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Abstract. This paper concerns the use of tracking 
studies to test a theoretical account of the information 
processing performed by the human CNS during 
control of movement. The theory provides a bridge 
between studies of reaction time and continuous 
tracking. It is proposed that the human CNS includes 
neuronal circuitry to compute inverse internal models 
of the multiple input, multiple output, dynamic, non- 
linear relationships between outgoing motor com- 
mands and their resulting perceptual consequences. 
The inverse internal models are employed during 
movement execution to transform preplanned trajec- 
tories of desired perceptual consequences into appro- 
priate outgoing motor commands to achieve them. A 
finite interval of time is required by the CNS to preplan 
the desired perceptual consequences of a movement 
and it does not commence planning a new movement 
until planning of the old one has been completed. This 
behavior introduces intermittency into the planning of 
movements. In this paper we show that the gain and 
phase frequency response characteristics of the human 
operator in a visual pursuit tracking task can be 
derived theoretically from these assumptions. By in- 
corporating the effects of internal model inaccuracy 
and of speed-accuracy trade-off in performance, it is 
shown that various aspects of experimentally mea- 
sured tracking behavior can be accounted for. 

Introduction 

In an attempt to understand the neurophysiological 
processes underlying the movement disorders of 
cerebral palsy and in the spirit of a paper by Marr and 
Poggio (1977), entitled "From understanding compu- 
tation to understanding neural circuitry", we have 
developed a computational model of information 
processing performed by the human central nervous 

system (CNS) during control of movement (Neilson et 
al. 1985; Neilson et al. 1987). We refer to it as "Adaptive 
Model Theory". Although the theory was evolved 
largely de novo, it shares significant philosophical 
bonds with others in the field (e.g. Kleinman et al. 
1970; Pew 1974; Raibert 1978; Saltzman 1979; Greene 
1982; Hinton 1984). It is a basic hypothesis of Adaptive 
Model Theory that the human CNS includes neuronal 
circuitry (modelling circuitry) to compute, store in 
memory and adaptively maintain the accuracy of sets 
of parameters describing the dynamic nonlinear re- 
lationships between multiple sensory and motor sig- 
nals. A detailed description of one possible solution of 
this problem was presented previously (Neilson et al. 
1987). Once computed, the parameters can be recalled 
from memory and used to control the information 
transfer characteristics of neural networks during 
analysis of sensory signals and during movement 
execution. The neural networks come to behave like 
internal models of relationships between sensory and/ 
or motor signals and can be employed by the CNS for 
a variety of purposes both in perception and control of 
movement. Any change in the relationships between 
sensory and/or motor signals leads automatically to an 
adaptive recatibration of the stored internal models. 
The models are stored in the inverse form. Thus, for 
example, during movement execution, models stored 
in the inverse sensory-to-motor form translate pre- 
planned trajectories of desired perceptual conse- 
quences into appropriate outgoing motor commands. 
The inverse internal models compensate for the dy- 
namics and nonlinearities in muscles, biomechanics 
and any external systems being controlled, so that the 
overall performance of the human operator should be 
relatively independent of these factors. This reflects the 
ability of the human operator to adapt his behavior to 
suit the responsiveness of controlled systems. 

The model is similar to the intermittent, three-stage 
model developed by experimental psychologists to 



102 

account for the results of discrete response, double 
stimulation reaction time experiments (Vince 1948; 
Hick 1948; Welford 1959, 1980; Karlin and Kesten- 
baum 1968; Herman and Kantowitz 1970; Kantowitz 
1974; McLeod 1977). It has been demonstrated re- 
peatedly from the earliest experiments onwards (see 
Welford 1980 for review) that during a reaction time to 
a stimulus, the human CNS can execute a response to a 
previous stimulus and receive and register a sub- 
sequent stimulus which appears and disappears during 
the reaction time. This implies the existence of three 
processing stages - sensory analysis (SA), response 
planning (RP) and response execution (RE)- operating 
in parallel. Intermittency is introduced because the 
RP-stage operates discretely and requires a finite 
interval of time (typically 100-200ms) to preplan a 
movement before passing the information on to the 
RE-stage. Although the RP-stage operates intermit- 
tently, the SA- and RE-stages operate continuously in 
real-time, like systems in cascade (McClelland 1979; 
Miller 1982). The only time delay in SA- and RE-stages 
is due to the transmission time required for the flow of 
information through neural networks, analogous with 
the flow of signals through filters. The information- 
transformation characteristics of the neural networks 
are controlled by the outputs from "modelling 
circuitry". 

In this paper we show that an intermittent, three- 
stage model can account not only for the results of 
discrete response, double stimulation reaction time 
experiments (as discussed in detail by Welford 1980), 
but also for the behavior of human operators perform- 
ing continuous tracking tasks. It has been claimed that 
it is difficult to distinguish between discrete time 
models of human tracking behavior and continuous 
models with comparable time delays (see Pew 1974). 
Continuous tracking models (for example, Kleinman 
et al. 1970; McRuer 1980), however, do not account for 
the "psychological refractory period" measured in 
double stimulation reaction time experiments. In such 
models the inter-response interval for a continuously 
responding system equals the inter-stimulus interval 
and there is no psychological refractory period. An 
intermittent reaction time model has the advantage 
that it can account for continuous tracking behavior as 
well as the psychological refractory period. Thus, an 
important feature of Adaptive Model Theory is that it 
provides a theoretical bridge between psychological 
studies of reaction time processes on the one hand and 
engineering investigations of man-machine systems on 
the other. 

Much has been written in recent years concerning 
the limits of human processing capacity and the 
distribution of processing resources between parallel 
processors (Norman and Bobrow 1975; Navon and 

Gopher 1979; Wickens 1980; Gopher et al. 1982; 
Gopher and Sanders 1984). An individual occupied 
with one task often lacks the capacity to perform 
others, although under other circumstances many 
tasks can be performed concurrently (Wickens et al. 
1983). Central processes are assumed to consume 
resources that are in limited supply and the degree to 
which parallel processes interfere with each other 
depends on the extent to which they compete for a 
common supply of resources. McLeod (1977) proposed 
variable allocation of a finite capacity between pro- 
cessing stages in order to account for the lengthening of 
reaction times to both the first and second stimuli in 
double stimulation reaction time experiments. Vari- 
able allocation of finite capacity between the three 
parallel processing stages mentioned above (and be- 
tween substages operating in parallel within each 
stage) also accounts for the ability of subjects to 
perform multiple tasks simultaneously. In our view, 
the flexibility of a variable allocation parallel process- 
ing model does not diminish the importance of the 
single channel hypothesis as recently described by 
Welford (1980). For tasks in which performance de- 
pends on a minimum response time delay (such as 
continuous tracking), maximum capacity must be 
allocated for response planning if the response is to be 
initiated in the shortest possible time. A minimum 
response time delay is obtained when the RP-stage 
plans one response at a time and does not commence 
planning a second response until it has completed 
planning the first. In other words, to achieve a 
minimum response time delay, the variable allocation 
three-stage parallel processing system must operate in 
a manner identical to the operation of the single 
channel mechanism. 

In this paper we show that an intermittent three- 
stage mechanism which plans one response at a time is 
consistent with both the open-loop and closed-loop 
transfer function characteristics of the human operator 
performing continuous tracking tasks. It may be that 
some continuous tracking models such as the optimum 
control model (Kleinman et al. 1970) can account for 
continuous tracking behavior as well as does Adaptive 
Model Theory. This would not be surprising because 
Adaptive Model Theory is a discrete equivalent of the 
continuous optimum controller based on Kalman 
filter theory. It incorporates adaptive inverse internal 
models to compensate for system dynamics and adap- 
tive stochastic model predictors to compensate for 
time delays, just as in Kalman filter theory. We show 
here that the behavior of subjects performing con- 
tinuous pursuit tracking can be predicted from Adap- 
tive Model Theory. From the assumptions of intermit- 
tency and internal models we derive theoretically the 
gain and phase frequency response characteristics for 
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both the open-loop and closed-loop transfer functions 
of the human operator in a pursuit tracking task. The 
effects of model inaccuracy and speed-accuracy 
trade-off are included in the derivation. Adaptive 
Model Theory is then tested by comparing the theoret- 
ical performance characteristics with those measured 
experimentally. 

Application of Adaptive Mbdel Theory 
to Pursuit Tracking 

In a visual pursuit task the subject moves a control 
(joystick) to keep a response marker aligned with a 
continuously moving target. Using the constructs of 
Adaptive Model Theory, the information processing 
performed by the human CNS during a pursuit 
tracking task can be represented schematically as in 
Fig. 1. For simplicity, the SA-stage has been omitted 
from the schematic diagram in Fig. 1. The RP-stage is 
represented by the circle labelled RP and the RE-stage 
is represented by the boxes (drawn with dotted lines) 
labelled "adaptive controller" and "controlled system". 
The substages of the controlled system are muscle 
control system (MCS), biomechanics (BM) and track- 
ing system or external system (E). MCS transforms 
outgoing motor commands (M) into a pattern of 
muscle tensions (T). BM transforms T into body 
movements or joystick movements (0). E transforms 0 
into movements of the response marker (R) on the 
display screen. In many analyses of tracking behavior, 
0 is regarded as the output from the human operator 
and the system is differentiated into two subsystems, 
the "human operator" and the "tracking system" 
(illustrated by dashed lines in Fig. 1), rather than into 
the adaptive controller and the controlled system as 
described here. The latter differentiation is more 
appropriate in this context because it emphasizes the 

ADAPTIVE COMTROLLER CONTROLLED SYSTEM 
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Fig. 1. Schematic diagram of central processes involved in the 
performance of a visual pursuit tracking task. RP=response 
planning stage, S = stimulus signal, R = response signal, rectan- 
gular block= short-term memory buffer, E~ 1 =inverse inter- 
nal model of E, BM,~l- inverse  model of BM, 
MCS~l=inverse  internal model of MCS, R*=preplanned 
desired response, 0* =desired movement, T* =desired muscle 
tensions. Other abbreviations as in text 

importance of MCS and BM as substages in the 
controlled system. 

The basic assumption of Adaptive Model Theory is 
that the human CNS includes neuronal circuitry (not 
shown in Fig. 1) which monitors feedback of the 
multiple input and multiple output signals from each 
substage in the controlled system and computes, stores 
in memory and adaptively maintains the accuracy of 
inverse internal models of the dynamic, nonlinear, 
varying relationships between them. In a previous 
paper (Neilson et al. 1987) we have presented a detailed 
description of computational algorithms and neuronal 
circuitry capable of performing this operation. The 
technical feasibility of the algorithms and circuits was 
confirmed by simulation in a digital computer. Basi- 
cally, a subcortical circuit involving a cerebellar micro- 
zone region was assumed to function like an adaptive 
filter, as suggested by Fujita (1982). The Wiener kernel 
weights of the filter are retrieved from memory and 
used to set the gains of Purkinje cells via the inferior 
olive and climbing fibers (see Rawson and Tilokskul- 
chai 1982, 1985). The axons of Purkinje cells in a 
microzone converge on to target cells in a cerebellar 
nucleus where their signals add, producing the output 
signal from the filter. If the stored Wiener kernel 
weights accurately describe the relationship between 
the input and output signals of a substage, then the 
subcortical circuit functions as an accurate internal 
model of that substage. The outputs from the model 
match the outputs from the substage and the cross 
correlations between the input signals and the discrep- 
ancy signals (that is, discrepancies between the model 
output signals and the substage output signals) are 
zero. If the internal model is inaccurate, on the other 
hand, the cross correlations (and higher order cross 
correlations) between the (pre-whitened) input and 
discrepancy signals are nonzero and their values are 
precisely those that must be added to the stored 
Wiener kernel weights to correct the model. The circuit 
functions in an iterative fashion and quickly converges 
the stored Wiener kernel weights to their correct 
values. The circuit operates to maintain an accurate 
internal model of the multiple input, multiple output, 
dynamic, nonlinear characteristics of the substage and 
any change in the dynamic responsiveness of the 
substage leads to an automatic adaptive recalibration 
of the model. Similar modelling circuitry is employed 
to compute forward and inverse models. 

During response execution, the inverse internal 
models (E~, 1, BM~, 1, MCS,~I in Fig. 1) of the sub- 
stages of the controlled system are employed (as 
substages in the adaptive controller) to translate the 
desired response (R*) - preplanned in terms of the 
desired visual movement of the response marker on the 
display screen - into appropriate M to activate the 



104 

controlled system and generate R equal to R* (Fig. 1). 
The transfer function relationship between R* and R 
can be expressed as 

R/R* = E,~ 1. BM~ 1. MCS~, 1. MCS. BM. E, (1) 

where E is the transfer function of external system, BM 
the transfer function of biomechanical system, MCS 
the transfer function of muscle control system, E~ a 
the transfer function of inverse internal model of E, 
BM,~ 1 the transfer function of inverse internal model 
of BM, and MCS,~ 1 the transfer function of inverse 
internal model of MCS. 

If all the inverse internal models are accurate, the 
transfer functions of the inverse internal models cancel 
the transfer functions of the substages and (1) simplifies 
to 

R/R* = 1. (2) 

Thus, the actual response, R, equals the desired 
response, R*, and the inverse internal models 
(MCS,~ 1, BM,~ l, E,~ 1) compensate for the dy- 
namic responsiveness of MCS, BM, and E. But if any of 
the inverse internal models are inaccurate, for example, 
due to inexperience with the task or as a consequence 
of neurological damage, R will not match R* and (1) 
can then be written as 

R/R* = K ,  (3) 

where K is the resultant transfer function due to model 
inaccuracies. 

The RE-stage just discussed (and also the SA-stage 
not described here) employs networks of adaptive 
internal models which, using terminology employed by 
McCMland (1979), behave like "cascade" information 
processing stages. That is, their outputs are influenced 
continuously by their inputs and the processing time 
equals only the transmission time required for spread 
of activity through the networks. 

The RP-stage, on the other hand, behaves like a 
"discrete" information processing stage in that it 
requires a finite interval of time (Tp) to preplan a 
desired response, R*, and to store it in short-term 
memory ready for execution. It plans only one R* at a 
time and does not commence planning a second R* 
until it has completed planning the first. (This is not to 
imply that the RP-stage cannot plan multiple re- 
sponses in parallel during the performance of simulta- 
neous tasks or for that matter, during performance of a 
single task. During a single task, however, planning 
one response at a time leads to a minimal response time 
delay.) A desired response may initially be represented 
as an abstract hierarchical structure (Klapp and Wyatt 
1976; Sternberg et al. 1978) of goals and subgoals, each 
subgoal leading to the next as suggested by Kelley 

(1968). It may involve a heterarchical activation of 
"frames" and "agencies" as described in theories of 
artificial intelligence (viz. Minsky 1986). At the level of 
the most immediate subgoal, however, R* is pre- 
planned as a trajectory of desired perceptual conse- 
quences to achieve the subgoal. That is, R* is pre- 
planned in terms of the same sensory feature code in 
which feedback of R will eventually be represented. In 
the pursuit tracking task being discussed, R* is pre- 
planned in terms of the desired visual movement of the 
response marker on the display screen. Thus, central 
images of intended movements and feedback of actual 
movements are expressed in the same sensory code and 
can be compared directly. This overcomes the sensory- 
motor language problem discussed by Schmidt (1976). 

Intermittency 
The discrete behavior of the RP-stage introduces 
intermittency into movement programming. SA-, RP-, 
and RE-stages operate continuously and in parallel 
but, because of the discrete behavior of the RP-stage, 
information is only transferred intermittently, via 
short-term memory buffers, from the SA-stage to the 
RP-stage and from the RP-stage to the RE-stage. 
Although voluntary movement may be executed con- 
tinuously, the underlying movement programs pre- 
planned by the RP-stage (trajectories of desired per- 
ceptual consequences) are only updated intermittently 
at planning time rates. Thus, according to Adaptive 
Model Theory, all voluntary movements, from those in 
simple reaction time experiments, through continuous 
movements in tracking experiments, to the complex 
movements of singers, dancers, gymnasts and pilots, 
are comprised of a concatenated sequence of submove- 
ments, each planned in advance by the RP-stage and 
executed in an open-loop fashion by the RE-stage. This 
notion of intermittency in movement programming is 
not new. It has been proposed by many movement 
control theorists and is well supported experimentally. 
It was discussed cogently with respect to tracking 
behavior by Craik in the 1940s (Craik 1947a, b). 

Planning a Submovemcnt in Tracking 

The following description of the information process- 
ing performed by the RP-stage during the planning of a 
submovement in a pursuit tracking task will provide 
the background for a subsequent derivation of the 
error to response and the stimulus to response transfer 
functions. 

The RP-stage reads the most current information 
available in short-term memory at the output of the 
SA-stage. This information includes the motions of 
both the target and response markers extracted from 
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the visual input. Using a previously computed statis- 
tical model of the motion of the target (the algorithms 
involved will be discussed in a subsequent paper), the 
RP-stage forecasts the future motion of the target for at 
least a reaction time interval into the future. The RP- 
stage also forecasts the future motion of the response 
marker. This is achieved by adding the change in 
desired response planned during the previous planning 
interval to the current position of the response marker 
available at the output of the SA-stage (prediction of 
disturbance perturbations are not considered in the 
present context). The RP-stage then computes R* to 
move the response marker from its predicted path into 
alignment with the forecasted motion of the target. 
This is analogous to the problem of shooting at a 
moving target from a moving platform, where the 
motions of both target and platform must be taken into 
account. It is equivalent to the control problem of 
computing an optimum trajectory to move a con- 
trolled system between an initial dynamic state and a 
final dynamic state in such a manner that some 
performance criterion is maximized. 

Speed-Accuracy Trade-Off 
Selection of an optimum R* depends on the subject's 
performance criterion. This criterion can change, de- 
pending on the conditions. In order to reduce the 
tracking error as quickly as possible, the fastest 
movement would appear to be the best. For human 
subjects, fast movements to a target are characterized 
by a relatively constant duration independent of the 
amplitude of the movement (Freund and Budingen 
1978; Freund 1983). By implication, it is the duration 
of the movement and not the maximum velocity that 
limits fast movements. Therefore, a fast movement to a 
target can be defined as one that reaches the target 
within a single submovement, regardless of the dis- 
tance to the target. 

Fitts' law is a well known empirically derived 
relationship between the distance to the target, the 
width of the target and the movement time for arm 
movements to the target (Fitts 1954; Fitts and Peter- 
son 1964). Crossman and Goodeve (1963) and Keele 
(1968) showed that Fitts' law can be explained (at least 
for long duration movements) if it is assumed that a 
movement to a target consists of a series of submove- 
ments, each of the same duration and relative accuracy. 
This is consistent with the notion of intermittency 
discussed earlier. Howarth et al. (1971) and Beggs and 
Howarth (1972) showed that when the total movement 
time is increased, subjects usually slow down through- 
out the entire movement and not just during the final 
precision placement. The entire movement, including 
the initial segment which covers most of the distance to 

the target, is also slowed as the termination point 
becomes more accurate (Langolf et al. 1976). Greater 
terminal accuracy is normally achieved by slowing 
each submovement so as to bring the responding limb 
closer to the target at the time of the final visually based 
correction. 

Speed-Factor 
Incorporating this idea of speed-accuracy trade-off 
into the planning of R* suggests that in attempting to 
improve accuracy, a subject might choose R* slower 
than the fastest possible response. Since the duration of 
each submovement is assumed to be constant (Tp is 
determined by the time required by the RP-stage to 
preplan each submovement), it follows that the speed 
of each submovement will be slowed and that more 
submovements will be made to the target. If, for 
example, a subject has an inaccurate internal model of 
the controlled system, it is likely that the speed of each 
submovement will be considerably slowed in an at- 
tempt to minimize execution errors. This is consistent 
with the slowing of voluntary movements observed in 
patients with movement disorders such as Parkinson's 
disease, cerebellar dysfunction and cerebral palsy and 
could explain the compulsive freezing and blocking of 
movements experienced by subjects wearing inverting 
prism glasses or attempting to perform mirror writing. 
To allow for the possibility that subjects can change 
the speed of R*, we will introduce a "speed-factor" (a) 
into our equations. By definition, the speed-factor will 
equal the proportion of the distance to the target 
moved in a single planning time interval, Tp. When the 
speed-factor a = 1, for example, the subject moves to 
the target in a single submovement with a duration 
equal to the planning time, T v. It will be shown below 
that a tracking response signal generated with a speed- 
factor a = l  reproduces the motion of the target, 
whereas for any other value a 4:1 the response marker 
does not exactly reproduce the motion of the target 
and the response signal contains attenuation and 
phase distortion relative to the stimulus signal. 

Sampled Data Signals and the Backward Shift 
Operator 

Although sensory and motor signals within the CNS 
are probably sampled at a high frequency (say, 20-30 
samples/s), performance of a subject in a tracking task 
involving an irregularly changing stimulus signal is 
limited by the time, Tp, required by the RP-stage to 
preplan R*. This is borne out by spectral analyses of 
coherent tracking response signals which show negli- 
gible power at frequencies above 2M Hz (Stark 1968; 
Neilson 1972). Since Tp is short relative to the highest 
frequencies contained in a tracking response, no 
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information is lost by sampling tracking signals at Tp 
intervals and performing a digital analysis of the 
sampled data. For simPlicity, this is the approach 
adopted in the derivation presented below. (We point 
out, however, that by including high frequency sam- 
pling of sensory signals and incorporating prediction 
of stimulus and response signals for at least a reaction 
time interval ahead, predictable high frequency 
changes occurring within a planning time interval 
could be taken into account. Thus, the derivation 
below could be extended to account for "precognitive" 
tracking of predictable high frequency stimulus 
signals.) 

In Fig. 2, the stimulus and response signals are 
treated as sampled data signals which are sampled 
synchronously (as indicated by the filled squares) at 
planning time intervals, Tp. Thus the signals can be 
presented as time series and the theoretical derivations 
can be expressed in the form of difference equations or 
digital transfer functions. The stimulus signal, for 
example, can be represented by the time series of 
sampled data points $1, Sz ..... St, and the response 
signal can be represented by the time series 
RI, R2 . . . .  , R t. Each sample interval corresponds to a 
planning time interval, Tp. 

In analysis of time series we shall employ some 
simple mathematical operators used by Box and 
Jenkins (1976). First is the backward shift operator, B, 
defined by BSt = St_ 1; hence BmSt : S t _  m (notice that B 
is equivalent to the Z-transform operator Z-1). Sec- 
ond is the backward difference operator V which can 
be written in terms of B, since 

VSt = St-- St-1 = (1 - B) S,. (4) 

Third is the inverse of V, the summation operator V- 1 
given by 

V - 1 S t = ( 1 - B ) - I S t  

= ( I + B + B  2+.. .)S t 

: S t  --~ S t _  l --}- S t _  2 -~ . . . .  (5) 

Using the B notation, the transfer function for a 
digital filter can be derived. Consider, for example, an 
exponentially weighted moving average filter defined 
by 

Yt = aXt + (1 -- a) Yt-1. (6) 

Using the backward shift operator this can be written 
as  

Yt= aXt + (1 --a)BYt.  (7) 

This can be rearranged algebraically to give the digital 
transfer function 

a 

~/x,= 1-(1-a)~" (8) 

If we substitute B = e  -i2~f, where i = [ / ~ i ,  and 
f = frequency in Hz, into the digital transfer function 
and expand, we obtain an expression for the gain and 
phase frequency response function which can be 
presented graphically (Box and Jenkins 1976, p. 414). 
We will now employ these mathematical tools to 
compute the theoretical gain and phase frequency 
response curves describing the error to response and 
the stimulus to response digital transfer functions for 
subjects performing pursuit tracking tasks. In working 
through the following derivations the reader will need 
to make frequent reference to the figures, especially 
Fig. 2. 

Error to Response Digital Transfer Function 

First, let us simplify the problem by assuming that the 
target is moving in an irregular fashion and that it is 
not possible to predict whether it will move up or down 
from its current position during the next planning 
interval. The influence of target prediction will be 
introduced into our equations in a subsequent article 
by including a stochastic model predictor. For the 
moment, however, we shall ignore the influence of 
target motion prediction and proceed as though there 
was no statistical model of target motion available to 
the RP-stage. 

Let us consider the processes involved in preplan- 
ning a desired response during the planning interval 
labelled RP2-3 in Fig. 2. The RP-stage reads the past 
motions of the target ($1, $2) and the response marker 
(R 1, RE) available in short-term memory at the output 
of the SA-stage. In the absence of a statistical model of 
target motion, the best forecast that can be made by the 
RP-stage is simply a projection of the most recent 
position of the target available at the output of the SA- 
stage, as indicated by the horizontal dotted line 
labelled $2, $2(1), $2(2), $2(3), .... The RP-stage also 
generates a forecast Ra(1) of the future position of the 
response marker by adding the change in response 
marker position planned during the previous planning 
interval RPI-2 to the most recent position of the 
response marker Ra available at the output of the SA- 
stage. A desired response R~ is then planned by the 
RP-stage to move the response marker from its 
predicted position Rz(1 ) into alignment with the 
forecasted trajectory of the target Sa, Sa(I), S~(2), 
$2(3) . . . . .  For illustrative purposes, however, the 
speed-factor of the desired response shown in Fig. 2 
has been set to less than unity (a<l) ,  so that the 
distance between Rdl)  and R* is only a proportion 
(a) of the distance between Ra(1 ) and the predicted 
target position Sa(2)= $2. This relationship can be 
expressed 

( R *  - R 2 ( 1 ) )  = a ( S 2  - Rdl) )  �9 (9) 
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Fig. 2. Schematic diagram illustrating the vertical movement of 
the target (S) and response marker (R) on the display screen 
plotted against time. The vertical dotted lines labelled 1, 2, 3, 4, 5, 
6 at the top divide the time axis into equal intervals equal to the 
time (Tp) required by the RP-stage to preplan each R*. Rectan- 
gles at the bottom of the diagram labelled RP1-2, RP2-3, and 
RP3-4 represent the time intervals during which three consecu- 
tive submovements are preplanned. The zig zag lines to the right 
of each rectangle represent the time intervals during which the 
corresponding submovements are executed. The double zig zag 
lines to the left of each rectangle represent the time intervals 
during which sensory information relevant to the planning of 
each submovement is processed and stored in short-term mem- 
ory by the sensory analysis (SA) stage. During each interval the 
RE-, RP-, and SA-stages operate in parallel but are working on 
different submovements. During interval 2-3, for example, the 
RE-stage executes the response RP1-2, the RP-stage preplans 
the response RP2-3 and the SA-stage collects sensory informa- 
tion to be used in planning RP3~. The filled squares indicate a 
synchronous sampling of the stimulus ($1, $2, $3) and response 
signals (R 1, R2, R3) at planning time intervals. $2(1), $2(2), $2(3) 
represent the one-step, two-step and three-step ahead forecasts of 
future target position computed during RP2-3 based on the 
current position of the target $2. R2(1) represents the one-step 
ahead forecast of the future position of the response marker 
computed during RP2-3. R~ represents the desired response 
preplanned during RP2-3 

In parallel with the processes occurring during 
RP2-3 just described, the RE-stage executes the de- 
sired response preplanned during the previous plan- 
ning interval RP1-2. For  illustrative purposes, the 
inverse internal models in the RE-stage are considered 
to be inaccurate, so that the actual response R will 
differ from the desired response R*. Consequently, the 
change in response marker position (R3--R2) will 
deviate from the predicted change in position 
(R2(1) - R2) because of the inaccuracy of the inverse 
internal models (K =~ 1 in equation 3). Thus 

VR 3 = R3 -- R2 = K(R2(1 ) -  R2). (10) 

The above processes repeat during each planning 
interval. For  example, during the planning interval 
RP3--4, the most recent position of the target S a 
available at the output of the SA-stage is projected to 
the right to represent a forecast of future positions of 
the target $3, $3(1), $3(2), $3(3),.... The change 
(R*--R2(1)) in response marker position planned 
during the previous planning interval RP2-3 is added 
to the most recent position of the response marker R 3 
available at the output of the SA-stage, to obtain the 
predicted position of the response marker R3(1). Thus, 
the predicted change in response marker position 
(R3(1)-R3) equals (R*-R2(I)) .  The desired re- 
sponse R* is preplanned to move the response marker 
from its predicted position R3(I ) into alignment with 
the forecasted trajectory of the target $3, $3(1), Sa(2), 
$3(3), . . . .  Again, since the speed-factor is assumed to 
be less than unity, R* is only a proport ion (a) of the 
distance to the predicted position of the target 
$3(2) = S 3. In parallel with these planning processes 
during the interval RP3-4, the RE-stage executes the 
desired response preplanned during the previous inter- 
val RP2-3. Again, because the inverse internal models 
in the RE-stage are assumed to be inaccurate, the 
actual change in response marker  position (R4--R3) 
(not shown in Fig. 2) will deviate from the predicted 
change in position (Ra(1)-R3). Thus 

VR4 = R 4 - R 3 = K(R3(I ) -  R3) = K(R* - R2(I)). 
(11) 

Examination of Fig. 2 reveals 

E2=S2- -R2  =(R2(1) -R2)+(S2  - R2(I)). (12) 

Substitution of (9) into (12) gives 

E2 = (R2(1)-- R2) + (R* -- R2(1))/a. (13) 

Substitution of (10) and (11) into (13) gives 

E2 = VR3/K + VR4/(Ka). (14) 

Equation (14) holds for all planning intervals and so, 
by using the backward shift operator notation de- 
scribed above, it can be expressed in general form as in 
(15) 

B2Et = (1 - B ) B R J K  + (1 -- B) Rt/(Ka ) . 05) 

Equation (15) in turn can be rearranged algebraically 
to obtain an expression for the error to response digital 
transfer function 

KaB 2 
R t / E t -  1 -- (1 -- a)B-- aB 2" (16) 

Equation (16) shows that the digital transfer function 
K, representing the relationship between R* and R 
with inaccuracies in the inverse internal models (3), 
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Fig. 3. Gain and phase frequency response curves plotted on 
semilog scales for the error to response digital transfer function 
for different values of the speed-factor a = 0.2, 0.4, 0.6, 0.8, 1.0 and 
with accurate inverse internal models. Gain is plotted in decibels, 
phase in degrees and frequency is normalized by expressing it as a 
proportion of the sampling frequency (1/Tp) 

appears in the error to response digital transfer 
function as a multiplying factor. 

The gain and phase frequency response curves for 
the error to response digital transfer function (16) were 
computed for a variety of values of the speed-factor a, 
with K = 1 (Fig. 3). Examination of these graphs shows 
that increases in speed-factor produce an increase in 
the gain and a decrease in the phase lag between the 
error and the response signal. It shows that, at low 
frequencies (<  0.25 of sampling frequency), the effect of 
an increase in speed-factor is equivalent to an increase 
in a proportional gain factor and a decrease in a time 
delay. It seems reasonable to assume that as the 
accuracy of tracking improves with practice, subjects 
will gradually increase the speed of their desired 
responses. Consequently, one should expect the pro- 
portional gain factor to increase and the time delay to 
decrease as the subject's skill improves with practice. 

Other task, environmental, procedural and subject- 
centered variables which might influence the subject's 
choice in a speed-accuracy compromise (for example, 
anxiety about switching from a simulator to actual 
conditions) can also be expected to influence the 
proportional gain factor and time delay. 

If it is assumed that the inverse internal models in 
the RE-stage are accurate and that the subject pro- 
duces fast responses so that the speed-factor is unity 
(that is, K =  1 and a =  1), (16) simplifies to 

B 2 
R ] E t -  1 - B 2" (17) 

As illustrated in Fig. 4, the simplified digital transfer 
function (17) is equivalent to a response time delay 
equal to two planning time intervals, connected in 
cascade with a summer which sums the delayed error 
signal at response time delay intervals. 

Stimulus to Response Digital Transfer Function 

As can be seen in Fig. 2, the error signal is given by 

E t  = S t -  R t .  (18) 

Substituting (18) into (16) and rearranging algebrai- 
cally gives the stimulus to response digital transfer 
function 

K a B  2 

R , /S ,  = 1 - (1 - a ) B -  (1 - K )  aB  2" (19) 

With the speed-factor (a) set to unity, the gain and 
phase frequency response curves for the stimulus to 
response digital transfer function were computed for. a 
variety of scalar values (k) of the model inaccuracy 
transfer function K and are presented in Fig. 5. A 
scalar value of K (other than 1) represents an 
inaccuracy in the gain of the inverse internal models. 
Whereas in the error to response transfer function (16) 
K appears only as a multiplying factor, in the stimulus 
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Fig. 5. Gain and phase frequency response curves plotted on 
semilog axes for the stimulus to response digital transfer function 
(19) for various scalar values (k =0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.6, 1.8) 
of the model inaccuracy transfer function (K) and with the speed- 
factor a = 1. Gain is plotted in decibels, phase in degrees and 
frequency is normalized as a proportion of the sampling fre- 
quency (l/Tp) 

to response transfer function (19) it also appears in the 
denominator and so alters the dynamics of the perfor- 
mance characteristics. When the change in R is greater 
than the change in R* (that is, k >  1), the stimulus to 
response transfer function is underdamped and a 
resonant peak appears in the gain curve at a frequency 
equal to one quarter of the sampling frequency (Fig. 5). 
Conversely, when k < l ,  the stimulus to response 
transfer function is overdamped and the response 
movements are sluggish. When the model inaccuracy 
transfer function is either negative or greater than two 
(that, k is outside the range 0_<k_<2), the stimulus 
to response transfer function is unstable. For  example, 
when k > 2, the amplitude of the actual response is 
more than twice the amplitude of the desired response. 
When the subject attempts to correct the alignment 
error between the target and response marker, the 
correction causes an even greater overshoot in the 
opposite direction. Consequently, a series of correc- 
tions with increasing overshoot develops, leading to an 
unstable oscillation at a frequency equal to one quarter 
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(EWMA) low-pass digital filter 

of the sampling frequency. Such oscillations are rarely 
seen in practice, however, because the subject usually 
responds by greatly reducing the speed-factor of the 
preplanned desired response. If the speed-factor re- 
duces to near zero then blocking or freezing of the 
response occurs. Moreover, as proposed in Adaptive 
Model Theory, the human CNS rapidly corrects errors 
in its stored internal models. When k < 0, any attempt 
to correct an alignment error will cause the response 
marker to move in the wrong direction, producing an 
even larger error. The system is unstable and will be 
driven into saturation. Such an unstable response can 
sometimes be seen, for example, when the subject 
confuses the target marker for the response marker. 

When the inverse internal models in the RE-stage 
are assumed to be accurate (that is, K = 1), the stimulus 
to response digital transfer function (19) can be simpli- 
fied to 

aB  2 

RJSt- 1 - (1 - a)B" (20) 

Comparison with (8) shows that the stimulus to 
response digital transfer function (20) is equivalent to a 
response time delay equal to two planning intervals 
connected in cascade with an exponentially weighted 
moving average digital filter, as illustrated in Fig. 6. 
The gain and phase frequency response curves for this 
transfer function have been computed for a variety of 
values of the speed-factor (a). These gain and phase 
curves (Fig. 7) show that when a subject reduces the 
speed-factor below unity, in an attempt to improve the 
accuracy of tracking responses by slowing each sub- 
movement and making more submovements to the 
target, the effect on the stimulus to response perfor- 
mance characteristics is equivalent to introducing a 
low-pass exponentially weighted moving average filter 
between the stimulus and response signals. The high 
frequency response movements are attenuated and the 
phase lag of the response signal behind the stimulus 
signal is increased. 



110 

GAIN OB o=I.8 
5 o=1.6 

o=1.4 
0 o=1 .0  

a=O. 8 

-5 o=O. 6 

-10  o=O. 4 

- 1 5  
o=0.2 

-20  
0,0.3 0.05 0. I 0 . 2  0,~ 

NORMALIZED FREQUENCY 

PHASE 
I'l r ,. 

-40 

-80 

%~'1e. 6 
-120 o=0.8 / , , / ~ < , , , ~ . ~ ~ . , / -  o=I. 4 

-16o o:O. 6 / ~ ~ \ \ ~ % .  

-200 a=O. 2 "x~x~" ~ 

-240 

-2ec o . o 5  . . . .  o:1 o:3 
NORMALIZED FREQUENCY 

Fig. 7. Gain and phase frequency response curves plotted on 
semilog axes for the stimulus to response digital transfer function 
(20) for various values of the speed-factor (a = 0.2, 0.4, 0.6, 0.8, 1.0, 
1.4, 1.6, 1.8) and with accurate inverse internal models. Gain is 
plotted in decibels, phase in degrees and frequency is normalized 
as a proportion of the sampling frequency (1/Tp) 

If it is assumed that the inverse internal models in 
the RE-stage are accurate and that the subject makes 
fast correction movements with a speed-factor equal to 
unity (that is, K = 1 and a = 1), the stimulus to response 
digital transfer function (19) simplifies to 

R / S t = B  2 . (21) 

The response signal simply equals the stimulus signal 
with a response time delay equal to two planning 
intervals (2Tp). From (20) and (21) it can be concluded 
that when the response signal is generated with a 
speed-factor equal to unity (that is, the subject corrects 
the error in a single submovement with a duration 
equal to the planning interval Tp), the movement of the 
response marker reproduces the motion of the target 
with a response time delay. On the other hand, if the 
subject employs a tracking strategy in which the speed- 
factor is set to a value other than unity, the movement 
of the response marker does not exactly reproduce the 
motion of the target and the response signal contains 

R• 

Kcd3 2 

l-(l-a)B-aB 2 

R• 
v-  

Fig. 8. Information flow block diagram illustrating a sampled 
data servosystem model of a pursuit tracking task. The open- 
loop digital transfer function is the error to response digital 
transfer function (16). The closed-loop digital transfer function, 
CLTF=G/(1 +GH), is identical to the stimulus to response 
digital transfer function (19) derived in the text 

attenuation and phase distortion relative to the stimu- 
lus signal, as well as a response time delay. 

Servosystem Model of Tracking Behavior 

As discussed earlier, scalar inaccuracies of the inverse 
internal models in the RE-stage alter the dynamics of 
the stimulus to response relationship and can cause the 
system to become unstable. In the region of stability, 
however, the gain and phase curves of the stimulus to 
response relationship are relatively insensitive to in- 
accuracies in the internal models at very low frequen- 
cies, as can be seen in Fig. 5. This phenomenon can 
be attributed to the action of negative feedback (that is, 
at very low frequencies the subject has sufficient time to 
detect and correct execution errors) and is consistent 
with a sampled data servosystem model of tracking 
behavior illustrated in Fig. 8. It can be shown that the 
closed-loop transfer function for the sampled data 
servosystem in Fig. 8 is identical to the stimulus to 
response relationship (19) derived above. Consequent- 
ly, a useful extrapolation from Adaptive Model Theory 
is that the error to response relationship (16) can be 
regarded as the open-loop digital transfer function and 
the stimulus to response relationship (i 9) as the closed- 
loop digital transfer function in the sampled data 
servosystem model of tracking behavior shown in 
Fig. 8. 

Validity of Theoretically Derived 
Performance Characteristics 

Many predictions concerning various aspects of track- 
ing behavior can be derived from the theoretical 
account presented above. To a first approximation at 
least, the theoretically derived performance character- 
istics account for the behavior of subjects in tracking 
tasks. This can be demonstrated by comparison with 
the empirically determined "crossover" model of track- 
ing behavior described by McRuer and Krendel 
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(1959a, b, 1974) and McRuer (1980). These authors 
studied compensatory tracking tasks using a variety of 
tracking systems with different transfer functions (gain, 
gain plus integrator, gain plus double integrator, gain 
plus integrator plus first-order lag filter). They showed 
that the form of the experimentally measured error to 
response open-loop transfer function was invariant 
and that it was insensitive to changes in the response 
characteristics of the tracking system. Regardless of the 
characteristics of the tracking system, the response was 
always proportional to the integral of the error signal 
with a reponse time delay, as shown by the continuous 
transfer function (S = Laplace transform operator) 

f O  c e - "cs 

Y;Y~- S ' (22) 

where Y~ is the transfer function of human operator, Y~ 
the transfer function of tracking system, o~ c the gain, z 
the response time delay, and 1/S the integrator. 

In other words, the operator's input-output char- 
acteristics Yp are adaptively adjusted to compensate 
for the characterist ics  of the tracking system Yc, so that 
the overall characterist ics  YvYc remain invariant and 
equivalent to a gain, an integrator and a time delay 
connected in cascade. 

When rearranged as shown in (23), this experi- 
mental result implies that the human operator com- 
pensates for the dynamic responsiveness Yc of the 
tracking system by forming an inverse internal model 
y j l  of the tracking system, just as proposed in 
Adaptive Model Theory. 

mce-~S " Yc- * . (23) 
Y'= S 

If the gain of the tracking system is doubled, the gain of 
the operator is halved; if the tracking system includes 
an integrator, the operator incorporates a differen- 
tiator; if the tracking system includes a phase lag filter, 
the operator behaves like a phase lead filter, etc. The 
empirical observation that the performance character- 
istics of the human operator are adapted in this way 
supports the fundamental hypothesis of Adaptive 
Model Theory, namely, that the human CNS includes 
neuronal circuitry to compute, store in memory and 
adaptively maintain the accuracy of inverse internal 
models of the dynamic responsiveness of the controlled 
system (tracking system in this case). Furthermore, the 
form of the invariant open-loop transfer function (22), 
measured experimentally, is the continuous signal 
equivalent of the sampled data digital transfer function 
(17) derived above. The continuous transfer function 
(22) states that the response signal is proportional to 
the integral of the error signal with a response time 
delay. The digital transfer function (17) states that the 

response signal is equal to the summation of the 
sampled error signal with a response time delay. 

McRuer and Krendel found that although the 
experimentally measured form of the open-loop trans- 
fer function was invariant, the estimated values of the 
gain co c and the time delay v in (22) depended on a 
variety of task, environmental, procedural and subject- 
centered variables. In measuring the effects of training, 
for instance, they found that coc increased with trials 
until a stable value was obtained for a particular 
subject and set of conditions. This is consistent with the 
theoretical influences of model inaccuracies and speed- 
factor variations on the error to response digital 
transfer function (16) discussed earlier. Thus, the 
empirically determined crossover model, the adaptive 
behavior of the human operator and the underlying 
invariant performance characteristics, as well as the 
effect of training, all are consistent with the perfor- 
mance characteristics derived from Adaptive Model 
Theory. 
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