
Computational Mechanics (1992) 10, 397-413 
Computational 
Mechanics 
@ Sprlnger-Verlag 1992 

A numerical comparative study of wave propagation 
in inhomogeneous and random media 

G. D. Manolis I and A. C. Bagtzoglou 2 
x Department of Civil Engineering, Aristotle University, Thessaloniki, GR 54006, Greece 
2 Center for Nuclear Waste Regulatory Analysis, Southwest Research Institute, San Antonio, Texas 78228, USA 

Abstract. Continuous media through which acoustic or elastic waves propagate often exhibit inhomogeneities of various types 
which are difficult to describe, either due to paucity of detailed physical measurements or to the vast complexity in both space 
and time of these inhomogeneities. The introduction of stochasticity in the description of a continuous medium offers an 
attractive alternative, due to the fact that randomness is able to reproduce the wave scattering phenomena associated with a 
naturally occuring medmm. In this work, the phenomenon of acoustic or elastic wave propagation under time harmonic 
conditions is used as the vehicle through which the assumption of randomness in an otherwise homogeneous medium is 
validated against a deterministic, inhomogeneous medium whose properties vary with depth. The range of applicability of the 
former model is identified through a series of parametric studies and the results are followed by a discussion on the appropriate- 
ness of the various correlation functions that can be used for representing the medium randomness. The numerical methodology 
employed for both deterministic and random models is a Green's function approach for waves propagating from a point source, 
while techniques to account for the presence of boundaries are also discussed. 

1 Introduction 

Wave propagation and scattering in the atmosphere, the ocean, the ground and in biological media 
has become very important in recent years due to widespread applications in communications, 
remote-sensing and detection. Natural media, however, exhibit widespread and often time-varying 
inhomogeneities due to the spatial dependence of their material properties. Inhomogeneity may 
be further accompanied by layering, anisotropy and the presence of inclusions. Furthermore, 
actual measurements of the particular medium properties are often obtained from small samples 
which are relatively homogeneous, thus masking possible abrupt changes that may occur over 
short distances. As a result, representing a particular medium as a homogeneous matrix over which 
certain properties such as density, bulk modulus, etc, exhibit a random variation is an attractive 
proposition requiring a rather modest effort for its description (e.g., Chernov 1962; Ishimaru 1978; 
Dagan 1989). It also offers a broader framework, since the restrictive assumption of homogeneity 
can be subsequently lifted so as to allow for material properties that are both position-dependent 
and random. 

Problems involving a random medium are governed by stochastic differential equations. The 
key assumption (Barucha-Reid 1972) in the solution of such equations is the decomposition of the 
differential operator into a deterministic plus a random part. Then, formal inversion of the deter- 
ministic part is accomplished through the use of a Green's function and the stochastic differential 
equation (with its accompanying boundary conditions) can be recast as a random integral equation. 
A formal solution of the random integral equation can then be accomplished iteratively through 
use of the resolvent kernel, which in turn is defined through a Neumann series expansion. Alter- 
natively, the dependent variable can be expanded in a general series form (Adomian 1983), and the 
conditions under which this expansion is equivalent to the aforementioned Neumann series or to 
a Born approximation are discussed in Benaroya and Rehak (1987). Finally, approximate solutions 
can be generated by directly applying the expectation operator to the original random integral 
equation and then using various closure approximations (Chernov 1962; Karal and Keller 1964; 
Askar and Cakmak 1988). 
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As far as acoustic wave propagation in a random medium is concerned, two approaches are 
possible, namely waves in random scatterers and waves in random continua. In the former case, 
the scatterer is a random distribution of many well defined particles (e.g., spheres), while in the 
latter case, the medium has properties which vary randomly and continuously in space (and 
possibly in time). Propagation of elastic and electromagnetic waves in a random, continuous 
medium that differs only slightly from the homogeneous case was considered by Karal and Keller 
(1964), using the random integral equation formulation previously alluded to. They derived an 
effective propagation constant which indicates that an originally coherent wave is now continuously 
scattered by the randomness and converted into an incoherent wave with a diminishing propagation 
velocity. This technique was subsequently extended to multilayered systems through the use of 
transfer matrices by Chu et al. (1981). Randomly layered media have also been considered in recent 
years by Kotulski (1990), who employed a complex transfer matrix approach in conjunction with 
a homogenization process to derive an equation for the effective amplitude and wavenumber of 
elastic waves in a stratified slab and by Kohler et al. (1991), who used asymptotic methods for 
stochastic differential equations to compute power spectra for receivers in a randomly layered 
half-space overlying a homogeneous half-space with the acoustic source placed in the latter 
medium. Techniques by which the probability density function, the space correlation function or 
other statistical measures governing wave propagation of acoustic or elastic waves in media 
modelled by random configurations of a large number of densely packed, identical scatteres of 
finite size have also been developed by, among others, Sobczyk (1976), Varadan et al. (1985), and 
Liu (1991). 

With the exception of Pekeris (1946) solution for a point source in a layered deterministic 
medium with a refractive index variation proportional to the inverse of the depth, very few closed- 
form solutions of the inhomogeneous wave equation are available. As far as the heterogeneous 
Helmholtz equation governing propagation of time harmonic acoustic or horizontally polarized, 
elastic shear waves is concerned, we have the recent work of Li et al. (1990) who presented an exact 
analytic solution for a point source in a three-dimensional medium with a refractive index in the 
form of the square root of a simple polynomial in the depth coordinate. This work can be viewed 
as a generalization of earlier work of Holford (1981) for a line source extending parallel to the 
depth. Approximate solutions can also be generated, e.g., by decomposing the inhomogeneous 
medium into a stack of laterally varying layers and representing the solution within a layer as a 
sum of decoupled planewaves (Pai 1991). Other techniques require an a priori convenient variation 
of the inhomogeneity that allows for the breakdown of the solution into a general part correspond- 
ing to a differential equation with constant coefficients plus a complementary part as the sum of 
special mathematical functions (Shaw and Makris 1991). This latter approach is essentially a 
linearization procedure based on the Kirchhoff transformation that moves the nonlinearity from 
the governing equation to the boundary conditions (Shaw 1991). Also recently, Vrettos (1990a, 
1991a) studied the eigenvalue problem and derived a Green's function for a tangential horizontal 
periodic line load for harmonic, horizontally polarized shear waves in a half-space with a shear 
modulus that exhibits an exponential, yet bounded, variation with depth. His solution for the 
eigenvalue problem employs the extended power series method of Frobenious, which is sub- 
sequently used to derive an integral representation for the Green's function that is solved via 
contour integration. This methodology was found to be applicable to the case of elastic waves in 
the half-plane (Vrettos 1990b) and to the axisymmetric case (i.e., the time harmonic Boussinesq 
solution), provided an additional step involving the Hankel transformation is taken (Vrettos 
1991b). 

The numerical approaches which have been used for problems involving random media are 
either based on boundary element-type solutions of random integral equations or on finite element- 
type solutions of stochastic differential operators. Both classes of numerical approaches invariably 
rely on a perturbation of the random medium properties. As far as boundary element solutions 
are concerned, we have, among others, the work of Drewniak (1985) on heat conduction problems 
with random heat conductivity, of Burczynski (1985) on Laplace's equation with random coefficients, 
of Lafe and Cheng (1987) on groundwater flow with random hydraulic conductivity and boundary 
conditions, and of Manolis and Shaw (1990) on acoustic wave propagation with a random wave 
number. In addition, there are boundary element-type applications to cases where only the excita- 
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tion is random, as is for instance the work of Spanos and Ghanem (1991) on continuous beams 
and of Luco and Wong (1986) and Pais and Kausel (1990) on rigid foundations supported on an 
elastic half-space. 

The use of stochastic finite elements is more widespread, especially for problems in structural 
mechanics. Some of the basic concepts regarding discretization of the parameter space of a random 
field of material properties and of external loads using finite element concepts were set forth in 
Vanmarke et al. (1986). The basic idea behind stochastic finite elements is a Taylor series expansion 
of the stiffness matrix about its mean deterministic value. The major problem is of computational 
nature, since the computational effort increases rapidly past the second order approximation of 
the relevant random variables. Among the work that has been done on stochastic finite elements 
is that of Liu et al. (1986) on structural components, of Cruse et al. (1988) on space propulsion 
system components, and of Dias and Nagtegaal (1986) on fast probability integration algorithms 
to alleviate the high computational effort previously discussed. In general, boundary element- 
based stochastic analyses are more appropriate for problems involving a continuum, while their 
finite element counterparts are better used in problems involving structural components. 

The work presented in this paper focuses on validating the assumption of randomness in describ- 
ing a physical medium which exhibits a rather standard type of inhomogeneity. This is accomplished 
through a systematic comparison of the effects of randomness versus those of inhomogeneity on 
the scattering of a wave signal emanating from a point source under time harmonic conditions. 
For both inhomogeneous and random medium cases, a Green's function approach is employed. 
In the case of the random medium, a uni-variate and uni-dimensional model is used to generate 
realizations of its response to the wave signal, once the solution for the mean and covariance has 
been obtained. Also, a discussion is included on how to generalize this approach to the full spectrum 
of wave propagation and scattering problems. Furthermore, a systematic comparison is carried 
out by investigating the frequency dependence of the solutions and the relative positions of source 
versus receivers. Finally, various commonly used models that describe the correlation function of 
the wave number of the random medium are also discussed. 

2 Problem statement 

The governing equation for wave propagation in a three-dimensional inhomogeneous medium 
under time harmonic conditions is Helmholtz's equation 

V2q0(x, o)) + kZ(x)qo(x, o~) = f (x, co) (1) 

In the above, q~ is a velocity potential for acoustic waves and a displacement potential for elastic 
waves, f is the forcing function, x = (x, y, z) is the position vector and ~0 is the frequency of vibration. 
In addition, the wave number is k = ~o/e, where c is the wave propagation speed. For acoustic wave 
propagation, c 2 = Kip  with K and p being the bulk modulus and the density of the medium, res- 
pectively. For elastic wave propagation, c 2 = (2 + 2~)/p for the case of longitudinal (pressure) waves 
and c z = #/p for the case of transverse (shear) waves, with 2 and # being the Lam6 constants 
(Manolis and Beskos 1988). Actually, a change of variables involving scaling of the potential q~ 
has already taken place in conjunction with Eq. (1) (Shaw and Makris 1991) so as to deal with the 
combined effect ofinhomogeneity which, from a physical point of view, occurs in both the modulus 
and the density of the medium. 

The usual homogeneous type of boundary conditions associated with Eq. (1) are 

~o = 0 on $1 and ~?~o/On = 0 on $2 (2a, b) 

where S = S 1 + $2 is the total surface and n is the outward pointing, unit normal on S. For acoustic 
waves, Eqs. (2a) and (2b) respectively denote a free boundary and a rigid boundary. For elastic 
waves, the aforementioned equations respectively denote a rigid surface and a traction-free surface. 
Furthermore, in the presence of unbounded media the scattered waves must obey the radiation 
condition, i.e., 

~0=0 for x--.oo (2c) 
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3 Inhomogeneous medium 

Solutions to Eq. (1) are known only for specific forms of k(x) (Li et al. 1990). We will consider here 
the case 

k(z) = ko(1 + Az) a/2, (3) 

where k o is the reference homogeneous medium's wave number. The above expression corresponds 
to a wave number whose square increases linearly with depth when parameter A is negative, as 
shown in Fig. 1. The rate of increase depends on the particular value of A, and for A = 0 the homo- 
geneous case is recovered. This type of inhomogeneity physically corresponds to the case where 
either the medium's density or its elastic constant (or possibly both) vary in such a way so that 
their combined effect can be represented by Eq. (3). Thus, there exists a physical reason for generat- 
ing a random, spatially correlated representation for the wave number in the next section. 

The displacement at receiver r in the inhomogeneous medium described by Eq. (3) resulting 
from a point source of unit strength at location r s is labeled as the Green's function G(r, rs) and is 
the solution of Eq. (1) f o r f  = - 6(r, r~), where 6 is the Dirac delta function. A closed-form solution 
for G for the case of three-dimensional acoustic wave propagation and obeying the radiation condi- 
tion given by Eq. (2c) was recently obtained by Li et al. (1990) working in spherical coordinates as 

G(r, r~) - exp(bt/6) {Ai'(a)Ai(b) - exp(i2rc/3)Ai(a)Ai'(b)}. (4) 
2R 

In the above, R -- I r - r~ [ is the distance between receiver and source points and Ai is Airy's function 
with the prime denoting derivative with respect to the argument. 

The two arguments appearing above are 

a=-(~)2 /3 ( l+A(z+zs )  ]A~ -R) and 
/ k  \2 /3  / 

b = -  exp(i2rc/a)~A ) ~l+2(z+zs)+]Al2R ) , 

(5) 

where k 0 is the homogeneous wave number and z and z s are the depth of the receiver and source, 
respectively. 

As noted before, parameter A controls the degree of inhomogeneity and that for A = 0, Eq. (4) 
reduces to the homogeneous Green's function 

Gh(r, r~) = exp(ik~ (6) 
4rcR 

It should be noted that the Airy functions remain bounded as their argument goes to zero 
(McLachlan 1954). As a result, the inhomogeneous Green's function exhibits the well known 1/R 

i 

Fig. 1. Inhomogeneous medium with wave number k = k o x / ~  Az 
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singularity, which is typical of fundamental solutions corresponding to elliptic and hyperbolic 
differential operators for three-dimensional problems. Finally, in order to recover Green's functions 
which are able to reproduce the boundary conditions of either a free or a rigid horizontal surface 
(see Eqs. 2), the general method of images may be used as discussed in Appendix A. 

4 Stochastic medium 

In the case of a stochastic medium, the wave number becomes a random variable given by 

k(~) = k o + ekl(7) + e2k2(7) + . . . ,  (7) 

where k 0 is the mean wave number for the homogeneous case and kl, k2,.., are random fluctuations 
about the mean. Also, ~ is a random parameter and e is the perturbation parameter which is 
assumed to be small compared to unity. The randomness in the wave number can be thought of 
as a manifestation of randomness in the density and/or the elastic modulus, and is depicted in 
Fig. 2. 

A consequence of medium randomness is that the response is also random and can be expanded 
using perturbation about the mean value q~o as 

q~(x, co, ~,) = ~Oo(X, co) + ~cp ~ (x, co, 7) + eZ q~2(x, co, 7) + ' " .  (8) 

It is noted that the mean response is deterministic and corresponds to the homogeneous medium 
case. 

For a point source placed at rs, the response q~(x, 7) can be identified with the random Green's 
function G,(r, rs, ~), which is the solution of Eq. (1) with k(z) replaced by k(7) and with f (x ,  co) being 
the usual unit point source. Since k(),) corresponds to a homogeneous, yet random, medium Gr 
has the same form as Gh given by Eq. (6) with ko replaced by k(7). A perturbation expansion can 
now be written for G, (Manolis and Shaw 1990, 1992) as follows 

Gr( R, 7) - exp(ik(7)R) - Go(R) + ~GI(R, 7) +/32G2( R,  ~) + " "  
4r~R 

1 
- exp(ikoR){1 + iekiR + (iekaR)2/2} + . . . ,  (9) 

47tR 

where R = Iv - rs [ as before. The zeroth and first order terms of the above expression are 

Go(R)= Gh(R) and Gl(R, v)= ik~(7)exp(ikoR)/4zt (10a, b) 

respectively. 

f 
X 

LZ 

k 

k 0 Figs. 2. Medium exhibiting a random variation of the wave number k 
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At this stage, it is necessary to introduce the expectation operator E, which denotes statistical 
averaging. By applying the expectation to Eq. (9), we have that 

E { G~(R, 7)} = (Go(R)) : me = Go(R) (11) 

indicating that the mean solution corresponds to the deterministic, homogeneous medium case. 
This result is a consequence of the assumption that the higher order terms in Eq. (9) are zero-mean 
random process. Next, the covariance of the response is obtained as 

E { Gr(Ri, 7)G,(Rj, 7)} = K~ = Go(Ri)Go(Rj) + e 2 (Gx(Ri)GI(Rj))  (12) 

where Ri and Rj indicate two different radial distance values. By substituting in the above the 
expressions for Go and G 1 given by Eqs. (10), the following closed-form expression is obtained for 
the covariance of the response 

Ko = exp(iko(R, +(4it) 2 Rj)){ 1R:Rj ~;2(k2(7))}" (13) 

The particular form of Ka now depends on the correlation function of k~(7). The following models 
are commonly used in the literature (e.g., Dagan 1989) 

1) Exponential function, where 

(k2~(7)) = o~ exp( - I~ [/2k) (14) 

with o 2 the variance of kx, 2 K the correlation length and ~ = Rj - R~ k 
2) Delta function, where 

(k2(7)) = a~ 3(~) (15) 

and 
3) Piecewise linear function, where 

if <;0, (16) 
and zero otherwise. It should be noted that the present stochastic model, whereby randomness is 
superimposed on an otherwise homogeneous medium, is somewhat simple. As such, this model 
should be viewed as a "first-order" model that serves as a stepping stone towards a more refined 
model with randomness superimposed on position-dependent properties (e.g., Hryniewicz 1991). 

5 Stochastic field simulations 

Once the mean m G and the covariance KG of the response have been determined, it is possible to 
obtain a realization of the random field ~0(x, e), 7) (here represented by the Green's function Gr(R, 7)) 
by assuming that it is a uni-dimensional, uni-variate stochastic process. Such a procedure (Shinozuka 
1972; Vanmarke et al. 1986) requires use of the Fourier transform. We begin by defining a zero- 
mean random field 

G'(R, 7) = Gr( R, 7) - Go( R, 7) (17) 

so that m o, = 0 and the covariance is, for an exponential correlation function, 

Ko,(~) 2 2 exp(iko(2R + O)exp( - [4 [/2K)/(4r02- (18) = - - ~  O" k 

The above expression is a function of the relative distance ~ between two receivers and, as such, 
is the autocovariance of G'(R, 7). 

It is well known that the autocovariance function KG,(~) and the power spectral density function 
(PSDF) SG.(s) from a Fourier transform pair, i.e., 

So,(s) = ~ KG,(Oexp(--isOd~ and Ko,(0 = Sa,(s)exp(+ is~)ds, (19a, b) 
- - O 0  - - 0 0  
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where s is the Fourier  t ransform parameter  corresponding to 4. Once the direct t ransform of 
Eq. (1%) has been performed, usually numerically, then the realization of the r andom mot ion  
G'(R, 7) is given (Shinozuka 1972) as follows 

N 
G'c (R) = x/~ Z c-i cos(s jR + O j), (20) 

j=i  

where 

cs=~/2Sw(ss)As and ss=jAs. (21a, b) 

In the above, As is the increment in s and ~b s. is a r andom phase angle which is u~fo rmly  distributed 
in the interval (0,2~). As the number  of samples N increases, the realization G' c becomes a more  
realistic representat ion of the original r andom variable G'. Furthermore~ the envelope r of the 
r andom vibration can be found as 

G;(R) = ((G;(R)) 2 + (G;(R))2) 1/2, (22) 

where realization G's is given by Eqs. (20) and (21) with the cosine replaced by a sine. Finally, all 
that  remains to be done  is to add the mean  m o to the above realizations. 

The P S D F  can be found in closed form for the case of an exponential correlation for k 1 (7) (see 
Eq. 18) as 

Z 1/2 k 
SG,(s) = (23) 

r~ (1/22 + (k o - s)2) ' 

where 

Z = - e2 o.2 exp (i2k0 R)/(4rc)2. (24) 

For  the case of a delta correlation (see Eq. 15), we have a constant  P S D F  in s, i.e., 

SG,(s ) = Z/(2rc) (25) 

and for other types of correlation functions, such as the piecewise linear function of Eq. (16), s tandard 
discrete fast Fourier  t ransform (FFT) algori thms can be used. Care must  be excercised, however, 
because most  discrete F F T  algori thms consider only the positive range 0 to NAs, where As = 2re/ 
(NA0,  with N the total number  of samples. This poses a problem because for a complex-valued 
function such as K~,(0, different expressions are obtained by integrating from 0 to + oo and 
doubl ing the result as compared  to integrating from - oo to + oo. Furthermore,  Sw(s ) is not  always 
an even function of s as is usually pre-supposed by the realization process of Eqs. (19)-(22). As a 
result, it is necessary to sample S~,(s) along both  negative and positive values of sj and omit the 
factor of two in Eq. 21(a). 

6 Numerical simulations 

In this section, we will first examine the propagat ion  patterns of a shear wave in the inhomogeneous  
three-dimensional con t inuum of Fig. 1 and subsequently in the r andom homogeneous  three- 
dimensional  con t inuum of Fig. 2. Finally, a compar ison between these two models  will be made  
so as to ascertain the range, in terms of distance, orientation and frequency, over which the stochastic 
model  can reproduce wave propagat ion  phenomena  associated with medium inhomogeneity.  

6.1 lnhomogeneous medium 

Consider  the inhomogeneous  med ium of Fig. 1, where the wave number  is a function of depth as 
given by Eq. (3). We will consider an average shear wave velocity c = 4.62 km/sec, which is typical 
of firm ground (Chu et al. 1981). Three forcing frequencies are studied, namely co = 4.62 r/s (0.74 Hz), 
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18.48 r/s (2.94 Hz) and 73.92 r/s (1 t.76 Hz). In view of the fact that the instruments for recording 
seismic motions operate in the band 0.5 to 25.0 Hz, the above values respectively represent wave 
propagation in the low, intermediate and high frequency ranges and result in reference wave number 
ko values of 1.0, 4.0 and 16.0km -1. The constant A in Eq. (3) is taken as equal to -0 .08 ,  which 
means that the turning point above which k is negative is 12.5 km along the z-axis. If this point is 
taken as the location of the horizontal free surface, then a point source at z = - 2.5 km is actually 
buried 15 km below the surface. We will thus ignore the effects of the free surface, although these 
can be accounted for as discussed in Appendix A. As shown in Fig. 3, receivers are placed along 
lines forming an angle 0 = 90 ~ 135 ~ and 180 ~ with respect to the vertical axis. These receivers are 
equally spaced every 1.5 km and span a distance of 150km, i.e., ten times the source depth. It is 
noted in passing that the minimum time required for the transient shear wave signal to be reflected 
from the free surface and reach the receiver line is 6.4 seconds. 

Figures 4 through 6 plot the normalized wave amplitude versus radial distance R from the 
source for reference wave number k o values of 1.0, 4.0 and 16.0 km-1,  respectively. It is noted that 
the shear wave displacement potential ~0 is identified with the Green's function G of Eq. (4), which 
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is a complex variable. In all cases, the solution for the homogeneous case A = 0, i.e. Eq. (6), is 
plotted as the reference curve. The accuracy of the numerical implementation of Eq. (4) has been 
verified through comparisons with the results available in Li et al. (1990). 

With reference to Figs. 4-6,  we first note that very close to the source, the normalized amplitude 
]GIR is constant, indicating that the wave amplitude decreases proportionally to l/R, as is the 
case for the homogeneous medium. For R in the neighborhood of a few km from the source, the 
amplitude decreases much more rapidly than 1/R, and the rate of decrease depends on the angle 
0. The location of the rapid drop is around R = 40km and 110km for 0 = 90 ~ and 0 = 135 ~ res- 
pectively, which marks the transition zone (caustic boundary) between illuminated and shadow 
zones. Note that the location of these turning points remains unchanged as the forcing frequency 
co increases. Classic ray theory (e.g., Pekeris 1946) predicts the existence of a shadow zone of zero 
strength in an unbounded inhomogeneous medium, since rays are confined to the illuminated side 
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of the caustic boundary. The line 0 = 180 ~ never crosses a caustic boundary and, as a result, relatively 
small differences with respect to the solution for the homogeneous medium are noticed, which 
become progressively smaller at higher wave numbers (or higher forcing frequencies). Furthermore, 
the wave amplitude oscillations observed at 0 = 90 ~ and 135 ~ become very pronounced as the wave 
number ko (or co) increases. These oscillations are formed because of interference between the 
original incident wave and the wave reflected from the turning point (Li et al. 1990). 

6.2 Stochastic medium 

The stochastic medium of Fig. 2 has the same mean shear wave velocity, source-receiver topology 
and is under the same forcing frequencies co as the inhomogeneous medium of the previous section. 
The orientation of the line along which the receivers are placed, however, is irrelevant since the 
stochastic medium is modelled as a small perturbation against a homogeneous background and 
since the presence of a free surface is ignored. The stochasticity in the wave number k(7 ) is modelled 
via the correlation functions of Eqs. (14)-(16). The variance a~, which is the value of the correlation 
function at distance ~ = 0 from a given receiver, is taken as equal to 0.25 kin-  2. This number is 
within the low range of values considered acceptable for typical applications (Chu et al. 1981). 
Reasonable values for the correlation length 2k are in the order of a few hundred meters (Chu et al. 
1981). We note that for an exponential correlation function, the resulting PSDF of the autoco- 
variance function Ka,(0 is not an even function of the transform parameter s. This can be ascertained 
by inspection of Eq. (23) and is due to the fact that KG,(0 is a complex function. The implication 
of this is that sampling of the one-sided PSDF along positive values of s, as required by Eqs. (20) 
and (21), is only acceptable at very low values of k 0 (or co), since the PSDF is even about k o. For 
higher values of k 0, it is necessary to sample the two-sided PSDF along both negative and positive 
values of s. 

Figures 7 through 9 present parametric studies that investigate the effect of 2k and o -2 k on the 
stochastic realization of the wave displacement amplitude I G I for the case of an exponential cor- 
relation function for k1(7). The stochastic realization is in the form of an unscaled (e = 1.0) envelope 
(see Eq. 22) and is for the low wave number value of 1.0. Higher values of ko do not so much affect 
the magnitude of the envelope as they do its "frequency" s content, as can be seen by recourse to 
the form of KG(#) in Eq. (23). The sampling interval Ar of ~ does not enter the generation of the 
envelope since the PSDF is obtained in closed form. Only if the PSDF must be obtained numerically 
via the FFT (see Eq. 19) is Ar needed, and then its magnitude should be comparable to that used 
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for 2k. In all cases, the amplitude of the mean (average solution) is included as the reference solution, 
and the receivers range from 0 to 150km in equal increments of 1.5 km. The mean solution, as 
expected, decreases exponentially rather rapidly with distance from the source and is imperceptible 
past a distance of 40 kin. 

It is first observed in Figs. 7 and 8 that the unscaled envelope is essentially bounded in the 
interval 0.02 to 0.08 km-  1 and exhibits a few peaks below and above those bounds. As 2 k increases, 
the aforementioned peaks increase in magnitude and the envelope becomes less "noisy", a fact 
consistent with previous observations (Bagtzoglou 1990). Finally, by comparing Figs. 7 and 8 with 

2 simply acts as a scaling factor for the envelope. This Fig. 9, we see that the standard deviation % 
is a consequence of the simplicity of the model, i.e., a perturbation of the wave number seen against 
a homogeneous medium background. It should be added that the number of samples N in Eq. (20) 
is kept at 256, which is considered adequate in view of the fact that any further increase of N at 
fixed R and ~j does not appreciably change the results. 
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The piecewise linear correlation function of Eq. (16) for A~ ~ 2k gives similar results to the 
exponential correlation function discussed above and will not be pursued further. The delta cor- 
relation function of Eq. (15) results in a constant PSDF. As such, this model is very susceptible to 
the sampling rate s t and results in envelope functions that are unacceptably large compared to the 
ones obtained from the exponential correlation. Therefore, only the exponential correlation model 
will be subsequently retained with 0 - 2  = 0.25 k m -  2 and 2 k = 0.40 km. k 

6.3 Comparison study 

In this section, the results of the stochastic realization process previously described will be used, 
after appropriate scaling, to simulate the effect that wave number inhomogeneity has on propagat- 
ing shear waves. To that effect, Figs. 10-12 plot the difference in the wave amplitude between the 
inhomogeneous (G) and homogeneous (Gh) cases versus radial distance R from the source at k 0 
values of 1.0, 4.0 and 16.0 k m -  i, respectively. Concurrently plotted are the results of the stochastic 
realization process in the form of a cosine realization (Eq. 20) for lines 0 = 90 ~ and 135 ~ and in the 
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form of an envelope (Eq. 22) for the line 0 = 180 ~ in Fig. 10c. The choice of an envelope, which is 
always positive, is dictated by the fact that the difference G - G h along 0 = 180 ~ does not oscillated 
about zero since that line never crosses a caustic boundary. The results of the stochastic realization 
process have been divide by 50, which corresponds to a scaling e = x / / ~  = 7.1, for the low and 
intermediate wave numbers. For the high wave number, the scaling factor is s = x / / ~  = 4.5. 

With the exception of the line 0 = 180 ~ the stochastic model is able to capture rather well the 
effect ofinhomogeneity along the lines 0 = 90 ~ and 0 = 135 ~ and for all ko. The stochastic simulation 
is always better up to a distance which coincides with the location of the caustic boundary, i.e., R 
around 4 0 k m  for the line 0 = 90 ~ and R around l l 0 k m  for the line 0 = 135 ~ The reason is, of 
course, that the wave amplitude oscillates prior to approaching a caustic boundary and then drops 
to very low values, as was discussed in Sect. 6.1. Furthermore, the stochastic simulation is better 
at ko = 16.0 compared to ko = 1.0, which implies that the realization process becomes better as 
the forcing frequency increases. Finally, the line 0 = 80 ~ can only be qualitatively modelled by the 
stochastic envelope, because of the fact that the inhomogeneous  medium solution differs little from 
the corresponding homogeneous  one. 
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7 Conclusions 

This work investigated the validity of a homogeneous, stochastic medium model as a way of 
representing wave propagation patterns associated with an inhomogeneous medium exhibiting a 
depth-dependent wave number. The focus was on shear wave propagation under time harmonic 
conditions. For a typical point source-receiver configuration and for parameter values considered 
representative to this problem, the numerical stochastic realizations were able to reproduce the 
correct wave patterns for (a) wave number values of 1.0 to 16.0 kin-1, which indicates that the 
entire frequency range of interest of 0.5 to 25.0 Hz can be captured and (b) radial distances within 
the "illuminated" zone for a particular line of receivers. For receivers in the shadow zone, stochastic 
realizations give only a rough qualitative picture of the wave patterns occuring there. 
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Appendix A--Method of Images 

It is well known (e.g., Mindlin (1936) in elastostatics) that in order to recover a Green's function 
G* that can reproduce the boundary conditions for either a free or a rigid horizontal surface, the 
method of images which requires placing a unit point source at image point r~ as shown in Fig. 13, 
may be used. In particular, the two sources (original and image) are subtracted as 

G~(r; rs, r~) = Gh(r, rs) --  Gh(r, r~) (A1) 

for the case of an acoustically free horizontal boundary and are added as 

G~(r,  r~, r~) = Gh(r, rs) + Gh(r, r~) (i2) 

for the case of an acoustically rigid horizontal boundary, where Gh is the Green's function of Eq. (6) 
for the homogeneous fullspace. It is easy to see that the boundary condition for the free surface 
in Eq. (2a) is correctly reproduced by Eq. (A1) since along the horizontal surface the following 
conditions hold 

r = (x, y,  0), r~ = (%, Ys, --  z~), r~ = (xs, ys, zs), 

R = Iv - r~[ = R i = I v  s - r~[ = [-(x - -  X s )  2 + (y  - -  ys) 2 + Z211/2s " (A3) 

x _~"-~ 

Fig. 13. Introduction of image source r~ to compensate for the presence of the free surface along z = 0 
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Furthermore, the normal derivative of G h is given by the chain rule as 

t3G h OGh ~3R exp(ikoR) (ik o - 1/R) ~_R. (A4) 
-~n - - ~  -~n = 4 n R c n 

When expressions such as the above are taken into account in Eq. (A2), along with the condition 
that across the horizontal surface 

aR OR i zs 
0n c3n R' (A5) 

then the condition for the rigid surface given by Eq. (2b) is correctly reproduced. 
With regards to the inhomogeneous case, superposition of the original and image sources is 

not sufficient for reproducing either a free or a rigid horizontal boundary, due to the explicit presence 
of the z s coordinate of the source in the arguments of the Airy functions (see Eqs. 4 and 5). However, 
superposition of the original unit point source for a given value of A at r s with a unit point source 
for - A at ri works. Consider first the acoustically free horizontal surface, where 

G*(R, R ~, a, d, b, b i) = G(R, a(A), b(A) ) - G(R i, ai( - A), bi( - A) ) (A6) 

with G given by Eq. (4). Along the horizontal surface, Eqs. (A3) hold and, as a result, 

a = - ( ~ - ~ ) 2 / a ( l + 2 ( - z s ) - l A [ 2 R ) = a i = - ( ~ - ~ ) 2 / 3 ( X + ( - A ) ( z ~ )  [ - A  2 2 IR].  (A7) 

Similarly, b = b e when z = 0. Consequently, Eq. (A6) goes to zero and thus the boundary condition 
of Eq. (2a) is reproduced. 

As far as the acoustically rigid horizontal surface is concerned, the appropriate Green's function 
is Eq. (A6) with a positive sign. To assure satisfaction of Eq. (2b), consider the normal derivative 
of G(R, a, b) 

t3G OG OR_exp(in/6)igR {R22 l Og(a(A),b(A))~ (A8) 
On - t3R On 2 On g(a(A), b(A)) R t3R ) '  

where g represents the terms in the curly bracketts in Eq. (4) involving the Airy functions Ai and Ai'. 
Since there exists a recursive formula for evaluating the derivatives of the Airy functions (Mc Lachlan 
1954), the expression ~g/OR inside the curly bracketts in the above equation can be evaluated in 
closed form. Some caution needs to be exercised when the derivatives of the arguments of the Airy 
functions with respect to R are found. As an example, 

b~aR - ( ~ ) 2 ' 3 ( A ( ~ ) - I A , ) / 2  (A9) 

which still has the same form as Oa~/OR when evaluated at the horizontal surface. Therefore, 
the entire expression inside the curly bracketts in Eq. (A8) can be labelled as h(R, a(A), b(A)) for 
convenience. Superposition for the new image source at r i as previously discussed, with the 
original source results in 

~G* exp(in/6) { ~R ~ } 
On 2 ~n h(R, a(A), b(A)) + on h(R', a'( - A), b'( - A)) (A10) 

which goes to zero at the horizontal surface in view of Eq. (A5) and of the fact that 

h(R,a(A),b(A)) = h(R~,ai(-A),bi(-A)) at z = 0. (All) 
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