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Abstract. A functional expansion was used to model 
the relationship between a Gaussian white noise 
stimulus current and the resulting action potential 
output in the single sensory neuron of the cockroach 
femoral tactile spine. A new precise procedure was used 
to measure the kernels of the functional expansion. 
Very similar kernel estimates were obtained from 
separate sections of the data produced by the same 
neuron with the same input noise power level, 
although some small time-varying effects were de- 
tectable in moving through the data. Similar kernel 
estimates were measured using different input noise 
power levels for a given cell, or when comparing 
different cells under similar stimulus conditions. The 
kernels were used to identify a model for sensory 
encoding in the neuron, comprising a cascade of 
dynamic linear, static nonlinear, and dynamic linear 
elements. Only a single slice of the estimated experi- 
mental second-order kernel was used in identifying the 
cascade model. However, the complete second-order 
kernel of the cascade model closely resembled the 
estimated experimental kernel. Moreover, the model 
could closely predict the experimental action potential 
train obtained with novel white noise inputs. 

1 Introduction 

During the past 20 years white noise analysis tech- 
niques have been increasingly employed to model non- 
linear dynamic biological systems, particularly in the 
field of neural information coding and processing 
(Marmarelis and Naka 1972; French and Wong 1977; 
Marmarelis and Marmarelis 1978; Sakuranaga et al. 
1986). In their pioneering application of white noise 
analysis to the retina, Marmarelis and Naka (1972) 
used the Lee-Schetzen (1965) cross-correlation method 
of kernel estimation, following the functional expan- 

sion approach developed by Wiener (1958). They 
estimated the first- and second-order Wiener kernels of 
a three stage neural chain whose output consisted of 
action potentials. To obtain a continuous output 
signal they applied repeated sequences of an identical 
pseudo-random input signal and constructed a his- 
togram of the output events. Subsequently, it was 
shown that repetition of the input was unnecessary and 
the kernels could be obtained by correlating the white 
Gaussian input directly with a unitized output signal, 
in which the output consisted of one, at the time of an 
action potential, and zero at all other times (Sakura- 
naga et al. 1987). 

In practice, Wiener kernel analysis via the cross- 
correlation technique can result in inaccurate kernel 
estimates and poor system identification (Palm and 
Poggio 1978). This is partly due to the difficulty of 
experimentally realizing a white Gaussian input over 
an infinite time interval, as Wiener (1958) had assumed. 
Deviations from this ideal stimulation are inevitably 
caused by the frequency response and amplitude 
limitations of the physical systems used to apply the 
input, and the finite duration of real experiments. 

To overcome these difficulties an exact orthogonal 
procedure was developed for estimating nonlinear 
system kernels (Korenberg et al. 1988). This procedure 
does not require the input to be white, Gaussian, or of 
infinite duration. Operating via Gram-Schmidt or- 
thogonalization, the procedure creates, as an inter- 
mediate step, a series of functions which are orthogonal 
for the particular input and duration of the identific- 
ation experiment. In this way, the procedure avoids a 
major source of error in the cross-correlation appro- 
ach, and produces significantly more accurate kernel 
estimates. 

However, it has subsequently become evident that 
the creation of orthogonal functions in this procedure 
is unnecessary and expensive in computing time and 
memory. Consequently, a newer fast orthogonal al- 
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gorithm was developed which can estimate kernels 
without the creation of orthogonal functions at any 
stage of the process (Korenberg 1987; 1988). This 
yields considerable efficiencies in time and memory 
requirements. Depending on the application, 15-fold 
or higher increases in speed are readily attainable 
without loss of accuracy or robustness. The newer 
technique allows small personal computers to deal 
with kernel sizes and data records which were previ- 
ously difficult to analyse interactively on large main- 
frame computers with the usual memory restrictions. 

Kernel estimation via the fast orthogonal al- 
gorithm has been shown to be much more accurate 
than the cross-correlation method using limited stim- 
ulus durations (Korenberg 1988). The superiority in 
accuracy was retained when the system output was 
corrupted with zero-mean stationary noise indepen- 
dent of the input. By eliminating the need for long data 
records the fast orthogonal algorithm makes it pos- 
sible to analyse non-stationary systems by producing 
successive estimates of the kernels from brief data 
segments. As with the earlier orthogonal function 
method, the fast orthogonal algorithm does not re- 
quire special autocorrelation properties of the input 
stimulus and is applicable to a variety of random and 
deterministic signals. 

In this paper we present one of the first applications 
of the fast orthogonal algorithm to a biological system, 
the single sensory neuron in the cockroach femoral 
tactile spine. The kernels were used to construct a 
cascade model for the system, consisting of two 
dynamic linear elements separated by a static non- 
linearity. Finally the cascade model was used to predict 
the unitized action potential output of the system to 
portions of the input stimulus which had not been used 
in the analysis. 

2 Methods 

2.1 The Experimental Preparation 

The experimental procedures for stimulating and 
recording from the tactile spine neuron of the cock- 
roach, Periplaneta americana, have been described in 
detail before (French 1984). Stimulation was provided 
by an extraeellular electrode located adjacent to the 
soma-axon junction of the neuron and action poten- 
tials were detected by extracellular electrodes further 
along the axon. A pseudo-random binary sequence 
was generated from a 33-bit shift register clocked at 
1 kHz (Marmarelis and Marmarelis 1978) and band- 
limited to 0-50 Hz by a nine-pole active filter. This 
noise signal was used to drive a constant voltage-to- 
current convertor which, in turn, stimulated the 
neuron. The stimulus current was monitored by a 

current detector in the ground return path and this 
signal was sampled by a 12-bit analog to digital 
convertor at 8 ms intervals. Action potentials were 
detected by a Schmitt trigger and fed to a digital input 
on the computer. The action potentials were used to 
construct a unitized output signal at 8 ms intervals 
consisting of values of 1, when an action potential had 
occurred within the interval, or 0 at all other times. 

2.2 Analysis Procedures 

Sections of the record containing 15,000 pairs of input 
values, x(n), and output values, y(n), were used for 
analysis. The relationship between the stimulating 
current and the unitized output was first approximated 
by a second-order discrete-time Volterra series (or 
functional expansion) of the standard form: 

R--1  

y~(n) = h o + • h(j)x(n-j) 
j = 0  

R - 1  R - 1  

+ ~ ~ h(jl , j2)x(n-jl)x(n-j2 ). (1) 
j l = 0  j 2 = 0  

Here, the zero-, first-, and symmetric second-order 
kernels, ho, h(j), and h(jl,j2 ) respectively, were selected 
to minimize the mean-square error: 

e=(y(n)- y~(n)) i , (2) 

where the bar indicates a time average over the record 
length extending from n--0 to n = N. For a memory 
length R = 25, one zero order, 25 first order and 325 
distinct second order kernel values were estimated by 
the fast orthogonal algorithm. 

The fast orthogonal algorithm may be understood 
by first considering the earlier orthogonal procedure 
(Korenberg et al. 1988). Estimating the kernels in (1) by 
direct least squares regression would lead to the 
solution of a large number of simultaneous linear 
equations in the unknown kernel values. For the 
memory length R in (1), one zero-order, R first-order, 
and R(R+I)/2 distinct second-order kernel values 
would be estimated simultaneously, requiring inver- 
sion of a square matrix having I + R + R ( R + I ) / 2  
columns. The earlier orthogonal procedure avoided 
this matrix inversion by rewriting (1) as a weighted 
sum of functions W~(n) orthogonal over the actual 
data record: 

L 
y~(n)= ~ giW/(n). 

i = 0  

The Wi(n ) were constructed, via Gram-Schmidt or- 
thogonalization, as linear combinations of the func- 
tions: 1, x(n-jO,  x(n-jOx(n-j2);  Jl=O .... , R - l ,  
Jz =Jl, ..., R--1. Since the Wi(n ) are mutually orthog- 
onal, the weights g~ can be estimated independently of 
each other, avoiding the solution of simultaneous 
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equations. The mean square error in (2) is minimized 
when each weight is given by: 

g~ = y(n) Wi(n)/Wi2(n) . 

It is then straightforward to convert these weights into 
the desired kernel values (Korenberg et al. 1988). While 
this orthogonal procedure does not require the input 
to be Gaussian or to have special autocorrelation 
properties, it is wasteful by explicitly creating the 
orthogonal functions as an intermediate step. 

The fast orthogonal algorithm avoids creating the 
orthogonal functions by observing that they are only 
needed as parts of t ime-averages,  for example in the 
above formula for the weights, g,. In the original 
orthogonal procedure, Gram-Schmidt orthogonaliza- 
tion was used to define each W~(n) recursively in terms 
of previously created orthogonal functions. The fast 
orthogonal algorithm instead relates each time- 
average involving W~(n) to previously created time- 
averages. The first time average, involving Wo(n) is 
easily calculated since Wo(n) =- 1 over the data record. 
The remaining time-averages are calculated recur- 
sively from the earlier ones, avoiding the creation of 
orthogonal functions. The only step-by-step averaging 
over each value of n required for kernel identification 
via the fast orthogonal algorithm is the calculation of 
input mean and autocorrelation, output mean, and 
cross-correlations with the input. These means and 
correlations are needed for the recursive formulas 
relating time averages involving W~(n) to time averages 
created previously. Major efficiencies in time and 
memory requirements ensue. 

Since the input signal in this case closely resembled 
Gaussian white noise, the first- and second-order 
kernel estimates approximated the Wiener kernels of 
corresponding order. This enabled certain tests for 
cascade structure to be applied. For example, a discrete- 
time system having the Hammerstein model structure, 
comprising a static nonlinearity followed by a dynamic 
linear system, must satisfy the condition that: 

h(jx,jz) = Clb(Jx -j2)h(J~) (3) 

(Korenberg 1973a; Marmarelis and Marmarelis 1978; 
Hunter  and Korenberg 1986) where C~ is a constant 
and 6(1) is the discrete delta function. This implies that 
all non-diagonal values of the second-order kernel are 
zero, while diagonal values are proportional to the 
first-order kernel, provided that the latter is not 
identically zero. 

A more general cascade model (Fig. 1) consists of a 
first dynamic linear system with delta response g(j), a 
static nonlinearity m(- ), and a second dynamic linear 
system with delta response k(j). It can be shown 
(Korenberg 1985) that the delta response of the first 

dynami c s ta t  i c dynam I c 
I inear nonl Inear I inear 

x,n, 

input output 

Fig. 1. The cascade model used to describe sensory encoding in 
the tactile spine. The three elements are a dynamic linear system, 
gO), a static nonlinearity, m(- ), and a dynamic linear system, k(j) 

linear system, g(j), is proportional (for j = 0 ,  1, ...) to 
h(j, 0), provided that the latter is not identically zero: 

g(j) = C2h(j, 0) (4) 

where C2 is a constant. Moreover, the convolution of 
the two delta responses is proportional to h(/), if 

M 

k ( r ) g q -  r) = C3h(j ) , (5) 
r = O  

where C3 is a constant and it is assumed that both k(j) 
and g(j) equal zero for j  > M. Equations (4) and (5) can 
be solved to obtain S0) and k(j) up to arbitrary 
proportionality constants and horizontal shifts. Since 
the proportionality, or scaling, constants are arbitrary, 
both C2 and C3 may be set equal to 1. Then, from (4) 
the delta response of the first linear system, g(j), is 
given by one slice of the second-order Wiener kernel. 
With g(j) and h(j) known, (5) may be deconvolved to 
yield k(j). Note that setting j = 0 , . . . ,  M in (5) yields 
M + 1 linear simultaneous equations in the unknowns 
k(O) . . . . .  k (M)  which can readily be expressed in vector- 
matrix form. The coefficient matrix of this equation is 
nonsymmetric Toeplitz [a matrix is Toeplitz if the 
elements on any line parallel to the main diagonal are 
all equal; equivalently, all elements having the same 
row and column index difference are equal (Hunter 
and Kearney 1983)3. It is therefore possible to exploit 
a very efficient program for the solution of non- 
symmetric Toeplitz equations (Zohar 1979) and 
thereby obtain k(j). 

With g(j) and k(j) estimated it is immediately 
possible to test the necessary condition (Korenberg 
1973a, b; Korenberg and Hunter  1986) for a system to 
have the cascade structure of Fig. 1 : 

M 

hql , j z )  = C4 Y~ k(r)g(jl - r)g(jz - r), (6) 
r = 0  

where C 4 is a constant. Note that this condition may be 
tested before estimating the static nonlinearity. 
Moreover, only the single slice h(/, 0) of the second- 
order Wiener kernel was used in the above estimation 
of gq). Yet, if the system has the cascade structure of 
Fig. 1, we can use (6) to predict the shape of the 
complete second-order kernel, assuming it is not 
identically zero. In particular, we can predict the 
diagonal second-order kernel values h(j,j), (up to a 
proportionality constant). 
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Assuming the necessary condition of (6) is satisfied, 
we can estimate a polynomial approximation for the 
static nonlinearity: 

1 

m( . ) =  Y, ai(')i. (7) 
i=o 

Suppose that x(n) is defined for n = 0 . . . . .  N. Since g(j) is 
known, compute: 

rain (n, M) 

u(n) = ~ g(j)x(n - j ) .  (8) 
j = 0  

The output  of the cascade is: 

1 rain (n, M) 

z(n)= 2 ai Z k(j)ui(n--J) �9 (9) 
/ = 0  j = 0  

We wish to choose the coefficients a~ to minimize the 
mean square error: (y(n)-  z(n)) 2. To this end, we define 
for n = 0  . . . . .  N: 

min (n, M) 

pi(n)= y' k(j)ui(n-j) ,  i=0 ,  . . . , I .  (10) 
j = 0  

Using Gram-Schmidt orthogonalization, set 

wo(n)=po(n) 
i - 1  

wi(n)=pi(n)-- ~, eirw,(n), 
r = 0  

where 

ei, = pi(n)w~(n)/w2(n) �9 

i=1  . . . .  , I , }  
(11) 

(12) 

The functions wi(n ) in (11) are orthogonal over the 
record from n = 0 to n = N, and (9) can be rewritten as 
an orthogonal series: 

I 

z(n)= Z g,wi(n) 
i = 0  

then: 

gi=y(n)wi(n)/wZ(n), i= 0 . . . .  , I .  (13) 

Finally, the desired coefficients a~ can be calculated 
from the following formula (Korenberg et al. 1988): 

I 

ai  = ~ gmVm , 
m=i  

m = i + l , . . . , I .  

where 

V i ~  1 

m - 1  

V m = - -  ~ O~mrVr, 
r= i  

Note that the degree I of the polynomial estimate 
for the static nonlinearity can be considerably larger 
than 2, the assumed order of the Volterra series 
approximation (1) for the system. The reason is that the 
fast orthogonal algorithm yields least square estimates 

for the kernels in the functional series (1). Therefore, 
with a white Gaussian input, the first- and second- 
order kernel estimates will theoretically equal the 
Wiener kernels of corresponding order. This is true 
even if the system cannot be accurately approximated 
by a second-order Volterra series, as has been pointed 
out previously (Korenberg et al. 1988) for kernel 
estimates obtained by the earlier orthogonal proce- 
dure. Thus, the second-order functional series appro- 
ximation suffices to yield the Wiener kernels, and 
hence determine the linear systems in the cascade, 
regardless of the degree of polynomial required for 
accurate expansion of the static nonlinearity. How- 
ever, note that the mean square of each orthogonal 
function used in expanding the static nonlinearity 
must not be negligible. That  is, (12) and (13) must not 
involve division by extremely small positive numbers, 
with resulting inaccuracies. 

The identified cascade models were used to predict 
the unitized action potential output of the neural 
system in response to the white noise input. The raw 
output of the cascade already had a spike-like ap- 
pearance, and a threshold level was set to convert this 
into a unitized signal. The threshold level was set to 
produce unitized data similar to the output during part  
of the record used for system identification. The same 
threshold was then used to predict the output but using 
parts of the record before or after the section which had 
been used for system identification. 

3 Results 

Figure 2 shows a second-order kernel estimate ob- 
tained from a tactile spine sensory neuron using the 
fast orthogonal algorithm. Since the current stimulus 
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Fig. 2 Perspective plot of the second-order kernel, h(jl,J2), 
obtained from 15,000 pairs of data points. The tactile spine 
neuron was stimulated with random noise having a bandwidth of 
0-50 Hz and amplitude 4.47 nArms. The lower two axes have the 
dimension of time in sample intervals of 8 ms, giving a total 
length of 192 ms in each case. The plot has been rotated through 
25 ~ . The same axes and rotation apply to all of the subsequent 
second-order plots. Note the sparcity of non-diagonal values 
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Fig. 3. The first-order kernel, h(]), (solid lines) and the diagonal of 
the second-order kernel, h(/,]), (dashed lines) for the same 
experiment as Fig. 2. The abscissa has the dimension of time in 
sample intervals of 8 ms, giving a total length of 192 ms. The same 
abscissa applies to all subsequent first-order plots. Note the 
excellent agreement over the entire lag time 

approximated Gaussian white noise, and the system 
was best fit by a second-order Volterra series, the 
measured kernels approximate the first- and second- 
order Wiener kernels. The sparcity of off-diagonal 
kernel values in Fig. 2 suggests the possibility that the 
system could be accurately represented by the Ham- 
merstein model, a necessary test for which is (3) (Hunter 
and Korenberg 1986). Accordingly, the first-order 
kernel estimated by the fast orthogonal algorithm was 
plotted together with the diagonal values of the 
second-order kernel estimate in Fig. 3. The two curves 
are in good agreement, even for long lag times, 
suggesting that the small variations in the tail of each 
curve, which might otherwise be dismissed as noise, 
may not be random, but actually characteristic of the 
sensory neuron. Note that such features would not be 
evident in cross-correlation estimates of the kernels 
because the inherent jitter and noise would mask such 
small variations. 

We next estimated the components of the cascade 
model of Fig. 1. Figure 4 shows the estimate of g(/) 
[obtained from hq, 0)], the delta response of the first 
linear system in the cascade. This response was negli- 
gible for lags greater than zero but significantly greater 
than zero fo r j  = 0. The dip in the plotted graph below 
zero for 1 < j < 2  appears to be an artefact of the 
plotting routine, since the values a t j  = 1 andj  = 2 are so 
close to zero. Sampling at higher resolution than the 
8 ms used at present might reveal further structure in 
this delta response, but the data obtained here indicate 
that the first linear element is close to a discrete delta 
function, as is the case for the Hammerstein model. 

Figure 5 shows the estimate of the second linear 
system in the cascade by deconvolution from the first- 
order kernel by the Toeplitz matrix method. The 
system appears to be band-pass and displays consider- 
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Fig. 4. The estimated first dynamic linear component of the 
cascade model, gO), obtained from the edge components hq, 0) of 
the second-order kernel in Fig. 2. This curve, and all other linear 
plots, were fitted with a spline algorithm which accounts for the 
apparent dip between the second and third data points. In fact, all 
values other than the value at zero time are very close to zero in 
this case 

0.7. 0.6. 0.5 0.4 
0.3 

0.2 

0.1 

-0.0 

-0. I 

-0.2 

-0.3 

. . . .  ; ; 1'2 ~ ' 6  2 ' 0  2'~ 

Fig. 5. The estimated second dynamic linear component of the 
cascade model, k(/), obtained by deconvolving the first linear 
component from the first-order kernel of Fig. 3, using the 
Toeplitz matrix method. In contrast to the first linear component, 
this component has significant structure 

able ringing. Note that because the estimate of the first 
linear system was so close to a delta function, the delta 
response of the second linear system is similar to the 
first-order kernel estimate of Fig. 3. 

A necessary condition for the system to be 
representable by a linear, static nonlinear, linear 
cascade model (Fig. 1) is given by (6). Figure 6 shows 
the second-order kernel synthesized using the right 
hand side of (6) with our estimates of g(j) and k(]), 
Except for an arbitrary scaling factor, there is excellent 
agreement between the synthesized second-order ker- 
nel and the experimental second-order kernel (Fig. 2) 
obtained via the fast orthogonal algorithm. It should 
be noted that only a single slice, h(/, 0), of the experi- 
mental second-order kernel was used to produce the 
synthesized second-order kernel  

The similarity between experimental and syn- 
thesized second-order kernels is further illustrated in 
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Fig. 6. The synthesized second-order kernel obtained from the 
two dynamic linear components, g(j) and k(]), in Figs. 4 and 5. 
Note the strong similarity to the experimental kernel of Fig. 2 
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Fig. 8. The static nonlinear term in the cascade, m(.), as 
estimated by a fifth-order polynomial. Note the similarity to a 
half-wave rectifier, with the strong inflection at zero input 
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Fig. 7. The diagonal values of the synthesized second-order 
kernel of Fig 6 (dashed line, right ordinate) compared with the 
diagonal of the experimental kernel of Fig. 2 (solid line, left 
ordinate). Again, there is close agreement between the predicted 
and experimental kernel values up to a proportionality constant 

Fig. 7 by plotting the diagonal values of the kernels. In 
this figure the two curves have been deliberately shifted 
vertically to separate them, but the actual values of the 
curves are given on the left and right ordinates. Note  
that (6) is merely a necessary condition for a system to 
be representable by the cascade model of Fig. 1, but it is 
not a sufficient condition to ensure that  the cascade 
model will represent the system accurately, even if the 
input is restricted to the present stimulus. A better test 
for the applicability of the cascade model is to predict 
the action potential  output, and this was tested next. 

Since the necessary condition for the cascade 
model was met  satisfactorily, the form of the static 
nonlinearity was estimated to a fifth degree polynomial  
approximat ion and this is shown in Fig. 8. This 
function is quite similar to a half-wave rectifier, 
al though in other experiments the rise of the function 
for strongly negative inputs to the static nonlinearity 
was more  pronounced. The output  of the complete 
cascade in response to the white noise input had 

jJ l t 

)_1 t 13321 A L 
Fig. 9. The predicted output from the cascade model when 
stimulated with 500 data points from the original input and 
passed through a threshold to produce a unitized output signal. 
The solid lines are the actual unitized action potentials produced 
by the neuron in response to this input, and the dashed lines show 
the predicted output 

t,  tA 

11 A_U t 1 t LL_ 
Fig. 10. The predicted output of the cascade model using the 
same threshold level as in Fig. 9, but with 500 input data points 
from the experimental record immediately before the data set 
used to identify the system. The actual response of the neuron is 
shown in solid lines and the predicted output in dashed lines 

distinct positive peaks suggesting the appearance of 
action potentials. Using the middle 500 points of the 
input data used in the identification, we selected a 
threshold so that  the output  peaks produced a unitized 
signal conforming closely with the actual unitized 
record for the same input. The result of this operat ion 
is shown in Fig. 9, compared with the actual output  of 
the sensory neuron. There is good agreement between 
the predicted and actual output  signals but this might 
be expected since they were both produced from data 
used to identify the model and the threshold was 
chosen to enhance the similarity. As an independent 
test of the predictive ability of the cascade model we 
next performed the same operations using the same 
threshold and the 500 input data  points immediately 
preceeding (Fig. 10) and immediately following 
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Fig. 11. The predicted output of the cascade model using the 
same threshold level as in Figs. 9 and 10, but with the 500 data 
points from the experimental record immediately after the data 
set used to identify the system. The actual output is in solid, the 
predicted output is dashed 

(Fig. 11) the 15,000 points used in the identification. 
There is an obvious similarity between the unitized 
experimental data and the synthesized trains of action 
potentials, particularly in Fig. 11. This shows that the 
analytical technique applied here are sufficiently pre- 
cise to produce mathematical  models capable of 
accurately predicting the times of occurrence of indiv- 
idual action potentials in response to a random input. 

Finally, Figs. 12, 13, and 14 show other second- 
order kernel estimates from experiments using 15,000 
data points of white Gaussian noise input band-limited 
to 50 Hz. Figure 12 was obtained from an earlier 
segment of data  for the same input power level 
(4.47 nArms)  stimulating the same neuron that was 
used for all of the previous figures. While there were 
some minor changes with time, the second-order 
kernel is clearly similar in amplitude and form to that 
from the later data  shown in Fig. 2. The kernel in Fig. 13 
was obtained from an experiment with the same neuron 
but with a higher amplitude stimulus of 23.91 nArms .  
Some differences in form and a considerable difference 
in amplitude are evident although there is still a strong 
similarity to the kernel of Fig. 2. The second-order 
kernel of Fig. 14 was obtained from another  tactile 
spine neuron using an input power level of 
4.36 nArms.  Again there is strong similarity of form, 
though some difference in amplitude when compared 
to the earlier data in Fig. 2. In the present experiments 
we examined the behavior of 3 different tactile spine 
neurons in a total of ten different experiments at 
varying input power levels. In each case, nonlinear 
identification was performed for data segments near 
the start, middle, and end of experiments which 
typically lasted for I h. Similar and consistent shapes 
were obtained for the first- and second-order kernels 
in each of these experiments and good predictions 
were obtained for the output  action potential trains to 
previously unused inputs. 

4 Conclusions 

The results obtained in these experiments provide 
strong support  for the accuracy and reliability of the 
quantitative approach presented here. They also show 
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0.05 t -0.04 
-0.1325 
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1 8 4 0 24 

Fig. 12. The second-order kernel obtained by analysis of 15,000 
data pairs from an earlier portion of the experiment which was 
used to obtain Fig. 2. The amplitude and form of the kernel are 
relatively stable with time during an experiment which lasted 
more than 1 h 
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24 

Fig. 13. The second-order kernel obtained by analysis of 15,000 
data pairs from another experiment with the same neuron which 
was used in Figs. 2 and 12. In this case a much higher stimulus 
amplitude of 23.91 nArms was used, producing a firing rate of 
about 13 action potentials per second, compared to a rate of 
about 2 action potentials per second in the earlier experiments. 
There is still a strong similarity between the estimated kernels 
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Fig. 14. The second-order kernel obtained from a different tactile 
spine neuron, using an input stimulus power of 4.36 nArms and 
with an output of approximately 3 action potentials per second. 
Again, there is close agreement with the earlier second-order 
kernels 
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that  the dynamic  linear, static nonlinear,  dynamic  
linear cascade model  can provide reasonable predic- 
t ions of  the complete  neural  behavior.  The est imated 
static nonl ineari ty  (Fig. 8) closely resembles a half- 
wave rectifier. This agrees with the earlier suggestion 
by French  (1980), based on first- and second-order  
kernel frequency response experiments, tha t  the 
neuron  displays half-wave rectification. 

In  future work  we intend to apply this analysis 
technique to the behavior  of  other  real and  model  
neural  encoders. In  particular,  an analysis of  the 
Hodgk in -Hux ley  (1952) and  related simulat ions offers 
the possibility of  relating the forms of  the est imated 
kernels to the detailed behavior  of  the ionic channels 
which provide the fundamenta l  basis of  neural  
encoding.  
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