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In this paper, a generalized Mori-Tanaka Scheme is applied to evaluate the elastic response of 
short fibre composite materials. Numerical predictions are compared with experimental 
measurements performed on short fibreglass reinforced thermoplastics with a wide range of fibre 
concentrations, including the range characteristic of usual industrial applications with non-trivial 
fibre orientation distribution. 

1.  I n t r o d u c t i o n  
The central importance of fibre reinforced composite 
materials in engineering applications is now well- 
established (cf. for instance, [1]). The effective use of 
these materials requires a reliable knowledge of their 
characteristic behaviour, tha t  is, a correct mathem- 
atical evaluation of their mechanical properties. The 
problem of predicting the effective or "overall" macro- 
scopic elastic properties of materials composed of 
a continuous matrix phase containing embedded 
inclusions is still an attractive basic subject in mech- 
anics. As these materials are not homogeneous, an 
estimate of their effective properties necessitates 
a micro-mechanical analysis that considers the inter- 
action between the fibres and the continuous embed- 
ded matrix. When the interaction among fibres is 
negligible (a dilute condition), Eshelby's method 1-2] 
provides the average behaviour of the aggregate. 
When the fibre concentration level becomes signific- 
ant, many methods have been proposed to estimate 
the effective elastic properties of such materials. 
Among these, the most widely employed are the self- 
consistent scheme, credited to Budiansky [-3] and Hill 
[4], the Halphin-Tsai equations [5], the differential 
method 1-6] and the Mori-Tanaka approach [7]. 

In the most commonly used version of the self- 
consistent scheme it is assumed that, when the fibre 
concentration in the matrix is not negligible, the aver- 
age strain or stress field in the generic inclusion may 
be estimated by considering itself as being embedded 
in a homogeneous medium characterized by the mech- 
anical properties of the composite. The differential 
method is based on the assumption that the overall 
composite is a sequence of dilute suspensions. In other 
words, incremental construction of the composite ma- 
terial by gradual addition of infinitesimal amounts 
of inclusions occurs. The Halpin-Tsai equations are 
semi-empirical relationships, based on the self-consist- 

ent micro-mechanics solutions developed by Hill. The 
Mori Tanaka theory [7] has been proposed in order 
to evaluate the average internal stress in the matrix of 
a material containing precipitates with eigenstrain. 
Critical presentation of several of the prominent 
theoretical micro-mechanic models can be found, for 
instance, in [8, 9]. 

The objective of this work is to compare the numer- 
ical estimate of the generalized Mori-Tanaka theory 
with experimental evaluations of some mechanical 
properties of short fibre composite specimens and to 
assess the versatility of this analytical model mimick- 
ing the experimental response. A noticeable outcome 
of this research is that accurate microstructural char- 
acterization enables excellent estimation of the overall 
elastic properties of the material. 

2. Generalized Mor i -Tanaka  theory 
Consider a perfectly biphase composite aggregate 
with far field homogeneous conditions that produce 
a stress-strain field. An overall or effective (fourth- 
order) elastic tensor, ~, is defined as: 

= ~ (1) 

where (5 and ~ represent the average stress-strain field, 
respectively, related to the property tensors of the 
matrix (~m and the inclusions (gi (cf. [10]) as follows: 

= ~m(~m~m "4- E ~i (~i ~i (2) 
i 

with ~m and 0~ i being the volume fraction of the matrix, 
m, and the inclusion, i, respectively. The fundamental 
assumption of the Mori-Tanaka theory El 1] regards 
the average strain field in the generic inclusion, such 
that: 

~i = ~ (gl, a i)~m (3) 
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where ~-(gl, a i) is the so-called Wu's tensor, which is 
a fourth-order tensor function of the fibre orientation 
[12], defined in three-dimensional Euler space by the 
three values gl, and in the two-dimensional aspect 
ratio space by the two values ak The inclusions are 

dl, d2, d~ supposed to be of ellipsoidal shape, where i 
are principal diameters (di~ < d~ < di3). The aspect 
ratios are defined as follows: 

The solution of Equation 9 requires that both the 
orientation and the shape of every single inclusion are 
known, In practice, a very large number of inclusions 
are usually met so that the use of Equation 9 is not 

advisable .  As a consequence it becomes necessary to 
consider a statistical description of the fiber orienta- 
tions and aspect ratios. If f (g) and h(a) denote the 
fibre orientation density function and the aspect ratio 
density function, respectively, we can write 

L(~i~-(gi 'a i)  ~ - - i  [ ~ i  ~ i l  f f f  
ES 

a~ dittd~, a~ i i �9 = " = d21d3 (4) 

The so-called Euler angle, gl, will be used to define the 

[ f f ~ - ( g , a ) h ( a ) d a l f ( g ) d g  (11) 

AS 

where ES and AS indicate the space of the Euler 
angles and the space of the aspect ratios, respectively. 
In particular: 

f f ~ijkl(g, a) h(a) 
AS 

da = Rmi(g)R. j (g)Rpk(g)Rql (O) f fJ ' (a)h(a)da  
AS 

= Rmi(g) R~j(g) Rpk(g) Rq,(g) Y 
It follows 

(12) 

J - (g ,a )  h(a g) = ~ f ( g  3-- = ( ~ )  J- 
ES AS ES 

(13) 

fibre orientation with respect to a fixed frame. If 
f ' ( a  i) denotes Wu's tensor in the fibre adherent 
frame, the tensor Y-(gi, ai) admits the following de- 
composition: 

~-(gi, ai ) = ~(gi )  ~--,(a i) (5) 

or, in components: 

~1112i3i 4 = ~ili2i3i4J lJ2J3J4 ~--, (6) 

in which 

~ili2i3i4j i j2J3J 4 = R j l i l R j z i z R j 3 i 3 R j 4 i 4  (7) 

where Rhi ' denote the components of the orthogonal 
tensor that represent the rotation of the fibre reference 
frame with respect to the global one, and: 

[ 1 J - ' ( a  i) = 1 -~- ~m-X((~ f -- c~m)~O(ai) (8) 

is the so-called stress concentration tensor in which 
J ( a  ~) is the Eshelby tensor of the generic inclusion. 
From Equations 1-3 it follows: 

E l } N ~m 1 + ~i ~i J -  (gi, a i) g; (9) 

where the braced member defines the elastic tensor 
under the Mori-Tanaka,  MT, assumption (cf. Equa- 
tion 1): 

(~MT = c~m _k_ I ~i ~i(c~f __ c.~m) j ( g i  a i ) ]  

[ l • ~ml + . ~i~-(~i,  ai) (10) 
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If ~ ~i is denoted by cz f, the effective elastic tensor 
i 

under the Mori-Tanaka assumption is: 

~MT = (69m t_ [ ~f ((~gf __ (~m) ( ~ )  # ] 

( X ~m 1 + (x f ( : ~ ) Y  (14) 

an expression which is useful in the numerical evalu- 
ations. 

3. Experimental procedure and results 
The specimens (Fig. 1) employed in this research, were 
obtained by injection moulding and were composed of 
polybutylene terepthalate (PBT). The glass fibre rein- 
forcement was E glass of cylindrical shape and 10 pm 
in diameter. The fibre weight concentration con- 
sidered ranged from 0 to 47.5%. The fibres were 
coated with a coupling agent in order to improve 
the fibre-matrix bonding. The higher concentration 
quoted above (47.5%) was found to be an upper 
bound, because the aggregate was not workable in the 
injection procedures. 

The elastic constants were evaluated with tensile 
tests on a standard Instron testing machine. Test con- 
trol and data acquisition were provided by a micro- 
computer. At least five tests were performed for each 
condition. 

The matrix was characterized by a non-linear re- 
sponse. The plastic range of the material appeared to 
be very extended, with ultimate strains greater than 
100%. Between strains of 200-400g~ the secant 
modulus is 2950 MPa, whereas between 600-2400 ge 
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Figure 1 Test specimen. 

the secant modulus becomes 2587 MPa. Poisson's 
ratio, evaluated in the second deformation range, is 
v = 0.405. 

In the reinforced specimens, since the fibre length 
distribution was altered by the injection procedures 
(cf. [13]), it was necessary to measure them again. This 
length determination was derived semiautomatically, 
through an image analyser, applied to microphoto- 
graphs of the ashes of specimen portions. This method 
requires the burning off of the polymer, and the fibre 
spreading onto a slide. The distributional data on the 
length profile are summarized in Table I. 

The fibre orientation profile may be characterized 
by the planar angles ~ and 13 (Fig. 2); ~ is the angle 
between the projection of the principal fibre axis in the 
plane x2-x3 and the x2 direction; and 13, similarly, 
refers to x l - x 3  and xl .  The determination of these 
angles was performed on polished sections xl = 0 and 
x2 = 0, respectively. In all cases, an excellent align- 
ment of the fibres with the specimen principal axis, x3, 
was recorded. Table II reports the planar angle distri- 
bution for the 30 and 47.5 wt % fibre concentrations. 

Two sets of experiments were performed on the 
reinforced specimens: 

1. standard tensile tests in the specimen principal 
direction, x3; and 
2. tensile tests in one transverse direction, x2. 

In .the former case, the longitudinal Young's modulus, 
E 3 ,  w a s  determined, whereas in the latter tests the 
transverse Young's modulus, E2, and the Poisson's 
ratio, v32, were measured. Due to the specimen shape 
(exiguous length in the x2-direction), the second tests 
were performed on specimens prepared as schemat- 
ically sketched in Fig. 3. 

As stated, the considered matrix (PBT) is character- 
ized by non-linear behaviour. However, the composite 
shows an almost linear response in the longitudinal 
direction, corresponding to the maximum fibre align- 
ment. Conversely, the transversal response is non- 
linear, qualitatively similar to the matrix response. 
The secant longitudinal Young's modulus, E 3 ,  m e a s -  

u r e d  between strains of 600-2400 la~, the transverse 
Young's modulus, E2, and the Poisson's ratio, v32, 

T A B L E  I Distributional data on the length profile 

Length Relative frequency for fibre concentrations spanned 
classes 
(gm) 10 wt % 20 wt % 40 wt % 

0-50  0.000 0.000 0.000 
50-100 0.515 0.468 0.416 

100-180 0.144 0.167 0.252 
180-260 0.054 0.134 0.150 
260-340 0.044 0.074 0.094 
340-420 0.035 0.050 0.058 
420-500 0.042 0.037 0.017 
500-590 0.022 0.027 0.004 
590-680 0.033 0.010 0.004 
680-780 0.025 0.010 0.004 
780-890 0.019 0.003 0.000 
890-4000 0.067 0.020 0.001 

T A B L E  II Planar angle distributions for 30 and 47.5 wt % fibre 
concentrations 

Angle For 30 wt % conc. For 47.5 wt % conc. 

f~ f~ f~ A 

175 0.0000 0.0000 0.0086 0.0000 
165 0.0127 0.0112 0.0029 0.0000 
155 0.0127 0.0056 0.0029 0.0000 
145 0.0000 0.0225 0.0057 0.0109 
135 0.0127 0.0281 0.0258 0.0328 
125 0.0253 0.0281 0.0344 0.0109 
115 0.0886 0.0843 0.0745 0.0929 
105 0.1643 0.1124 0.1289 0.1475 
95 0.2532 0.1685 0.2687 0.2623 
85 0.2152 0.2528 0.3324 0.2951 
75 0.1013 0.1011 0.0458 0.0492 
65 0.0380 0.0843 0.0315 0.0273 
55 0.0253 0.0506 0.0086 0.0328 
45 0.0253 0.0112 0.0057 0.0000 
35 0.0127 0.0169 0.0143 0.0164 
25 0.0127 0.0112 0.0115 0.0055 
15 0.0000 0.0056 0.0029 0.0189 

5 0.0000 0.0056 0.0029 0.0055 

measured between strains of 200-400 gr are reported 
in Table III. The lower strain range was considered in 
order to avoid possible inelastic phenomena in the 
glued sections that would have conditioned the stress 
field in the experiments. 

4. Discussion 
In order to compare the experimental results with the 
forecasts expressed by the Mori-Tanaka approxima- 
tion, the microstructural characterization presented in 
Section 3 was used. 
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T A B L E  I I I  

Concentration (wt %) 

10 20 30 40 47.5 

Longitudinal modulus (MPa) 
Standard deviation (%) 

Transverse modulus (MPa) 
Standard deviation (%) 

Poisson's ratio (v32) 
Standard deviation (%) 

4270 
6.05 

3363 
4.12 

0.31 
3.54 

6550 
3.55 

3828 
1.54 

0.24 
3.57 

9250 
2.86 

4378 
1.55 

0.19 
2.12 

12310 14840 
1.69 2.33 

5075 5931 
2.45 1.77 

0.16 0.14 
4.91 0.71 

Cut out a square element Rotate by n/2 
of the specimen 

I ~ H f ~ J 

(a) (b) 

Re-insert the rotated element 
[] 

(c) 

Figure 3 Specimens used in 

Apply glue 

(d) 

tensile tests in one transverse direction. 

T A B L E  IV Least square method of evaluation of experimental 
data  

Concentration A B ~1 ~2 
(wt %) 

30 0.2158 0.0104 0.0657 2.1773 
50 0.3100 0.0127 0.0293 4.3206 

The numerical evaluation requires an orientation 
density function (ODF). Since the planar angles ~ and 
[3 are close approximated by the same distribution, 
transverse isotropy was assumed. In other words, it 
was supposed that on every plane containing the 
x3 axis there was an equal planar angle distribution. 
On the basis of the experimental data, the following 
planar density function F(~) was considered: 

- - 2 

F(~) = Aexp 2ol  

+ Bexp[(O -- n/2)/(2oz)l (15) 

where A, B, o l  and o2 have been evaluated with the 
least square method applied to the experimental data 
reported in Table IV. 

The ODF  in the Mor i -Tanaka  scheme is expressed 
in terms of the so-called Euler angles r �9 and 
q~2 defined according to Fig. 4. The fixed reference 
frame {e 1 } is assumed to coincide with the specimen 
axes, and kz axis of the frame adherent to the generic 
fibre is taken as parallel to the principal fibre axis. It 
may be shown that the ODF corresponding to the 
assumed planar angle is: 

f((Pl,(I),q~2) = fl(q~t)fo(~)f2(q~2) (16) 
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Figure 4 Euler angles r �9 and q~2" 

(g, ~} 

where f l  (s is a constant, f2(q02) = 5(0), (Dirac's 6) 
and: 

- ( 0  - n/2) 2 
fo(O)=F(q~) = Aexp 2crl 

+ Bexpl(~ - n/2)/(2r~2)[ (17) 

With regard to the aspect ratio distribution to be used 
in the Mor i -Tanaka  model, we consider the discrete 
distribution obtained experimentally (values in Table 
I divided by the fibre diameter). For  a considered fibre 
concentration the closest available O D F  and the 
aspect ratio distribution were used. 

Table V summarizes the numerical estimate of the 
five engineering elastic constants characterizing the 
material, together with experimental error measure- 
ments. The comparison is also illustrated in Figs 5-7, 
which underline a noticeable degree of agreement be- 
tween theory and tests. It can be said that the model 
gives a realistic and acceptable assessment of the com- 
posite's behaviour over a wide range of fibre concen- 
tration. Other theoretical or semi-empirical models 
are not always of easy application, or cannot be era- 

�9 ployed in non-trivial fibre distribution. The numerical 
estimates are very sensitive to the microstructural 
data, and it is possible to observe that only with 
correct information on the material, does the model 
here considered give a realistic and accurate predic- 
tion of the mechanical properties. For  instance, nu- 
merical evaluations assuming a fibre length equal to 
average fibre length, exhibit an overestimation of the 
effective elastic moduli. 

Finally, it may be remarked that the errors incurred 
in measuring the transverse modulus are very small, 
and lower than those regarding the longitudinal 
modulus. In both cases, the errors are comparable to 
the standard deviation of the experiments. 



TABLE V Experimentally determined discrete aspect ratio distribution 

Concentration (wt %) 

10 20 30 40 47.5 

Longitudinal modulus (MPa) 4368 
Error (%) 2.3 

Transverse modulus (MPa) 3424 
Error (%) 1.8 

Poisson's ratio (v32) 0.286 
Error (%) - 7.7 

Shear modulus G12 (MPa) 1015 
Shear modulus G13 (MPa) 1076 

6450 8927 12185 15311 
-1 .5  -3 .5  --1.05 3.2 

3910 4472 5175 5843 
2.1 2.1 2.0 -1 .5  

0.222 0.183 0.152 0.126 
-7 .5  -3 .7  -5 .0  -10.0 

1132 1281 1474 1665 
1266 1508 1770 2000 
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Figure 5 Effect of glass fibre concentration on the longitudinal 
elastic modulus: - I I - ,  experimental; 4 - ,  Mori-Tanaka. 
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Figure 6 Effect of glass fibre concentration on the transverse elastic 
modulus: -I1-,  experimental; - | - ,  Mori-Tanaka. 
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Figure 7 Effect of glass fibre concentration on the Poisson's ratio, 
v32:-I1-, experimental;-|-, Mori-Tanaka. 

5. Conclusions 
The M o r i - T a n a k a  theory  coupled  with accurate  
micros t ruc tura l  charac te r iza t ion  gives an excellent es- 
t imate  of the overal l  elastic p roper t ies  for shor t  fibre 
b iphase  reinforced composi tes .  This  holds  true for the 
fibre concen t ra t ion  here considered,  which falls within 
the range character is t ic  of the usual  indus t r ia l  appl ica-  
tions. In  compar i son  to a l ternat ive  homogen iza t i on  
schemes, an i m p o r t a n t  advan tage  of  this mode l  is its 
versat i l i ty  in inco rpora t ing  mos t  general  mic romor -  
phologica l  informat ion,  independent ly  of  the fibre 
a s p e c t  ra t ios  and or ien ta t iona l  d is t r ibut ions .  
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