- 
sidering the situation where all the patterns have the 
same degree of attractivity. 

In Sect. 9, we introduce the usual notion of con- 
figuration energy, which is only defined when the 
matrix C is symmetric, and we give the relations 
between energy minima and attractors. 

Section 10 is devoted to a discussion. 
In Appendix 1, some properties of the Hamming 

distance are recalled, and in Appendices 2 and 3, 
numerical examples illustrate our results and show 
that it is impossible to get a better estimate of the 
attractivity than the given one. 

2 Stability-Attractivity 

Let C be a connection matrix, and S = (Si) a configur- 
ation. We consider each of the two kinds of algorithms 
(sequential or parallel ones). 

We denote by 6(S, S') the Hamming distance of two 
configurations S and S', i.e. the number of components 
where S and S' differ, and by d(S, S~) the Euclidian 
distance of S and S', viewed as elements of ]R N. 

One has d ( S , S ' ) = 2 ~  (see Appendix I for 
properties of the Hamming distance). 



Definition 2.1. A configuration S is stable (with respect 
to C) iffstarting from S, the network state remains S, i.e. 
iff 

>__o 

The set of stable configurations is denoted by E 0. 

Definition 2.2. Let k be an integer. A configuration S is 
a k-attractor (with respect to C) iff starting from S' with 
6(S,S')=k, the network state evolves in one step 
towards S" with 6(S, S")< k - 1  or leaves S' invariant 
(only in the sequential algorithm). This is equivalent to 
the condition: 

Vi, Vjl, . . . , jk (with Jl . . . . .  Jk all different) 

Si ~ Ci jS j -  2 2 Cij,Sjz > O. (2.2) 
\ j  t=l / 

The set of k-attractors is denoted by E k. 

Proof of  the Above Equivalence. Let S=(S,) be a 
configuration which is a k-attractor and S' such that 
6(S, S') = k. Thus S' = (S'i) with 

S~ = -= Si for i ~ {Jl . . . . .  Jk} 

S~= Si otherwise. 

We start from S'. For i integer picked at random 
(sequential algorithm) or for every i (parallel al- 
gorithm) we compute 

k 

= 2. cijs  = 2 c , j s j -  2 2 c,j,sj,. 
J J / = 1  

If 0q > 0, (resp. ai < 0) we set the component i to be + 1 
(resp. - 1). 

The condition afli > 0 means that we line up the 
spin i with the corresponding value of S, and therefore 
at the next time for the sequential algorithm, the new 
configuration will be S" with 6(S ,S" )=k-1  if 
ie  {jl . . . .  ,Jk} or S' if not. For the parallel algorithm the 
new configuration will be S. [] 

Remarks2.3. 1) S and - S  satisfy the same 
inequalities. 

2) S is stable (resp. k-attractor) for the sequential 
algorithm iffit is for the parallel algorithm. Indeed, for 
both algorithms, the inequalities to check for every 
integer i picked at random are the same. This will 
appear as a consequence of the following proposition 
which ensures that the Definitions 2.1 and 2.2 are 
coherent. 

N 
Proposition 2.4. For k < 2 '  one has 

E k C E k _ l  C . . .  C EI CEo. 

Proof. Adding up the inequalities defining Ek, over all 
integers Jl,--. ,A, we obtain that E k C Eo. Then adding 

Fig. 1. Hamming radius 
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up over any subset of (k -1)  integers taken among 
{Jl . . . .  ,Jk}, we get EkCEk-1, under the condition that 
N > 2k. This last condition is obvious if we note that 
6 ( S , - S ) = N ,  and that S e E  k iff - S e E k :  indeed if 
2k>N,  there would exist a state S' with 6(S', S)=k 
=6(S ' , -S) ,  which is impossible since the spheres 
B~(S, k), B~(-  S, k) are disjoined when S e E  k [sphere 
B~(S, k) is the set of configurations whose distance of S 
is less than k]. 

Moreover, note that the inequalities defining Ek are 

incompatible for k=> 2"  [] 

Let us now to define the domain of attraction of a 
configuration. 

Definition 2.5. The domain of attraction (DA)  of a 
configuration S is the (maybe empty) set of configur- 
ations S' such that, starting from S', the algorithm leads 
to S. 

However, it is convenient to consider only circular 
domains, i.e. spheres for the Hamming distance. 

Definition 2.6. The Hamming radius of the DA of a 
configuration S is the Hamming radius of the greatest 
sphere included in it. 

Consequently, if S ~ Ek, the radius of its domain of 
attraction is >k. 

Note that a Hamming sphere with center S and 
radius k, B~(S, k), is the intersection of the Euclidian 
sphere with center S and radius 2V~, Bd(S, 2]/~), and 
the hypercube { -  1, + 1} N. 

Remark 2.7. The maximal size of the DA of the patterns 
is necessarily bounded by the mutual Hamming dis- 
tances of the patterns (and their opposite), since S ~ Ek 
and S ' s E  k, require k+k'<6(S,S')  and k+k '  
< - s ' )  = N -  S ' ) .  

3 Case of Orthogonal Patterns 

Two configurations S and S' are orthogonal iff their 
Euclidian product (S, S') = ~, SiS'i = O. (Thus ortho- 

i 

gonality is defmed as usual in the Euclidian space ~-J.) 
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The case of pairwise orthogonal patterns is well 
known, and easy to study (see Hopfield 1982; Peretto 
1984; Personnaz et al. 1985) especially because of the 
following properties: 

First, all the mutual Hamming distances between 
N 

the patterns (and their opposite) are equal to ~-, so the 
patterns are well separated. 

Furthermore, this case corresponds to the spin 
glasses one, in which case values S~" are picked at 
random, independently, with �89 = P(ST' = + 1) 
=]P(S~'= - 1 )  for all i=1  . . . .  ,N  and m = l  . . . .  ,p. The 
mean value of the Euclidian product = ~S~', S~" is 

i 
then 0, (for m + m') and the patterns are on average 
orthogonal, because the mean values of the number of 
components equal to + 1 or to - 1  are equal. 

The usual connections (Hebbian connections) are 
then 

C~j=I  ~= S~Sr. (3.1) 

They are suggested by the principle of Hebb. In 
neural networks, following Hebb (1949), the synaptic 
efficacies are modified according to the neural activity, 
the strength of a synapse being proportional to the 
correlated activities of the neurons it connects. Here 
each coincidence of values for the patterns S" in units i 
and j increases Cij , and conversely. 

With the above definition of matrix (Cij), in the 
orthogonal case, numerical simulations show strong 
attractivity of patterns, thus good efficiency of inform- 
ation retrieval. In fact, we prove that: 

Proposition 3.2. I f  the patterns S 1 .... , S p are pairwise 
orthogonal, these configurations are k-attractors at least 

uptok=[~-~l(integerpartof~--~), fortheHebbian 

connection matrix. 

Proof. According to (2.2) and (3.1), for m= 1,...,p, S" 
is a k-attractor for C iff 

L k 

for every i = 1, ..., N, and distinct j l  . . . .  ,Jk in {1, ..., N}. 
Or iff 

The patterns S 1 . . . .  ,S t' being pairwise orthogonal, 
N 

F, S}S~ = 0 if l ~ m, and = N if l = m. So the condition 
j = l  

becomes 

I I m " N '  2 ~, SflioSjoS i > O. 
0 = 1  / = 1  

N o w  

2oE = ' , s 7 SiSjoS~jo 
i 1=1  

k p 

<2 E • ISll tS}ol tS'j'ol lS~l < 2kp,  
0 = 1  / = 1  

s i n c e  IS I = IS}ol = ISi' l = ISml = 1. T h e  c o n d i t i o n  is  sa t i s -  
f i ed  if N - 2 k p > 0 .  

Since 2[~--~[ < ~ - -  Hamming distance of two 
I . _ ' - F /  - -  

orthogonal pa t te rns-  as soon as p > 2, we see that each 

p a t t e r n i s k - a t t r a c t o r a t l e a s t f o r k = [ ~ p l .  [] 

4 Searching the Matrix C 

We denote by A' the transposed of the matrix A, and 
we identify a vector o f ~  N with the column matrix of its 
components in the canonical basis. We denote by ( , )  
the usual Euclidian product, and I1" II the associated 
norm. For a linear subspace E, we denote by E -L the 
subspace of all vectors which are orthogonal to every 
vector in E. 

We may: express the stability of the patterns 
$1,..., S p (see Definition 2.1) by 

~. CijSmS7 = (Ci, O~') > 0 (4.1) 
J 

for every i = 1, ..., N and every m = 1 . . . .  , p, where Ci is 
the i-th row of C, viewed as a vector of R N, and 
DT=S.'I'S". The vector DT' is i S " ,  so that its i-th 
component is equal to + 1. 

Thus, we want to determine N vectors C1 . . . . .  C N of 
R N, such that, for all i, the p vectors D m are on the same 
side of hyperplane Hi, defined as the orthogonal space 
of Ci. 

Such an hyperplane is not unique: more important 
is the volume left around each D m, more performing 
will be the choice of Ci (and of Hi). 

2 
[3 i 

[3 i 

Ci 

rn 
Di 

Fig. 2. Choice of hyperplane Hi 
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We see immediately that for C i = - ~ , l D  m p ~ = _  

natural corresponds to choice which 

1 p 
Cij= e,,--/'-Z-lsms'j" i.e. to Hebbian connections (3.1), 

apart from constant ~ ) ,  the S" may not be stable, as 

can be observed by numerical simulations. (See also 
Personnaz et al. 1985.) 

However this choice is often convenient, especially 
when the S m are chosen at random, for then they are 
almost orthogonal (see Sect. 3). 

In Personnaz et al. (1985), one can find the general 
expression for the matrix C ensuring stability of 
patterns S ~ . . . . .  S p, under the condition that they are 
linearly independent. 

Their formula is 

C = (A~S ~ . . . .  , ApS p) ( S ' S ) -  ~ S ' +  C,  (4.2) 

where Z is the (N x p) matrix with columns S ~ . . . . .  S p, 
Aa . . . .  , Ap are arbitrary positive diagonal N-matrices 
and C is a (N x N)-matrix such that C2 = 0. Indeed, the 
system to be solved is (Ci, s m s m ) > o  ( i = I , . . . , N ;  
rn = 1, ...,p) or equivalently: 

(Ci, Sm)=amsmi for arbitraries am>0.  (4.3) 

A more condensed form is: CSm=Am Sin, for 
m = 1, . . . ,  p, where Am is an arbitrary positive diagonal 
N-matrix. 

The general expression of C i is 

P P C~ = ((a]Sr ..., ai Si) (S'S) -~ 27'))'+ Ci, (4.4) 

where a~, ..., al' are arbitrary positive scalars and Ci is 
orthogonal to Sa, . . . ,  S p. We notice that C i is the sum of 
a linear combination ofS~, . . . ,  S p, and of an orthogonal 
vector, and that it is defined up to a positive multiplica- 
tive constant. 

We must determine how to choose the N x p 
constants a m, and the vectors Ci to optimize the 
attractivity of Sa, . . . ,  S p. So, we shall study the size of 
the domain of attraction of the S", as a function of 
arbitrary coefficients of matrix C. 
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Let us denote by Tjl ..... Jk the sign modifier in 
position Jl , . . . ,Jk of a configuration, i.e. the mapping 
defined by 

T a ..... j~(S)=S* 

with 

S * = S  i for iq~{jD...,jk} 

S * = - - S i  for i ~ { j l , . . . , j k } .  

Thus Sins Ek (S m is a k-attractor) iff 

<Ci, Tj ...... j~(Om)> > 0 (5.1) 

for every i e {1, . . . ,  N}  and for every subset {j~ . . . .  , j ,} of 
distinct integers of {1 ... N}. [Notations of (4.1) and 
Definition 2.2.] 

We may interpret these inequalities in a geometric 
way: we denote by am', (resp. b) the endpoints of the 
vectors Dm [resp. Tj, ..... j~(om)]. 

The condition (5.1) means that S m is a k-attractor iff 
for all i, the Hamming sphere with center a m and radius 
k is entirely on the same side of Hi = C{ (orthogonal 
space of vector Ci) see Fig. 3. It means that 

d(a.~, b)=2]//b(D m, Tjl ..... j~(Dm)) (by Appendix 1) 

= 2 ~  

< d(am, Hi) = 

More precisely, 

(Ci, Dm) 

IIGll 

I( Ci, Tjl . . . . .  j~(Dm) ) - ( C,, D.m)l 

= l(Ci, O h ) -  (Q ,  Oam)l 
= I(Q, Oh- Oam)l 

k 

=2 Y IGj, l<=2kmaxICij[, 
l : 1  J 

(because only k components differ). So (5.1) holds true 
as soon as 

k< (G,  DT) 
2maxICijl 

y 

5 Size of the Domains of Attractivity (DA) 
of $1, . . . ,  S p 

If we denote by k m the radius of the DA of S m 
(Definition 2.6), we have km+km,<inf(5(sm, sm'), 
N - - 6 ( S  m, sm')) for any pair m, m', with m4:m'  (see 
Remark 2.7). 

Furthermore km is limited by the "free room" 
around S m, i.e. the subset of N u which contains S m and 
none of the other patterns. 

for every i. 

A Ci 

b 
d(ai , H i ) ~  

Fig. 3. Hamming sphere B,~(a~, k) 
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Hence 

Proposition 5.2. For a connection matrix C=(C~j), 
whose rows are C1 . . . .  , Cn, each pattern S", is k-attractor 
at least up to any k such that 

k <  �89 (Ci' D~n) - ?" , ,  (5.2) 
i maxlClj[ 

J 

where D.~ = S~S ~. 

So if k and k' are two integers satisfying (5.2), w.r.t. 
S", (for k) and S"," (for k'), S", e Ek, S~" e Ek,, and k + k' 
< inf(6(S", S"'), N -  6(S",, S",')). 

Now we proceed to simplify the expression ofT,, [in 
(5.2)] when C is given by (4.2), (ensunng patterns 
stability). 

The choice of the Ci's, in (4.4) has to ensure that 
d(a'r, Hi) or ?m are as big as possible. 

First, we see that in (4.4) ~i = 0 is the best choice. 
Indeed if C i = C i +  C~ with Ci in the subspace 
spanned by {$1, ..., S p} and ~ in ~ •  we have 

<Ci, Om>=<~i, OT> 

and 

IlCill2= 11r II~ill 2, so d ( a ' ~ , H i ) = - -  

will be greater for ~ = O. 
Using (4.3), 

( Ci, DT) = S'f ( Ci, S",) = S.7(a7S7) = aT. 

As to the vector Ci, we write, from (4.4), 

C~ = S(~'2:)- t 

\ ~ s U  

(Ci, DT) 

tlcill 

(5.3) 

(5.4) 

and 

IlCill2=C',C,=(ags2 . . . . .  ~fsD(z'z)  - t  �9 

\ ~f s U  

=(~r . . . . .  ~f) diag(Sr Sf)(S'S)- t 

xdiag(S~. . .SD " 

[where diag(S~ ... SI') is the matrix whose diagonal 
elements are S~,..., Sf and others are 0] 

= c~'iWie i (obvious notations). 

We remark that if we denote by Di=(D~,. . . ,Df) 
= (S~St , . . . ,  SfSP), i.e. the matrix of the patterns nor- 

malized to + 1 in the i-th component, we have 

Wi = (D,iDi)- l . 

So 

dE(a?,H,) = (e~)2 (5.5) 

and 

?", = �89 aT' 
i maxICo[ 

J 

(5.6) 

The inequality (5.2) does not give exact values of the 
sizes kt , . . . ,  kp of the domains of attraction (DA) of 
St , . . . ,  S p, because it is only a sufficient condition�9 

However, the pattern S m is attractive at least up to 
?,,, for r e = l ,  .. . ,p. 

Using geometric notations let us consider patterns 
S t , S a . Let us assume that 6(S t, S 2) is small with respect 
to N. Since for every i such that S~ = S~, the distance 
d(a.~, H~) is "great", whereas the sizes of the DA of S t 
and S z are small, [since less than 6(S t, Sz)] this seems 
contradiction�9 But we must notice that on the contrary, 
for i such that t 2 Si = - S i ,  we have D ~ = - - S  t or 
D~ = - S  2 and d(a.~, Hi) small, which leads to a small 
value of ?,,-for m =  1,2. 

Now, Proposition 5.2 can be completed by: 

Proposition 5.7. For a connection matrix C=(C,~), 
whose rows C t . . . . .  C N are given by (4.4) with C, = O, each 
pattern S", is attractor at least up to Hamming distance 

?m= �89 am 
i max[C~jl 

J 

(5.7) 

6 Optimal Matrix 

Let us start from an initial configuration S O , obtained 
by distorting one of the patterns, e.g. S '~~ There will 
not be any identification error if S O belongs to the 
domain of attraction (DA) of S ",~ 

Hence the next definition: 

Definition 6.1. A matrix C for which the patterns 
S t . . . .  , S p are attractors, is optimal if it maximizes the 
minimum radius (Definition 2.6) of the DAs of the 
patterns�9 

Since we have not the exact value of these radii, we 
try to determine a matrix C, called semi-optimal, and 
which maximizes the minimum distance d(a.'f, Hi) 
(Fig. 3). 

Thus we look for positive constants a~ n, m = 1, ..., p, 
i=  1 . . . .  , N, which maximize for each i, infdE(a'~, H~) 



~2 

Q~P2 p~ Q2 / -  
Cese 1 

P2 is solution 

(I21 Q1 (~2~ Q /  Q2 

Case 2 Case 3 The point ( ct~= ~) P~ is solution is sotution Fig. 4. Case p = 2 
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. ~ (a.7') 2 = l m ~  [by (5.5)]. Let us sketch a construction of 
m a i W i a  i 

the a~ for fixed i. 
a) We look for a vector ai=(a~ . . . . .  a~') in (E~+) v, 

with a'iWiai = 1. 
b) We cut out (N+) p into quadrants Qj defined by 

a i=  min(am), for j =  1 . . . .  ,p. 

In each quadrant Q j, we want to maximize (ai) z, i.e. 
a1. For  instance, if p = 2, we consider the ellipse whose 
equation is a'iW~ai= 1, 

c) We compute the p points Pj=(a~ .... ,af), 

j =  1,. . . ,p, solutions of a'iW~ai=O and 0a'J" 
Oa7' 

_ (Wiai)m = 0  for m=t=j, and keep the points Pj 
(w,a,)j 

belonging to the corresponding quadrant Qj. We have 

max ( m i n ~ )  = max {(a,)2/pj = (a~,..., a[',s Qj} 
�9 \ i i i /  

under the condition that the above set is not empty. 
d) If for all j, Pj ~ Qj (case 3), we restrict ourselves 

in the quadrants of (~+)p-1,  (~+)p-2,  etc . . . .  defined 
by inequalities such as: 

ai = a{ = min (a~ n) 
j _  j ' _  .- a i - a  i -a~ =rain(aT')... and so on. 

If none of the Pjs successively found belongs to the 
convenient domain, we get the solution 
a~ = a~ = . . .  = al' (see Sect. 8). 

We can sum up the results as follows: 

Proposition 6.2. By iterating this approach for every 
i = 1 ....  , N, we construct a matrix semi-optimal C, which 
leaves as much volume as possible, around each point am, 
for every i, with 

c ,  = z ( z ' z ) -  i (a~ s~ ... also) '  (6.2) 

for Z= (Sl,..., S p) and (a~, ..., a/p) positive yielding the 
am) 2 

maximum of m i n ~ ,  with Wi=(D'iDi) -1 and 
m a i W i a  i 

D , = ( S ~ S '  . . . .  , S ~ S ' ) .  

7 Case of Orthogonal Patterns 

In this section we assume that the patterns S1,..., S p 
are pairwise orthogonal. 

In this case, Z'Z=Nldp,  and for every i, D'~D~ 
= N l d p ,  since the vectors DT are also pairwise 
orthogonal. 

So the ellipses of equations a~W~ai= 1 are spheres 
and the research of the semi-optimal a~", leads to the 
solution a~ . . . . .  a~, (see the two-dimensioned 
example, case 3, in Sect. 6). 

Since the a~" are defined (for each i) up to a positive 
multiplicative constant, we may choose a]' = 1 for every 
i and every m. 

So from (5.4), 

C i = Z ( l l d , ) ( S ~  ... S~)' 
1 P 

and Cu=  ~mZ_IS~iS~. 

(7.1) 

In other words, in the orthogonal case, the semi- 
optimal solution corresponds to the equality of the a m, 
and to the classical Hebbian connections. [In that case 
C is the projection matrix introduced by Kohonen 
(1970).] 

Thus, we may compute ?m and infd2(a~, Hi), using 
(5.5) and (5.6) 

dZ(aT,,Hi) = (aT') 2 _ N (7.2) 
a'iW~ai p '  

and 

a m 
_ -Vm=ffin f ..~ N .  1 

, m.axlCul - ~ - l ~  p . 
j max. Z =  SrS~' 

But max ~$7'S~' =p is obtained for j=i,  since all 
J m 

terms of the sum are then equal to + 1. 
Hence we get 

N 
?m = ~ (independent of m). (7.3) 
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So we find again the result of Sect. 3, which we now 
enounce as follows: 

Proposition 7.4. In the case of pairwise orthogonal 
patterns, the Hebbian connection matrix (3.1) is at least 
semi-optimal and ensures the attractivity of the patterns 

N 
at least up to the Hamming distance ~p. 

In the not orthogonal case, we remark that if 
N 

6(S", Sm') > ~- for some (m, m'), then 6(S", - S m) < N;  

therefore the volume "winned" by the component i will 
be "lost" by component i' such that D~=D~ and 
DT'= --D.~'. 

The sizes of the domains of attraction depend on 
the minima over i; we see that the favourable case is the 
orthogonal one. 

Hence the practical interest of 
- picking at random [with IP(S~ = + 1) 
= P ( $ 7 ' = - 1 ) = � 8 9  as in spin glasses, ensuring, on 
average, orthogonality. 
- a deterministic encoding of the objects to be re- 
cognized, by means of pairwise orthogonal patterns. 

8 Domains of  Attraction with Equal Sizes 

The research of the optimal matrix C sketched in 
Sect. 6 is tedious. We shall simplify it by taking all 
constants 0r 7' = + 1 (Personnaz et al.'s method), which is 
equivalent to equal attractivity of each pattern. 

We need now a geometric interpretation and a 
lower bound of the common size of the domains of 
attraction (DA). 

Since ~ '  = (C  i, D.~), by (5.3), in the case ~" = 1 for 
every m = 1 . . . .  , p, we have to determine a hyperplane 
Hi, orthogonal to Ci at equal distance of all the points 
am for m = 1 . . . .  , p (see Figs. 2 and 3). The vector Ci is 
orthogonal to the affine space containing all points 
a], ..., a~. 

We write, from (5.4), 

Ci=2(2 '2)  -~ " i.e. C = S ( I ' I ) - I I  ', (8.1) 

\ s f /  

which is the orthogonal projection matrix oflR N on the 
vector space Y/~, spanned by $1,.. . ,  S p (introduced by 
Kohonen 1970). The matrix C is symmetric, and its 
columns (equal to its rows) are images of the vectors 
el, ..., eN (canonical basis of R N) by this projection. 

So we have Ci=proj~(ei), Dm~//", and <Ci, D~) 
=<ei, Dm)= + 1 by the definition of the vectors DT', 
whose i-th component is equal to + 1. 

Hence, noting that m a x  ICijl  = max(C/i) 

= max 11Cil[ 2 since C is a projection matrix (C 2 = C), we 
i 

get 

Proposition 8.2. For the matrix C = Z(S'S)-  12' with 
= (Sa,..., SP), each pattern S m is attractor at least up to 

Hamming distance 

1 1 1 1 

? = 2 maxi I lCil l2 - 2 maxC u " .  (8.2) 

See numerical examples of evaluation of 7 in 
Appendix 2. 

Remark 8.3. The matrix C obtained when c~7'= 1, for 
every i, m, is symmetric. However for what concerns the 
algorithm, it is equivalent to the matrix obtained by 
multiplying each row by a positive arbitrary constant: 
this matrix is no more symmetric. 

Neither it is in the optimal case of Sect. 6. 

9 Energy 

The patterns $1,... ,  S v span the subspace ~ ,  and the 
matrix 

C = S(S 'S)-  1 S' [see (8.1)] 

is the symmetric projection matrix on r whose 
elements are in interval [ -  1, + 1], with C = C z = C'C, 
hence 

Cij = ( Ci, Cj)  = <proj,-(ei), proj~(ej)). 

In that case, we define an energy function 

E(S) = - �89 H(S) (9.1) 

with 

H(S) = .~. CiiSIS i . (9.2) 
I,J 

We have the following theorem (with C symmetric). 

Theorem 9.3. i) H(S) increases when the system evolves 
(in sequential or parallel algorithm). 

ii) The k-attractor states are local maxima of H. 
More precisely, if S is k-attractor, and S* = Tjl ..... ik(S) 
(notations of Sect. 5), then 

H(S)> H(S*). 

iii) The learned patterns are absolute maxima of H 
and any absolute maximum is a stable state. 

Demonstration. i) is clear. We prove ii) noting that 
H(S)-- H(S*) = 4 y, S i ( ~. CIjS3~ for I = {Jl . . . .  ,Jk}. 

i 8 I  \ j ( s l  ,I 

Since S is k-attractor, it is stable and for all i, 



\ J  } 
(2.2), hence H(S) > H(S*). For iii), we write H(S) = S'CS 
= ( c s ) '  c S - -  [I CS I[ [Iproj (S)]l 2 for all configuration 
s e { - 1 ,  + 1}". 

Since [IS[I 2--g, H(S)<N for all S with equality iff 
S e ~/ =Vect(S1, ..., S'). So patterns $1, ..., S" are ab- 
solute maxima, and also the opposite - S  ~ . . . .  , - S  p. 

Any linear combination of the learned patterns, 
element of { - 1 ,  +1} N, (if exists) will be absolute 
maxima and spurious stable state: H(S)= N iff S �9 ~f', 
i.e. iff CS = S which is the stability. [] 

Note that if the patterns S~, ..., SP are orthogonal, 

P 1 ( S, Sin) 2 . H(S)= Z ][pr~ 
m = l  m = l  

See in Appendix 3 examples of spurious stable and 
attractor states, which are local maxima of H. At 
temperature T = 0  (studied here) the algorithm may 
reach some of these states, but when T > 0  using the 
annealing method, only the absolute maxima of H will 
be reached, i.e. the spurious stable states belonging to 

10 Provisional Conclusions 

1) To choose the sizes of the domains of attraction 
(DA) in such a way they are equal for all patterns 
S ~, . . . , S  v enables us to give no preference to any 
pattern. 

Assume that we start from an initial configuration 
S O distorted from S ~~ We modelize this disturbance: 
an error occurs in each component i =  1 . . . .  , N, inde- 
pendently with a small probability q. The number of 
errors 6(S ~ S "~ is a Binomial distribution ~(N, q). 

Starting from S o , the algorithm acts and the 
probability that it gives a good answer (Sin~ is 
bounded from below by the probability that S o belongs 
to the DA of S m~ with radius k,,o, i.e. by P(6(S ~ Sm~ 

~kmo). 
Of course, we can approximate this probability, by 

substituting the Normal Distribution ~A/(Nq, Nq) to 
the Binomial distribution. (N is great and q small.) 

So selecting an algorithm, i.e. a matrix C such that 
all the km are equal, does yield the same lower bounds 
for all the probabilities of correct identification, what- 
ever is the configuration S" to identify. 

2) Now let us assume that the choice of the 
configuration S m to identify, is made with a probability 
(Pro) ( ~  Pm= 1]. Then the probability of wrong identifi- 

/ 

cation is less than ~= ~pmP(J(S ~ ~ arises 
m 

from S m) and if an identification error for S m costs g,,, 
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the mean error cost is less than G = ~ gmpm~(~(S O, S m) 
> km/S ~ arises from s'n). '~ 

In that case, the choice of the semi-optimal matrix 
C, described in Sect. 6, yields a reasonable lower 
bound e and G. 

It remains that these calculations are approxi- 
mations (apart from the fact we cannot calculate the 
exact size km of the DA of the patterns S m, w.r.t, a given 
matrix C). 

3) If6(S ~ S m) > k,,  there is an error ifS ~ falls in the 
DA of another configuration, but we do not know what 
happens if S O does not belong to a DA of the Sm. So S o 
may be attracted by one of the spurious configurations 
made attractive by the matrix C, for instance a 
configuration - S m, or other linear combination of the 
Sm. (See Appendix for numerical examples.) 

4) The complete study of the deterministic al- 
gorithm (Temperature T=0)  enables us to see that 
only the spurious stable state belonging to the sub- 
space ~ spanned by the patterns, remain when the 
temperature T > 0  using the annealing method. This 
result confirms the results of Amit et al. (1985a, b), 
and shows it is true for all N, and not only when 
N ~ + o o .  

5) The algorithm ensures a perfect retrieval of 
patterns if the initial state S O satisfies 6(S~ 
[defined in (8.2)] for some Sm. But, of course, the 
algorithm ensures a very good retrieval if S O is more 
distant from the patterns. Let be N the set of initial 
states which lead to some pattern. The simulations 
show that N occupies a great portion of the hypercube 
[see numerical evaluations in Peretto and Niez (1985), 
which agree with examples of Appendix 3]. Of course, 
the size of N decreases when p increases, for a fixed N, 
like the attractivity 7. 

Appendix 1: Hamming Distance 

For S,S'~{-I, +1} N, we denote by 6(S,S') the number of 
distinct components of S and S': it is the Hamming distance of S 
and S'. 

The following properties are easy to check 
1) 6 is a distance in {-1, +1} ~, 

N 
2) 6(S, -S)=N; if ~ SiS',=O, i.e. ifS and S' are orthogonal 

i = 1  

N 
(only with N pair), 6(S, S') = 2" 

3) ~(s, - s') = N -  ~(S, S'). 
If d is the Euclidian distance in NN, ( . )  the Euclidian 

product, [[-1[ the Euclidian norm, cos and sin the usual trig- 
onometric functions, we have 

. 2(s,s') 
4) IISIJ=[/N, fi(S,S')=�89 and 

d(S, s') = 2 
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Appendix 2: Evaluation of Gamma 
For  different values of N and p, we compare 7 in various cases 

a) orthogonal  case ? = N/2p 
b) random choice of patterns 
c) random choice of (S 2 . . . . .  S p) and S 1 =(1 . . . . .  1) 
d) a non  ortbogonal  case. 

N = 2 0  a b c d 

p = 3  3.3 1.9 2.4 1.5 
p = 4  2.5 1.4 1.9 1.1 
p = 5  2 1.2 1.5 0.7 

N = 3 0  ! 

p-=-3 
p = 4  
p = 5  

a b c 

5 3.7 3.8 2 
3.7 2.6 2.7 1 
3 1.8 1.9 0.7 

N = 4 0  a b c d 

p = 3  6.7 5.3 4.9 3.1 
p = 4  5 4 3.9 1.2 
p = 5  4 3.1 3.1 0.8 
p = 6  3.3 2.3 2.4 0.7 

N = 5 0  a b c d 

p = 4  6.3 5.8 5.1 1.4 
p = 5  5 3.8 3.9 0.9 
p = 6  4.2 3.0 3.1 0.8 

Note that  if we want to retrieve exactly a pattern transmitted 
with 10% errors at  most, we must  choose p ~ N, approximately 
p ~ 0.10N (for random case). This agrees with numerical results of 
Hopfield (1982) or Amit et al. (1985a, b) for instance. (Take 
account they use a connection matrix which does not  ensure the 
stability of all patterns.) 

Appendix 3 
We indicate numerical results of various simulations. 

We determine all the stable states, their order of attractivity, their Hamming distance from patterns, and their energy. 
In each case, 1000 trials are performed with initial state at random. The system evolves very quickly (at most 4 parallel iteration 

steps) to one of the stable states. We indicate the number  of trials ending into each stable states. See that  the value of ~ above calculated is 
not  subestimated, and gives a good estimation of the BA' size. 

Example I 

N = 20, p = 3, ? = 2.4 (case c of Appendix 2) 

S*= 1 i 1 1 1 1 1 1 1 

S 2= 1 1 1 --1 1 --1 --1 --1 --1 

$ 3 = - - 1  --1 1 1 --1 1 --1 1 1 

Example 2 

N = 2 0 ,  p = 3 ,  7=1.9  

S 1, S 2, S a are random (case b) 

Example 3 

N -- 20, p = 4, y = 1.4 

S 1, S 2, S 3, S 4 are random (case b) 

Example 4 

N = 2 0 ,  p = 4 ,  7=1.1 

S 1 , S 2, S a , S 4 are not  orthogonal (6(S 1 , S 3) = 6(S 1 , S 4) = 3) 

1 1 1 1 I 1 1 1 i 1 I 

1 1 --I 1 -I 1 --1 --1 -I I -I 

1 --1 --I -I 1 --I -I -I -1 I I 

Example I Nb of trials ending into one of the patterns 
(or opposite) = 67% 

State S 1 - S  1 S 2 - S  2 S 3 - S  3 $7 $8 $9 S,o $11 $12 Sta S,+ 

Att. order 2 2 2 2 2 2 1 1 0 0 0 0 0 0 

~(s') { 

~(s) 

0 20 11 9 11 9 15 5 17 3 14 6 6 14 
11 9 0 20 12 8 14 6 6 14 15 5 17 3 
11 9 12 8 0 20 14 6 6 14 3 17 5 15 

20 20 20 20 20 20 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 

% n.b. trials ending 11.7 10.7 10.2 11.6 11.1 12.2 6.7 5.8 5.4 4.0 1.9 3.1 3.3 2.3 
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Example 2 Nb of trials ending into one of the patterns 
(or opposite) = 54% 

State S 1 - S  1 S 2 - S  2 S 3 - S  3 $7 $8 $9 $1o $11 $12 $13 S~4 

Att. order 1 1 1 1 1 1 2 2 0 0 0 0 0 0 

~(s~) { 

/r 

0 20 12 8 12 8 14 6 18 6 6 2 14 14 
12 8 0 20 12 8 14 6 6 18 6 14 2 14 
12 8 12 8 0 20 14 6 6 6 18 14 14 2 

20 20 20 20 20 20 16 16 16 16 16 16 16 16 

% n.b. trials ending 9.6 8.8 9.9 8.1 8.3 9.6 9,9 8.2 4.7 6.0 4.3 5.0 2.8 4.8 

Example 3. In that case S 1, S 2, S 3, S 4 and their opposite are 1-attractors (compare with y = 1.4). And there are 40 stable states whose 
energy are 14.1, 15.1,15.2, 15.6 or 16. The Hamming distance between a pattern and a spurious stable state can be 2, and that shows that 
the evaluation of ~, is exact. 

Among 1000 trials, the system ends into one of the pattern in 52% of the cases 

Example 4. There are 8 1-attractors, S 1, S 2, S a, S 4, their opposites and 4 configurations more which have the same energy (H(S)= 20). 
There are 4 stable states, and 4 1-attractors, with H(S)= 16 

State S 1 - S  1 S 2 - S  2 S 3 - S  3 S 4 - S  4 S 9 S lo  S l l  S12 S13 $14 $15 S16 

Att. order 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

6(S ~) 0 20 11 9 3 17 3 17 6 14 6 14 12 9 8 11 
11 9 0 20 14 6 10 10 13 3 17 7 5 2 15 18 
3 17 14 6 0 20 6 14 3 11 9 17 9 12 11 8 
3 17 10 10 6 14 0 20 3 13 7 17 15 12 5 8 

H(S) 20 20 20 20 20 20 20 20 16 16 16 16 16 16 16 16 

The system ends into one of the pattern is 52 % of the cases 
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