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Abstract. By introducing a physiological constraint in 
the auto-correlation matrix memory, the system is 
found to acquire an ability in cognition i.e. the ability 
to identify an input pattern by its proximity to any one 
of the stored memories. The physiological constraint 
here is that the attribute of a given synapse (i.e. 
excitatory or inhibitory) is uniquely determined by the 
neuron it belongs. Thus the synaptic coupling is 
generally not symmetric. Analytical and numerical 
analyses revealed that the present model retrieves a 
memory if an input pattern is close to the pattern of the 
stored memories; if not, it gives a clear response by 
going into a special mode where almost all neurons are 
in the same state in each time step. This uniform mode 
may be stationary or periodic, depending on whether 
or not the number of the excitatory neurons exceeds 
the number of inhibitory neurons. 

1 Introduction 

Many intriguing mathematical models for the associa- 
tive memory of the human brain have been suggested 
in the last three decades. Though the relationship 
between such models and the real nervous systems is 
yet to be clarified, one of the promising and interesting 
models is the correlation matrix memory, which has 
been studied intensively by many researchers (Koh- 
onen 1972, 1984; Kohonen et al. 1976; Nakano 1972; 
Anderson 1972; Cooper 1973; Amari 1977; Little and 
Shaw 1978; Hopfield 1982, 1984). 

The auto-correlation matrix memory is character- 
ized by a rapid retrieval of its own memory when it is 
closely related to an applied input pattern. The process 
of the retrieval was discussed by Hopfield (1982) who 
adopted an asynchronous processing algorithm ap- 
plied to tlae system composed of the McCulloch-Pitts 
or binary elements. The dynamics then bears a strong 
resemblance to the Monte-Carlo relaxation processes 
of the spin glasses at zero temperature, where the 

evoiution proceeds until the system fnds one of the 
local minima of the Lyapunov or the energy function. 
Hopfield also estimated the limit of the ratio between 
the number of memories M to the total number of 
elements N, as �9 = M/N..~ 0.15, below which the system 
can retrieve stored memories almost correctly (see also 
Amit et al. 1985). 

In spite of a number of its interesting properties, 
what is called the Hopfield model still has plenty of 
room for improvement. Various attempts appeared 
which led to some improvements of Hopfield's theory 
(Hopfield et al. 1983; Fukushima 1984, 1986; Dot- 
senko 1985; Parga and Virasoro 1986; Tsuda et al. 
1987). Among others, we take up here the problems of 

(a) how to include physiological constraint, and 
(b) how to provide the system with the cognitive 

ability to distinguish whether or not an input signal is 
close to any of the stored memories. 

There have been several attempts about these. It 
was pointed out that (a') the retrieval is possible even in 
the presence of a physiological constraint such that 
each synaptic coupling does not change its sign in the 
course of learning (Toulouse et al. 1986; Personnaz et 
al. 1986; Buhman and Schulten 1986), and (b') the 
cognitive ability such as (b) is possible by adding an 
asymmetric random matrix to the Hopfield coupling 
(Parisi 1986). These attempts, however, appear to be 
still insufficient for the full resolution of the problems 
(a) and (b). 

The physiological constraint in the mammalian 
central nervous system is supposed to be stronger than 
that of the previous models proposed in relation to (a'). 
It is found from physiological observations that the 
attribute of a given synapse (i.e., excitatory or in- 
hibitory) is mainly determined uniquely by the kind of 
neuron it belongs (Eccles 1977; Kuffier et al. 1984). The 
so called Dale's principle states that the same trans- 
mitter is liberated from all synapses belonging to the 
same neuron. Though the exceptions to Dale's prin- 
ciple have been found, it may be said that in most cases 
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the attribute of the synaptic coupling, apart from the 
kinds of chemical transmitters, is uniquely determined 
by the neuron which sends signals. 

A model under the above physiological constraint 
is proposed in the present paper. The statistical 
dynamics of some macroscopic quantities in the syn- 
chronous processing algorithm is investigated analyti- 
cally by a generalized version of Amari and Kinzel's 
method which was originally developed for the syn- 
chronous processing of the auto-correlation matrix 
memory (Amari 1977; Kinzel 1985). As a result, it is 
found that our model system may have an additional 
global basin or a pair of the global basins apart from 
the basins of stored memories. An input pattern which 
has almost no correlation with any of the stored 
memories (i.e. the pattern which is out of basins of 
memories) eventually approaches a special mode 
which is irrelevant to stored memories. This irrelevant 
mode is characterized by the simultaneous firing or 
resting over almost all neurons in each time step. We 
shall call this a uniform mode. The firing or resting 
state persists in the excitatory-dominant case, which 
means the number of excitatory neurons exceeds the 
number of inhibitory neurons. Contrary to this, in the 
inhibitory-dominant case, the system becomes 
periodic where the firing and resting states appear 
alternatively. Some underlying mechanisms of micro- 
scopic origin is investigated by numerical simulations. 
It is found that our model actually works even better 
than expected from analytical arguments. Thus the two 
problems (a) and (b) are resolved simultaneously in our 
model. 

The present paper is organized as follows. In 
Sect. 2, the Hopfield model is introduced, and its 
statistical dynamics of the process of retrieval is 
described. Our model is introduced in Sect. 3. We shall 
discuss the statistical dynamics of the macroscopic 
quantities, leaving its derivational details to the Ap- 
pendix. Bifurcation scenario leading to the coexistence 
of the basins of retrieval and uniform mode is derived. 
In Sect. 4, some results of our numerical experiments 
are shown and compared to the same calculation using 
the Hopfield model. Thus, some advantages of our 
model compared to previous models become clear. 
Discussions on our model in relation to real nervous 
systems are presented in the final section. 

2 Process of Retrieval 
of the Auto-Correlation Matrix Memory 

2.1 The McCulloch Pitts Model of a Neuron 

Each element is assumed to have two states whose 
symmetric representation is 

S + 1 : j-th neuron is firing, 
s~ 

[ - -  1 : non-firing or resting, (j = 1 .... , N). 

The firing neuron sends its signal to the others via its 
synaptic coupling, and the post-synaptic potential of 
the i-th neuron aroused by the j-th neuron is given by 
Kij x (s j +  1), where 2Kij or K~j is the synaptic strength. 
Each neuron fires if and only if the sum of such post- 
synaptic potentials or a membrane potential, 

U~= ~ Ko(s~+ 1), exceeds its own threshold value H v 
J 

Thus, each element readjusts its state according to the 
rule 

si ~ sgn(vi) , (1) 

if the reduced input signal, v~=~Ko(s j+l ) -Hi ,  is 
J 

finite. For the sake of simplicity, we shall rewrite the 
input signal as 

vi = Y. K i f l i - -  Li,  (2) 
J 

where Li = H i -  Z. Kij is the reduced threshold value. 
J 

2.2 Modes of Processing Algorithms 

There are two representative modes of processing 
algorithm for the evolution rule (1). In the synchronous 
processing algorithm, the rule (1) is applied simulta- 
neously to all the neurons or 

si(t + 1) = sgn(vi(t)), 

J 

The set of the above equations is a nonlinear trans- 
formation of the vector, s(t)=(sl(t), ..., sN(t)), to ano- 
ther vector s(t+ 1), i.e., 

s(t + 1) = f(s(t)), (3) 

where, f(s)= sgn(v), and v= K s - L .  Let us remark here 
some symmetry included in this rule. The total input 
signal v changes its sign if s and L are inverted in sign 
simultaneously. Thus if {s(t)}t is the solution of the 
evolution rule (3) of a system with parameters {K "~, L}, 
then { -  s(t)}~ is the orbit of the dual system character- 

ized by {~, -L} .  In the case L=0 ,  the system is self- 
dual. Then, for any orbit {s(t)}~, the system at the same 
time possesses an orbit { - s(t)}r These two orbits may 
be separated from each other, or otherwise fused into 
one limit-cycle of even period. 

Secondly, in the asynchronous processing algo- 
rithm, the rule (1) is applied randomly to every neuron 
at a given time with the mean attempt rate W(< 1). No 
symmetry as mentioned above exists, but in statistical 
sense such symmetry may be restored. 
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2.3 The Auto-Correlation Matrix Memory 
or the Hopfield Model 

The auto-correlation matrix is an ad-hoc choice of the 
synaptic coupling as 

f(1/N) ~ s~")s} m), if i # j ,  

TU = / 0, otherwise, (4) 

where, s (m) = (s]"), ..., s~ ")) is the m-th firing pattern to be 
memorized in the network (m = 1,..., M). The factor 
(l/N) in (4) is inserted simply to normalize the input 
signal and is irrelevant to the dynamics in the systems 
without noises. We have introduced the notation T~j in 
place of Kij in order to avoid confusion because the 
same notation K~j appears in our model to be presen- 
ted in Sect. 3. 

Assuming the mutual independence of the mem- 
ories, we have a pseudo-orthogonality; 

~ s}")s}U)/N = 5.,. + (1 -- 8,,u)0(1/~/-N). 
3 

If one applies one of the memories s = s (") as an initial 
input pattern, the reduced input signal to the i-th 
neuron becomes 

v, = ") - L ,  +_ O Y )  . (s) 

Thus in the case a = M / N ~ I ,  it is possible by 
choosing L = 0 to let each of the memory pattern be a 
fixed point. Hopfield pointed out that a Lyapunov 
function which decreases monotonically until the 
system finds its stable fixed point exists, provided the 
coupling is symmetric, i.e. T/~= Tji , and the processing 
algorithm is asynchronous. It was also found that each 
memory pattern becomes a global attractor if c~ <0.15 
and thus a small difference of an initial pattern s from 
s ~u) is washed out in the course of the processing 
(Hopfield 1982). This process is called the retrieval of 
the memory or the association. 

2.4 Process of  the Retrieval 

Process of the retrieval in the autocorrelation matrix 
memory was analysed by Amari (1977) and Kinzel 
(1985) though in the synchronous processing algo- 
rithm. Before making use of this idea for our case (which 
will be done in the next section) we review it with some 
modifications. 

Let us define a direction cosine c, between a pattern 
s and a memory pattern s ("), by 

c u = s. s(U)/N = (l/N) y sfl} u) . (6) 
J 

Some otffer macroscopic quantities are related to this 
quantity, e.g., direction angle ~ =arccos(c,), and the 
Hamming distance Du = N(1 - c~)/2. 

Let us next define a referenced input signal u = {ui}i, 
for a specific test pattern x, as ui = xivi, where x~ = + 1 
or - 1 and v~ is the input signal to the i-th neuron (2). 
Thus the test pattern x is identical to the resulting 
pattern g if all uz's are positive. For general x, the 
direction cosine between x and g is given by 

x .  g in  = (l/N) ~ sgn(xivi) = -oo ~ du~(u) sgn(u), (7) 

where 

0(u) = (l/N) Y 6(u-- ui) (8) 
i 

is a normalized distribution function of u~'s. The above 
direction cosine is identical to the resulting direction 
cosine G if we put x = s  <"). 

The problem of finding the evolution process of c u 
for specific s and *~ is equivalent to the problem of 
finding original evolution for s (3). One will find, 
however, some simplification for the statistical evo- 
lution of c u if one introduces an ensemble of the set of 
memory patterns {s("~ Assume the statisticaI inde- 
pendence between the elements of the vector, i.e. 

where the square bracket represents an average oper- 
ation over the ensemble, with the restriction that 
s. s(U)/N is kept constant at the value % or more 
strongly, 

I fN >> 1, we may safely approximate 0(u) by the normal 
distribution; 

e(u)=(~/2-~ Auu) -1 expE-(u-~u)z/2(Auu)Z] , (9) 

where the mean value and the variance ofui are readily 
evaluated as 

G = = c . ,  

( A u . )  2 - -  <(u i --  ag)2  >eu = M/N = c~, 

the terms of O(1/N) being neglected in the above. 
Thus we finally get the evolution equation for the 

direction cosine G(t) in the form of a map 

cu( t '+ ' l )=  i d x e - X ~ / 2 ,  (10) 
0 

where vu =~u/Auu=c,(t)/]/~. The right-hand side is a 
monotonically increasing function of G and thus the 
map shows a pitchfork bifurcation only once as ~ is 
decreased. A trivial fixed point cu = 0 becomes unstable 
if ~ = M / N  < ~ = 2/re, and then, a pair of stable fixed 
points cu = c* (>  0) and - c* (<  0) appear. The ap- 
pearance of the pair implies the appearance of the 
global multibasin structure for all #'s. Especially, in the 
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case e ~ 2/re, c* is near unity and the Hamming distance 
is small. The critical parameter value e~ = 2/zc,-~ 0.64 is 
large compared to the criterion of Hopfield, e,-~0.15, 
for which the fairly good proximity of the retrieved 
pattern to the memory is required. 

3 Cognitive Memory Composed 
of Excitatory and Inhibitory Neurons 

3.1 Model 

We assume that the sign of the synaptic coupling is 
uniquely determined by the alternative attributes of 
the neurons which send signals, as discussed in Sect. 1. 
In other words, the sign of the synaptic couplings {Kij}i 
is the same over all i's for a given j. We shall note 
(~= + 1, if Kij>0 and then the j-th neuron is called 
excitatory; if ~j = - 1 ,  (i.e. if K~j < 0) the j-th neuron is 
called inhibitory. This property should be contrasted 
to the previous heterogeneous neuron, whose synaptic 
couplings may be positive or negative for a givenj (see 
Fig. 1). 

We take this fact into account and assume 

Kij= 2TijO(~jTifl , (11) 

where Tij is the synaptic coupling of the Hopfield 
model (4) and O(x) is the Heaviside step function 
(O(x)= 1, if x >= 0 and = 0, otherwise). Here, the cou- 
pling T~; which is not obedient to the attribute of the 

(a) (bl) (b2) 
Fig. la  and b. Diagrammatic representation of neurons. Central 
circle and line represent the cell body and axon while initial 
segment of the axon is sometimes omitted. Excitatory and 
inhibitory synapses are represented by zx and ,L, respectively. 
Signal produced in the cell body is transmitted to the other cells 
via axon. a A neuron with heterogeneous attributes, bl  and h2 
Excitatory and inhibitory neurons we shall adopt in the present 
model 

(b) 
(a) . 

Fig. 2a and b. Examples of the diagrams of the neural networks of 
N = 6. a An example of the Hopfield model { T~j}, b coupling {K~j} 
formed from the { To- } by our rule (~ = 1 for i = 1, 2, 3, and - 1 for 
i=4, 5, 6) 

j-th neuron has been made to vanish (see Fig. 2). The 
numerical factor 2, appearing above is simply to 
normalize the input signal and is again irrelevant to the 
present processing algorithm without noises. The 
reduced threshhold Li is assumed to be zero. We 
consider the case that the excitatory and inhibitory 
neurons are distributed independently. An additional 
parameter characterizing this system is the number of 
inhibitory neurons, NI, or that of excitatory neurons, 
NE. For the sake of symmetric representation, we 
introduce a parameter q by 

q = (N E -  N I ) / N  = ~, ~j /N,  - 1 ~ q ~ 1. (12) 
J 

3.2 Preliminary Consideration 

Though the coupling in our model is asymmetric the 
retrieval is still possible. The i-th input signal obtained 
by the application of a memory pattern s = s (u) is 

(m) (#) (t) (l) 

In the absence of correlation between ~j and T~j, the 
argument of the Heaviside step function may be 
positive or negative with equal probability. Thus the 
above quantity is estimated as 

vf ~ sl ~'~ +_ O( 2lf2MIN). (13) 

Note that the magnitude of the fluctuation of vf differs 
from that of the Hopfield model by the factor V ~. This 
is because the effective number of summands is reduced 
to the half of N due to the presence of the Heaviside 
step function. Still the retrieval of the memory seems 
possible also in our model. 

On the other hand, in the presence of imbalance 
between the populations of excitatory and inhibitory 
neurons, which means q # 0, our model with synchron- 
ous processing algorithm may have other fixed points 
or a limit cycle orbit irrelevant to the stored memories. 
For instance, by the application of 1 =(1, ..., 1) as an 
input pattern, the input signal becomes 

J 
~ y, T,j[(1 +q)O(T,)+(1 -q)O(- T, ) ] .  

J 

If Tifs are equally distributed around zero with 
variance (AT) 2 =(V'--M/N) 2, then v + is approximately 
given by 

v~ ~.,qV'-2-M + O ( ~ / N ) .  (14) 

Thus if0 < q <~ 1 (excitatory-dominant) there is a pair of 
fixed points, s * ~ l  and -1 .  On the contrary, if 
0 > q > ~ -  1 (inhibitory-dominant), the system has a 
periodic solution with period 2 such that 1 and - 1  
appear alternatively. 
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3.3 Statistical Dynamics of  the Direction Cosines 

From the above preliminary consideration, the 
existence of two kinds of global attractors are ex- 
pected: one corresponding to the retrieval of the 
memories and the other to the uniform mode. 

One may find statistical dynamics of the set of 
direction cosines c, and c + defined by 

c. = s .  s(")/N, (15) 

c+ =s-1/N,  (16) 

under the condition that the direction cosine %+ 
between s t") and 1 is fixed at some value (see Fig. 3). We 
leave the exact derivation of the map of 

e(t)=(c,(t), c +(t)) r (17) 

to the Appendix, and discuss the resulting dynamics, 
especially in the case c~ + = 0. 

The referenced input signals u~' and u + whose test 
patterns are d~) and I repectively are characterized by 
their means, 

f t+=q 2 f fMc + ,  

and variances, 

((uf-- ~Tg) 2) = q22M c2+ + 2 M / N  , 

((ui + - tT+) 2) = c~ + 2 M / N ,  

( (u~-- a.) (u~- -- a + ) ) = q V~--h~ c.c + , 

where cu and c+ stand for the set of the direction 
cosines of the input pattern s(t), i.e., c.(t) and c+(t). 
Then the two-dimensional map of e(t) is obtained as 

c~(t + 1) = $ ~ du~du + O(u,, u +) sgn(u,), (18) 

c+(t+ 1) = ~ duudu+o(u,, u+) sgn(u+), (19) 

where Q(uu, u+ ) is the normal distribution with the 
means and variances given above. Let this nonlinear 
map be expressed by 

e(t + 1) = g(e(t)). (20) 

S 

~+ 

1 

Fig. 3. Schematic representation of the vectors in N-dimensional 
vector space 

In the equations for the means and variances, c+ is 
always accompanied by q which may be positive or 
negative, and the map may exhibit a subharmonic 
bifurcation leading to the periodic motion of period 
two. The sign of q becomes irrelevant if we consider the 
iterated map, 

c(t + 2) = G(c(t)) = g(g(c(t))). (21) 

Let the fixed point of this map G be denoted by e*, i.e. 

c* = G(e*). (22) 

The linearized map around this fixed point is 

6e(t + 2) = ~ - - c  ] 6e(t) 
c* 

='Sg/a~ I 8g'b~ I fie(t). (23) 
g(c*)  c* 

The map has a trivial fixed point at the origin, 
( ) 

c*= 0. Here, the matrix [dG/3c] is diagonal and has 
the eigenvalues, l/tea and 2q2M/na. Thus the origin is a 
stable node if 1/~ < a and M < nc(/2q 2. When one of the 
above inequalities is reversed as the change of the 
parameters (N, M, and q), a pair of nodes appear on the 
instability axis through the pitchfork bifurcation, and 
the origin becomes a saddle point. Next, the origin 
becomes an unstable node if 

1/rc>a and M>rcsq2q 2, (24) 

and a pair of saddle points appear on the second 
instability axis. The scenario is depicted schematically 
in Fig. 4a-c. The symmetry of these bifurcations comes 
from the self-duality explained in Sect. 2.2 and the 
condition c~+ =0. 

The most interesting case appears after each saddle 
point on the axis of the second instability becomes a 
stable node by producing a pair of saddle points (see 
Fig. 4d). This final flow diagram implies the coex- 
istence of the basins corresponding to the retrieval and 
the uniform mode. Thus, if we choose the parameters 
so as to make the basins of retrieval sufficiently small, 
our system has a cognitive ability to distinguish 
whether or not an input signal is close to any one of the 
memories. In the uniform mode, almost all the neuron 

(a) (b) (c) (d) 
Fig. 4a--d. Bifurcation scenario leading to the coexistence mode 
(from a to d). In each flow diagram, I, t~, and z~ represent stable 
node, unstable node, and saddle point, respectively. Shaded 
region in d is the basin of retrieval if the horizontal axis is c, 
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states are identical. They are fixed in time in the 
excitatory-dominant case (q > 0) or shows a flip-flop 
motion with time in the inhibitory-dominant case 
(q < 0). 

Finally, let us derive the stability conditions for the 
retrieval state (c*, 0) and the uniform mode (0, c*). The 
off-diagonal elements of the matrix [TG-~] vanish in 
each of the fixed points, and the eigenvalues are 

1/7C~" exp(--c~*2/2~), and 4q2M/[~(2~+c*2)], (25) 

for the fixed point (c*, O) and 

1/[n(o~+qZMc*2)], and 2qZM/~zc~ 
x exp(-- c*2qZM/e), (26) 

for the fixed point (O,c*). In order to get the flow 
diagram as in Fig. 4d, all of these four quantities should 
be smaller than unity, while the origin should be an 
unstable node (24). 

4 Numerical Experiments 

Though we obtained the statistical dynamics of some 
macroscopic quantities, a more detailed mechanism of 
a microscopic origin still remains unclear. For in- 
stance, although the statistical dynamics of the Hop- 
field model implies the existence of the global basins of 
retrieval in ~ < 2/re, there are at the same time a number 
of local basins which we call spurious memories. In the 
computer simulations of the deterministic processing 
of our model, we also found spurious memories other 

than the uniform mode, especially in the parameter 
region where the coexistence of retrieval and uniform 
mode is possible (Fig. 4d). It was found, however, that 
our model system can remove many of the spurious 
memories by choosing the parameter q so that the 
retrieval state (c*,O) is slightly unstable against the 
direction of c + (Fig. 4c). In the actual simulations, our 
system is able to retrieve its memories even in this 
parameter region. For instance, we shall investigate the 
cases such as q=  +0.5, N = 2 0 0  and M=10.  It is 
readily found that the second eigenvalue in (25) is 
larger than unity for this set of parameters. 

We prepared the synaptic coupling according to 
(11) with the memory patterns chosen randomly. Input 
pattern is arranged in a random manner for each of the 
Hamming distances from a memory pattern s ("). Here 
the direction cosines c§ c,, (m#:#), and c~+ are not 
taken into consideration for the choice of the patterns, 

and thus they are expected to be _ O(1/I/N), respec- 
tively. Note that the present case does not exactly 
correspond to the previous analysis, because c, + is not 
exactly zero. After z time steps of the synchronous 
processing of the system, the direction cosines c,(z) and 
c+('c) and a reversion-activity are calculated. The 
reversion activity is defined as the ratio of the number 
of neurons which should flip in the next time, i.e., Na(z) 
= Z 0(-s,(z)vi(z)), to the total number of neurons N. 

m 

Usually, the state s(0 of the system enters a final 
limit cycle or a fixed point after transient steps of 0(1) 
in the present model. In general, there may be transient 

N= 200 M= 10 

SYMM ECI,0= 0.50 

-1 CNU-INIT. 1 

'! - I  CNu-INIT. I 

- i  CMU-INIT. 

~ CMU-INIT. 

L~I :.-- 

=:oi 
-1 CMU-INIT. 

-I 
~G 

C~ 
-I CMU-INIT. 

E&I,O= 0.00 

- I  CMU-INIT. 

-1 CMU-INIT. 

N 

I.~/ F-.- 
=m- C.) 
talC::: 
m"C~ 

-1 CMU-INIT. 

ECI,Q: -0 .50 

iU 
-! CMU-INIT. 

o /  
- I  CMU-INIT. 

-1 CMU-IN[T. 

Fig. 5. Results of numerical 
simulations of the Hopfield model 
and the present model (N = 200, 
M = t0). Horizontal axis for each 
graph stands for the direction cosine 
c~(0) of the input pattern. See the text 
for further detail 



or chaotic phenomena where the transient length or 
the period of a final limit cycle orbit is of the non- 
polynomial order of N (Shinomoto 1986a). The latter 
problem is not the matter of present concern, and the 
processing of steps of O(10) is sufficient to eliminate the 
transient. In the present calculation, z = 20. 

One of the results of our simulation is shown in 
Fig. 5. The direction cosine c,(-c) and the root mean 
square of the direction cosine c+(z), and the reversion 
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activity are shown in each row, where the bar means 
the average over 10 samples. The first column is the 
result of the Hopfield model. The results of our model 
for several values of parameter q are drawn in the right 
side. 

Previously mentioned cognition ability is observed 
in our model for q=0.5 and -0.5. In fact, in both the 
excitatory-dominant and inhibitory-dominant cases, 
the mean square of c+ shows a marked increase for 

5u I C E HOPF I ELD ] 
N= 200 M= 20 

H~MM. 0 H~MM. 25 H~MM. ~0 

. ~ 

HFIMM. 7~ HRMM. I00 

I ~ '~ iz~,k ~ ~ ~ ;L.~, 

/~.~ ~:~ ~ ~ ~ ~ 

EX. ~ INH. [PRESENT MODEL] 
N= 200 M= 20 O= -0.~0 

HFIMM. 0 

�9 .,, ~ " ~  

HF:IMM. 25 HIZIMM. 50 H~MM. 75 

~'~ ~ 

HRMM. I00 

Fig. 6a and 5. Retrieval processes of a the Hopfield model and b the present model (N =200, M =20). It is observed that the indistinctive 
patterns are finally trapped by a spurious memory in the former model, while they get into the uniform mode in our model. The number 
following to the character "HAMM." is the Hamming distance of the input pattern from the specific memory designed as "memo" 
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small [cu(0)l. Thus the input pattern which is not 
associated with any of the memories is washed out to 
give a uniform pattern. In the inhibitory-dominant 
case q=  -0.5,  the final uniform mode is the periodic 
state oscillating between the uniformly firing state and 
the uniformly resting state. Thus the graph for the 
reversion-activity in this case is similar to the one of 
mean square of c§ 

Finally, some of the simulation results on the 
Hopfield model and ours are compared in Fig. 6. We 
prepared a specific memory pattern "memo", while 
other memory patterns are chosen randomly. We have 
shown how the input pattern changes when its initial 
state is chosen randomly with the Hamming distance 
to the pattern fixed at each value. Some differences 
between the Hopfield model and ours arise when the 
initial input pattern largely deviates from the memory. 
In the Hopfield model, the pattern is then trapped by 
one of the spurious memories, while in our model the 
system assumes a uniform pattern. The latter is 
considered as the system's clear statement that the 
input pattern is not identifiable. 

5 Discussion 

We thus succeeded in obtaining a cognitive and 
associative memory by introducing the physiological 
constraint into the previous auto-correlation matrix 
memory. What we call the cognitive ability is the 
ability to identify an input pattern by its proximity to 
any one of the stored memories. Our system shows a 
clear response if the input is indistinctive to any of the 
memories. This point seems to be a great advantage 
compared with the Hop field model in which the 
indistinctive pattern is eventually trapped by a spuri- 
ous memory or otherwise any one of the memories is 
forced to be taken out. 

Here, we note the relationship between the math- 
ematically simple McCulloch-Pitts elements and real 
neurons. A real neuron takes roughly three states, i.e. 
firing, refractory, and resting states. During the retrac- 
tory period of O(1 ms) after firing, a neuron is unable 
to fire or depolarize even if other firing conditions are 
satisfied. A signal produced by firing is transferred to 
the other neurons with a synaptic delay of 0(1 ms). 
There are several mathematical models which takes 
the above fact into account (see for instance, CaianMlo 
1961). Then, the theory becomes highly complex 
compared with the present treatment. It would be 
possible, however, to avoid the difficulty by introduc- 
ing the asynchronous processing algorithm with noises 
(Perreto and Niez 1986; Shinomoto 1986b). 

First, we shall discuss the asynchronous processing 
of our model. The statistical dynamics in Sect. 3 can be 

extended to this case as far as the macroscopic 
quantities such as direction cosines are concerned. We 
generalize the evolution equation for the direction 
cosines (21), as 

c(t + 1) = Wg(e(t)) + (1 - W)c(t). 

Each fixed point e* of the original equation (20) thus 
remains unchanged even if0 < W< 1. The main change 
caused by the asynchrony is the stability of the fixed 
point. The symmetry of the iterated map G on q is lost 
and especially, the appearance of the periodic state in 
q < 0 occurs at even smaller q. Note, however, that the 
decrease of W from 1 does not change the period (two) 
of the periodic state. This is because there are only the 
alternative attributes of the neurons, excitatory and 
inhibitory, and this should be contrasted with the case 
where longer period appears (Wilson and Cowan 1972; 
Amari 1971, 1982). 

Secondly, we shall note the reason for the necessity 
of introducing noises. Although a probabilistic nature 
is introduced in the asynchronous processing, the 
algorithm is still too restrictive. In fact, once a fixed 
point s* =f(s*) is attained, the above algorithm no 
longer changes the state. It would be more realistic to 
assume that the rule (1) is obscured in some sense if the 
absolute value of the input signal v, is too small. The 
obscurity here arises mainly from the microscopic 
dynamics of the neuron, and it would be natural to 
substitute some stochasticity for the microscopic dy- 
namics. A possible form of the probability function of 
readjustment is suggested by Little (1974). With the 
inclusion of weak noises, the system can escape from 
the local basin of a supurious memory mentioned in 
Sect. 4, and finally enters a global basin. The escape 
from the global basin will take an enormously long 
time. Thus the flow diagram such as Fig. 4 will remain 
useful as far as the noises are sufficiently weak. 

Though the relationship of our model with real 
nervous systems is yet to be clarified, the existence of 
the uniform mode as obtained in the present study is 
quite suggestive. It is known that the intensity of the 
a-rhythm of the human brain is increased when our 
eyes are dosed. This, for instance, implies some 
similarity of the a-rhythm to our uniform mode of 
inhibitory-dominant cases. Although such a problem 
is still beyond the scope of our study, there may be 
some physiological relevance about the appearance of 
the uniform mode in response to indistinctive inputs. 
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Appendix 

In this Appendix, we shall derive exactly the average and the 
variance of the referenced input signals, uf and u~ +. 

First, we calculate the average of uf and u~ + as 

a a = <<sl")v,>~>c, 

a+ = <<v,)~>c, 

where ( )q and ( )~ represent average operations over the 
distribution of {(~}i and {Stm~}m under the fixed values of q and 
e =(c m c+, ca+ ), respectively. 

By using the integral formula of the Heaviside step function, 

0(x)= Iim - -  do~ e ~ ,  
e~ + o 2~zi - m o~-- ie 

one may reduce tT~ and/2+ as 

where 7 stands for ~ or + and 

h a = (s!a)sj exp (ico2 Tij))~, 

h § = (s j  exp (io)2 To.)) ~ . 

h, and h§ are easily calculated by making use of the relations 

exp (ivsl=~s} m)) = co s v + isl'~)s} m) sin v, 

and 

( s i )~=c+,  

Thus we get 

h r = I-a r cosy + ibv sinv] cos M- 1 v, 

where v = 2r and 

au=c+G,+, and b~,=c~, 

a+ =c+,  and b§ =each+. 

In the final integration, an integral 

A = -  1 -  

appears, where m =In t ( (M-  1)/2). It is easy to find A in the limit 
M>>I, as 

A ~ m -  ~/2 ~ V ~ / M "  

Finally, we obtain 

u ~ = q V ' ~ c + c a +  +C a , 

~t., =q~'2-M c+ +c .c .+  , 

where we have neglected the terms of O(1/N) or O(1/M). 
Secondly, we calculate the second order moments of u~ and 

u~ to obtain the second order cumulants. The method of 
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calculation is similar to the above. After a somewhat lengthy 
calculation we get 

(( u':Z),A = (( u? Z)~)~ = (( u~ ),A 
= q22Mc2+ + 2 q l / ~  c + c~,c~,+ + c2~ + 2 M / N ,  

and 

=q22Mc2+G,+ + 2 q V ~  c+c ~ 

+ c~c~ + + 2M/Nc~  +, 

where we have neglected the terms of O(1/N), O(1/M) or 

O(I /~ /N) .  
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