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Abstract. The photoluminescence spectra of Ti3+-doped YA103, Y3A15012 and A1203 crystals 
display weak zero-phonon lines and broad vibronic side bands. The zero-phonon lines are due 
to the splitting of the 2T2g ground state into three Kramers' doublets by the combined effects 
of static axial crystal field, Jahn-Teller effect and spin-orbit interaction. A molecular orbital 
method is used to calculate the relative intensities and polarizations of both zero-phonon lines 
and broad band in terms of the mixing of odd-parity ligand wavefunctions into even-parity Ti 3+ 
wavefunctions by odd-parity crystal fields of Tlu and T2u symmetries at sites with tetragonal 
and trigonal symmetries. The odd-parity distortions may be static or dynamic and are of crucial 
relevance in determining the strength of vibronically induced transitions. In general, selection 
rules for optical spectra are uniquely determined by group theory. The relevance of the molecular 
orbit description of the d-d transitions is that it permits a physical interpretation of the strength 
of optical spectra in terms of the covalent charge transfer from ligand ions to central ions 
induced by odd-parity crystal field distortion. 

PACS: 42.55R, 42.70, 79.60 

Since the first demonstration of tunable room- 
temperature laser action at near infrared wavelengths 
from Cr 3+ :BeA1204 [1], several other tunable Cr 3+ lasers 
have been developed, using Gd3Sc2Ga3012 (GSGG) [2]. 
Gd3Sc2A13012 (GSAG) [3], ScBO3 [4], ZnWO4 [5] and 
KZnF3 [6] as host crystals. The Ti 3+ :A1203 laser [7, 8] 
has an even broader tuning range and a much larger 
stimulated emission cross-section a0 = 3 x 10 -19 cm 2 at 
the luminescence peak [9] than Cr3+-doped laser mate- 
rials irrespective of whether the lowest excited state of 
Cr 3+ is 2E or 4T2. Although the optical absorption and 
luminescence and excited state decay times of Ti 3+ in 
YA103 (YAP) [10], Y3AIsO12 (YAG) [11] are compara- 
ble to those of AlzO3 [12-16], efficient laser operation 
has been observed only in A1203 crystals. In seeking 
novel Ti3+-doped crystals for use as tunable lasers with 
high gain and large slope efficiency, it is instructive to 
examine the vibronic nature of the radiat ive 2Eg ~ 2 r2g 
transitions. This paper analyzes the zero-phonon line and 
broad-band emission of Ti 3+ ions in axial crystal fields in 
terms of a molecular orbital method in which odd-parity 
ligand ion wavefunctions are mixed into the even-parity 
2Eg and 2T2g states of the 3d I configuration by odd- 
parity crystal field distortions, spin-orbit coupling and 

Jahn-Teller interaction acting in concert. We derive the 
relative intensities and polarizations of the three zero- 
phonon lines and broadband in emission for Ti 3+ ions 
in tetragonal or trigonal crystal field symmetry. These 
theoretical results will be compared to the low tempera- 
ture emission spectra of Ti 3+ in YAP, YAG and A1203 
crystals in a subsequent publication. 

1. Vibronic Hamiitonian of the 3d 1 Configuration of Ti 3+ 

We consider the Ti 3+ ion located at the centre of an 
octahedral array of anions which undergoes an axial 
distortion to produce in a crystal field with tetragonal 
or trigonal symmetry. The vibronic Hamiltonian for the 
3d I configuration of the Ti 3+ ion in this axially distorted 
environment is written as 

H = Ho + Hph + Hs-o + Vax + Ve-p, (1) 

V~ = ~ V(3'(F)), (2) 
F,y 

where the zero-order electronic Hamiltonian, H0, includes 
both central ion and octahedral crystal field terms, Vo. 
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Table 1. Tetragonal and trigonal crystal field components for various symmetry groups 

Symmetry group Components 

T e t r a g o n a l  D 4 h  

C4v 
c4 

Trigonal D3d 
D3 
C3v 
C3 

V(Alg(Eg)) 
V(Alg(Eg)) q- V(A2u(Tlu)) 
V(Alg(Eg)) -]- V(A2g(Tlg)) + V(A lu) + V(Alu(Eu)) + V(A2u(Tlu)) 
V(Alg(T2g)) 
V(Alg(T2g)) + V(Alu) + V(Alu(T2u)) 
V(Alg(T2g)) + V(A2u) + V(A2u(Tlu)) 
V(Alg(T2g)) + V(A2g) + V(Alu) + V(A2u) + V(A2u(Tlu)) + V(Alu(T2u)) 

The symbols in parentheses represent the components of irreducible representations of D4h 
and D3d symmetry groups 

The phonon Hamiltonian, Hph, contains kinetic energy 
and harmonic potential energy terms. Hs--o and Ve~ 
are perturbation operators representing spin-orbit and 
electron-phonon interactions, respectively. V(7(F)) in (2) 
is the component of the crystal field perturbed from cubic 
symmetry, Vax, in which F and ? are irreducible repre- 
sentations of the group and its component. Table 1 sum- 
marizes these components of the tetragonal and trigonal 
static crystal field, V(y(F)), for various symmetry groups. 
The even-parity crystal field components, V(Alg(Eg)) for 
D4h and V(Alg(r2g)) for D3d correspond to the octahe- 
dron being distorted along the (001) and (111) axes, 
respectively. Lower symmetry distortions introduce odd- 
parity components which break the parity-forbidden se- 
lection rule for d ~ d transitions. The electron-phonon 
coupling operator, Ve-p, includes the Jahn-Teller effect 
and odd-parity perturbations, i.e. both static and dy- 
namic distortions. 

YA103 is orthorhombic in symmetry. However, the 
octahedron surrounding Ti 3+ may be treated as approxi- 
mately tetragonal. A reduction of symmetry from tetrag- 
onal to orthorhombic introduces an odd-parity crystal 
field component, V(A2u(Tlu)). In YAG Ti 3+ substitutes 

for the A13+ ion in the trigonally distorted octahedral 
sites in which the centre of inversion is maintained. As 
a consequence, the crystal field contains only even-parity 
components• In contrast, as the symmetry of A1203 is C3, 
odd-parity components, V(A2u(rlu)) and V(Alu(T2u)), are 
present. Which components are dominant may be deter- 
mined experimentally. 

Figure 1 shows how the five-fold degenerate orbital 
state, 2D, of Ti 3+ in A1203 splits into 2Eg and 2T2g levels 
[12] with energy separation, 10Dq [17]. The dominant 
static trigonal crystal field, V(Alg(Z2g)) , and spin-orbit 
interaction together splits the 2T2g ground state into 
Kramers' doublets, E2/2, (E~/2, E3/2), which are repre- 
sentations of the trigonal double group [13, 17], whereas 
the 2Eg excited state splits into two Kramers' doublets as 
a consequence of the Jahn-Teller effect. The optical spec- 
tra of Ti 3+ in A1203 may be accounted for in terms of 
this schematic eflergy level diagram. In absorption, there 
are two overlapping peaks, the separation between which 
yields the Jahn-Teller splitting in the excited state of 
about 3000cm -1 [18]. At low temperature, high reso- 
lution measurements reveal a single zero-phonon line 
(transition A). In emission there are three zero-phonon 
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Fig. 1. Energy-level diagram of Ti 3+ :A1203 including 
crystal field, spin-orbit interactions and the Jahn-Teller 
effect 



124 M. Yamaga et al. 

lines due to the ground state being split into three Kra- 
mers' doublets. These absorption/emission transitions are 
allowed by the odd-parity crystal field components in Ta- 
ble 1 and odd-parity terms of Ve-p in (1). 

We now proceed to calculate the relative transition 
probabilities and polarizations of the zero-phonon emis- 
sion lines and of the vibronically broadened band in 
terms of the odd-parity wavefunctions of the ground and 
excited states of Ti 3+ ions with tetragonally or trigonally- 
distorted octahedra, the distortion being introduced by 
static crystal fields, Vax, and odd-parity perturbations in 
Ve-p in (1). First, we solve (1) in D4h and D3d group 
symmetries neglecting effects due to Hph and V~_p. Subse- 
quently, the effects of deviations from even axial symme- 
try, Hph and G-p, are discussed. 

2. Electronic Wavefunctions of 2Eg and 2 T2g of Ti 3+ 
in an Axial Crystal Field 

Tetragonal Symmetry (D4h) 

Consider a Ti 3+ ion at the centre of an octahedral ar- 
rangement of six 0 2- ligand ions. Since the Ti 3+ ion is 
finite size, the wavefunctions of the single 3d electron 
extend outwards into the crystal and may overlap those 
of the neighbouring ligand ions. The eigenfunctions of 
(1) with the assumption that Hph and V~_p are neglec- 
ted are molecular orbitals (MOs) constructed from linear 
combinations of atomic orbitals in the octahedral basis 
eigenfunctions of Ho using the d-orbitals of the central 
ion and the s- and p-orbitals of the ligands. Orbitals de- 
rived from s-states (Si) and p-states (Xi, Yi, Zi) of the 
ith ligand are classified as a anti-bonding and re anti- 
bonding orbitals of eg symmetry and t2g symmetry [19]. 
Such MOs take the form 

N, 2t 1 + 

] -- ~( - -XI  + Xg + Y2-- Y5) 

N,, []2z 2 - x 2 - y2) eg, Io) 

~ (283 + 2S6 -- S1 -- S4 -- $2 -- $5) 

c t 
+ 2Z6 + Xl X4 -t- Y2 -- }75)1 v ~ ( - 2 Z 3  

3 
(3) 

2-2-crcCrc (Z2 __ Z5 +_ -}- Y3--__ Y6)]___ 1 I~) = N~ [lyz) - 

[ X6 Zl -- Z4)] t2g (4) It/) = U,~ [Izx) (X3 - 

r Ca Y4 + X2 X5)] N~ LlXy) 5- (Y1 

where N,, N~ are the normalization constants and la- 
bels 1 to 6 refer to the x, y, and z axes as shown in 
Fig. 2. The eigenfunctions of (1) which include static te- 
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Fig. 2. d-orNta]s (It), 10), I;), I~}) and Tlu(a) distortions 

tragonal crystal field V(Alg(Eg)), and spin-orbit, Hs-o, 
perturbations are written in terms of the octahedral basis 
functions in (3) and (4) as 

E3/2 I +  1, +½)/  
l 

E~/2 IT 1, +½)~ 2T2g (5) 
I 

E2/2 10,+½) J 

Eo 10, +½)} 
Ee I g, -t-i) 2Eg (6) 

where 

1 
I + 1) = T ~  ([Q + i l ~ ) )  (7) 
IO) = I~). 

Trigonal Symmetry (D3d) 

The eigenfunctions of (1) including a static trigonal 
crystal field, g(Alg(r2g)) and Hs-o are written as 

e~/2 Ix_+, +1/] 
Eb2 LzT, _+1)~ 2r2 ~ (m 

e~/2 lu+, +½}]e 
E1/2 lu-v, ±½)J 2Eg (9) 

where 
1 

Ix+) = -T---~ (Inx) +il~tr))  
(10) VZ 
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Izo) = I~z),  

1 
It/x) = ~ (21¢) - I~ )  -It/)) 

1 
It/r) = ~ ([~) --It/)) (11) 

1 
Inz) = ~ ([~) + It/) + 1~)), 

and 

1 
lu_+) = - Y - ~  (10) + i le)). (12) 

The separations in energy between E~/2 and E3/2 and 

between E2/2 and E3/2 for the 2T2g ground state of Ti 3+ 
in A1203 calculated assuming a static trigonal crystal 
field do not agree with the splittings measured from far 
infrared absorption spectra [12]. This discrepancy may be 
removed using the vibronic Hamiltonian in (1) including 
Hph and Ve-p [13]. 

3. Electron-Phonon Interaction 

The electron is assumed to move in a potential V(q, Q) 
which is a function of electron coordinates q and nuclear 
coordinates Q and which may be expanded as a power 
series in Q [20] as 

1 V(q,Q) = Vo(q) + Z ¢3v Qr,, + ~ Z 
F , y  F ,7 ,Fr ,  y ~ 

( ) x \SQr,~OQr,# Qr,~Qr'# +.. . ,  (13) 

where Vo(q) is the static octahedral field potential of H0 
in (1), Qr,~ are the collective coordinates of the displa- 
cements and F, 7 are the irreducible representation and 
component of the group. Assuming that the linear term 
in the electron-phonon coupling is dominant, the higher 
order terms in (13) may be neglected and the electron- 
phonon interaction, Ve-p, is written as 

8V 
Ve-p = Z 0--~r Qr , • (14) 

F,~, 

The collective coordinates, Qr~, can be classified into 
even-mode and odd-mode coordinates. The even-modes, 
for example Eg and T2g, correspond to Jahn-Teller dis- 
tortions and are dominant. Odd-mode vibrations, Tlu 
and Tzu, allow parity-forbidden transitions between the 
excited and ground states even in the absence of static 
odd-parity crystal field. 

Since the t2g orbitals of the ground state form n-bonds 
with the ligands, the Jahn-Teller coupling with the Eg 
mode is weak [13, 20-22], and does not mix the three 
wavefunctions 1~), [t/) and [~) of the ground state. In 
contrast, the eg orbitals of the excited state form a-bonds 
with neighbouring ligands as shown by (3), and strong 
Jahn-Teller coupling is anticipated. The linear Jahn-Teller 
coupling mixes 10) and rE) states with Jahn-Teller energy 
EJT given by EJT = vZ/2MCO 2 ("~ 3000cm-1), where V 
is the coupling coefficient, M the ligand mass, and co the 
vibration frequency [18]. The anharmonic terms in the 
potential expansion (warping term) produce three poten- 
tial minima corresponding to tetragonal distortions along 
the x, y, and z axes separated by the barrier with height 
typically in the range 200-600cm -1 [20-22]. When the 
octahedron is stretched (compressed) along the z-axis, 
the lowest excited state is 10) (It}). 

Next, consider the Jahn-Teller effect in the presence of 
an intrinsic tetragonal distortion represented by 
V(Alg(Eg)). If the tetragonal field and the Jahn-Teller 
distortion have the same sense i.e. a stretch mode, then 
one of three geometrically equivalent Jahn-Teller distor- 
tions is stabilized and the octahedral arrangement of ions 
is tetragonally distorted. When the tetragonal perturba- 
tion has the opposite sense relative to the Jahn-Teller 
distortion, (e.g., the tetragonal perturbation is a stretch 
mode and the Jahn-Teller distortion is a compression 
mode), the distorted octahedron has orthorhombic sym- 
metry. That is, the combined terms of Vax and Ve-p in (1) 
determine the symmetry of the octahedron of Ti 3+. 

Trigonal Symmetry. The treatment of Jahn-Teller effect 
in trigonal symmetry is essentially the same as that in 
tetragonal symmetry. However, the trigonally symmetric 
crystal field perturbation never stabilizes one of three 
energetically equivalent vibronic states associated with 
distortions of the octahedron distorted along the cu- 
bic x, y, and z axes. Instead the distortion mixes these 
vibronic states, splitting them into singlet and doublet 
states. Furthermore, the magnitude of the trigonal split- 
ting is reduced by the Ham factor, q, relative to that in 
the absence of a Jahn-Teller effect. If q is fairly small, 
the trigonal splitting is negligible. This corresponds to 
the static Jahn-Teller effect in which the complex exhibits 
tetragonal symmetry. However, when the reduced trigo- 
nal splitting is larger than the stabilization energy of the 
tetragonal distortion as in the case of random strain of 
Eg symmetry [20-22], the complex will exhibit trigonal 
symmetry. The lowest excited state o f  2Eg is then given 
by the wavefunctions a [0)+ b [~) with [a[2+ ]b[ 2 = 1. 
Thus, the symmetry and wavefunctions are determined 
by the competition between the intrinsic trigonal crystal 
field and the stabilization energy of tetragonal distortion 
induced by the Jahn-Teller effect. 

3.1. Jahn-Teller Effect 

Tetragonal Symmetry. Consider the Jahn-Teller effect in 
cubic symmetry. The eigenfunctions of the vibronic Ha- 
miltonian in (1) are products of electronic and vibrational 
wavefunctions in the Born-Oppenheimer approximation. 

3.2. Odd-Parity Perturbations 

Radiative electric dipole transitions between the excited 
molecular states, eg, and the ground molecular states, tZg , 
are parity forbidden. However, static and dynamic odd- 
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parity terms of  the crystal field, V(y(F)) (£ = Tlu, T2u) 
and Ve-p in (1) lift this selection rule by mixing odd-parity 
wavefunctions into the excited states MOs, eg and/or  the 
ground states MOs, t2g. We now consider the effects of 
these odd-parity dynamic and static distortions on the 
radiative transitions separately. 

3.2.1. Dynamic Distortions 

Tetragonal Symmetry. The three odd-parity distortions 
of the octahedral complex transform as the irreducible 
representations rl,(a), rlu(n) and T2u(n) of the Oh 
group [23, 24], a and n implying that the ligand ion 
displacements are parallel to and perpendicular to the 
central-ion/ligand-ion axis, respectively. The Tlu(a) odd- 
parity distortion has three components r~u(a ), TYu(G) 
and r{u(a ) with r~'u(a ) and r(u(a ) being equivalent as 
examination of Fig. 2 shows. Figure 2 also shows the ef- 
fects of T~'u(a) and T~u(a ) components of the distortion 
applied to the le), 10), I~), and I~) MOs. With the r~'u(a ) 
displacements shown in Fig. 2a, the ligand ion on the neg- 
ative x-axis of the le) MO, moves nearer to the central 
ion, and its $4 and X4 orbitals are mixed to a greater 
extent than the orbitals & and X1 of the ligand ion 
on the positive x-axis, which moves away from the cen- 
tral ion. This admixture is approximated by a coefficient 
[a(S1 - -  $4) - -  b(X1 + X4)]QTlu, X(G), where QTlu, x(a) is the 
normal coordinate of the T~u(a ) distortion. The Tlu(a) 
odd-parity distortions also affect the I~), It/), and 1~) MOs. 
The odd wavefunctions of the p-orbitals mixed into the 
[() and I~) MOs by the r{u(a ) and r~u(a ) components 
with coefficients c(YI+ Y4)Qrlu, X(G) and c(Y3+ Y6)Qrl,,~(G) 
are shown in Fig. 2c and d, respectively. 

The Tic(n) and T2u(n) distortions cause similar ad- 
mixtures of odd wavefunctions in the 10), le), I~), It/), 
and I~) MOs. When the T~u(n) component perturbs the 
I~) MO, the z-bonding axis between the central ion and 
the 2nd and 5th ligands bends slightly towards the y 
axis as is shown in Fig. 3b. This effect is approximated 
by an admixture coefficient c'(Y2 q- Ys)Qr~.,z(n). T2u(n) 
odd-parity distortions mix the same odd-parity wave- 
functions of p-orbitals into the tzg MOs but with dif- 
ferent phase from that induced by Tlu(n) distortion. 
The odd-parity admixture induced in the 14) MO by 
T~u(n ) is --c"(Y2 + Ys)QT2.,z(n) (Fig. 3d). The admixture 
of  the odd wavefunctions of  the s-orbitals into the 10} and 
I~) MOs is negligible because these MOs are composed 
of o--bonding orbitals, while the admixture of p-orbitals 
into the 10) and le) MOs are affected by Tlu(rC) and 
T2u(n) distortions. When the T~(n) component perturbs 
the [e} MO, the o--bonding axes of 1st, 2nd, 4th, and 
5th ligand ions bend slightly toward the z-axis. Then, 
the induced odd-parity wavefunction is approximately 
b'(Z1 + Z 4 -  Z 2 -  Zs)Qr~u,~(n). The results for all appro- 
priate wavefunctions in octahedral symmetry are sum- 
marized in Table 2. 

Trigonal Symmetry. We apply the odd-parity distortions 
to Ti 3+ ions occupying trigonal crystal field sites in, for 
example A1203 where the crystal structure is axially sym. 
metric about the e axis. The new axes are chosen to 
be XII(H2), YII(li0) and ZII( l l l ) .  The components of  
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(l~)) and Tlu(Tt) and T2.(n) distortions 

the Tlu(a), Tlu(n) and T2u(n) odd-parity distortions and 
odd-parity MOs are transformed from octahedral to trig- 
onal bases. The transformed distortions and MOs have 
the same form as the 2T2g in (11) and the subscripts 
(7 = X, Y, Z) of  Qr,~ replace 7 = x, y, z in the octahe- 
dral basis. The odd-parity wavefunctions induced into the 
ground states It/x), It/Y}, and It/z) by odd-parity trigonal 
perturbations calculated using Table 2 are summarized in 
Table 3. The X, Y, and Z components of T2u(n) do not 
create odd-terms of ligand p-orbitals in It/x), It/r), and 
It/z), respectively. The eigenfunctions of the ground state 

1 
in trigonal symmetry are IX_+) = -T-7- ~ (It/x) __ i lt/r)) and 

[Z0) = It/z), and the odd-parity wavefunctions induced 
into [X+) and IX0) are reproduced using Table 3. 

3.2.2. Static Distortions 

Odd-parity static distortions correspond to irreducible 
displacement coordinates in the absence of  the kinetic en- 
ergy term in Hph. If  the symmetry of Ti3+-doped crystals 
remains as that of the pure crystals, the static distortions 
agree with the intrinsic odd-parity crystal field compo- 
nents deviated from cubic symmetry in Table 1, that is, 
the z (Z) component of the odd-parity dynamic distor- 
tions for the tetragonal (trigonal) symmetry. However, 
if the distortions of  the octahedron produced by terms 
in Ve-p are different from the intrinsic crystal field, they 
must be localized distortions. The x, y, and z (X, Y, and 
Z) components of such distortions for tetragonal (trigo- 
nal) symmetry have different electron-phonon coupling. 
However, the induced odd-parity wavefunctions are the 
same as those by odd-parity dynamic distortions. 

4. Polarization of Luminescence and Selection Rules 

The emission spectrum of Ti 3+ ions consists of the zero- 
phonon lines and the broad band. The zero-phonon tran- 



Polarization of Emission Spectra from Ti3+-Doped Oxide Crystals. I 127 

Table 2. Odd-parity wavefunctions of ligand orbitals mixed into MOs le), 10), I~), Ir/), and I~) by lattice vibrations Tlu(a), Tlu0r), and 
T2u(x) 

Vibration MO 

14 IO) I~) Ir/) I~') 

Tlu(a) 

x a(St - S4) - b(X1 + X4) 

y -a(S2 - $5) + b(Y2 + Ys) 

z 0 

Tlu(~) 

x -b ' (X2  + X5) 

Y b'(Y1 q- Y4) 

z b'[(Z1 + Z4) - (Z2 + Z5)] 

T2uOr) 

X 

1 
[--a(Sl -- $4) + b(Xl + X4)] 0 c(Z1 + Z4) C(Yl + Y4) eg  

1 
[--a(S2 -- $5) q- b(Y2 q- Y5)] c(Z2 q- Z5) 0 c(X2 q- X5) v~ 

1 
[2a($3 -- $6) -- 2b(Z3 + 26) ] c(Y3 q- ]76) ¢(X3 q- X6) 0 

b ! 
[--(X2 q- X5) q- 2(X3 -}- X6)] 0 ct(Z3 q- 26) ¢t(y2 q- Y5) 

,/3 
b' 

[--(I"I + ]74) q- 2(I13 + }'6)] f (Z3 q- 26) 0 c'(Xl "t- )/4) 
v 3  
b' 

- - - ~  [(21~- 24) -}- (22 -~- 25)] c'(Y2 + Y5) ct(X1-}- X4) 0 
v J  

b I! 
--b'(X2 + Xs) ~ [--(X2 + X5) -- 2(X3 + X6)] 0 --c'(Z3 -}- 26) c'(Y2 -}- Y5) 

b' 
Y -b"(Y1 -'}- Y4) ~ [(Y1 q- Y4) q- 2(]I3 -}- Y6)] c"(Z3 q- 26) 0 --c"(XI -}- X4) 

b" 
z b" [(Z 1 q- 24) -q- (22 q- Z5) ] ~ [--(21 q- 24) q- (22 q- 25)] -c ' (Y2  + I15) c"(Xl q- X4) 0 

Table 3. Odd-parity wavefunctions of ligand orbitals mixed into MOs of the ground state jr/x), Jr/r), Jr/z} on trigonal basis by lattice 
vibration Tlu(a), T1u(n), and T2u(Z) 

Vibration MO 

Ir/x) Ir/:,) Ir/z) 

Tlu(a) 
1 

X g [--2(X2 + X3) - -  2(Y1 + Y3) 

q-(Z1 q- 22)] 
1 

Y 2 , f i  [-2(X2 -- YO - (Z1 -- Z2)] 

1 
Z v-B- ~ [(2X2- X3) + (2Y1- I13) 

-(21 + 22)] 
Tlu (~) 

1 
X ~ [(23 q- Z6) -- 2(Xl q- X4) 

--2(Y1 + Ys)] 
1 

Y -- - -  [(XI + X4) -- (Y2 + Ys) v~ 
1 

Z -- ,,-3- ~ [2(23 + 26) - -  ( X  1 -[-  X4) 

--(II2 + Ys)] 

Tzu(.) 

X 

1 
Y ~ [(X1 -~- X4) -}- (Y2q- Ys) 

+(23 + 26)] 
1 

Z - - - -  [(Xl "q- X4) -- (I"2+ Ys)] v~ 

1 1 
2---~ [-2(X3 - Y3) + (Z1 -- Z2)] 3--~ [(-X2 q- 2X3) q- (--]11 + 2II3) 

-(z1 + 22)1 
1 1 

- -~ 2(Z1 +Z2) - ~  [(--X2 + Y1) + (Z1--Z2)1 

1 1 
- - ~  [(X3-- ]I3) q- (21--Z2)] ~ [(X2 q- X3) -f" (YI+ I(3) 

+(21 + 22)1 

I 
----~_ [(x~ +x4) - 0"2+ g5)] VJ 

- ( Z  3 q- Z6) 

1 
--'-"~¢ [(X1-]- X4) -- (g2 -]- Ys)] 

x/o 

1 
- T d  [(xl +x4) + (v2+ Ys) 

+(23 + 26)] 

1 
~-~ [2(Z3 + 26) -- (X 1 q- X4) 

--(I12+ Y5)] 

1 
3V~ [2(23 q- 26) -- (X1 q'- g4) 

- (g2  + g5)] 
1 

--~"~ [(Xl q-X4) -- (Y2q- Y5)] 

2 
[(xl + x4) + (Y2+ Ys) 

+(23 + z6)] 

1 
[(xl +x4) - 0"2+ Ys)] 

1 
-- " ~  [2(23 + 26) -- (X 1 "]'- X4) 

--(Y2 q- Y5)] 
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sition between the excited state [2EgZ, 0~) and the ground 
state [2T2gz', e') where Z and )( are orbital components of 
2Eg and 2T:g and e and c( are spin states is allowed by the 
intrinsic static crystal field, Gx and the static distortion, 
whereas the broad band is allowed by static and dynamic 
distortions of the crystal field. The electric dipole moment 
operator, D = --er. E, operates only on the orbital states. 
The matrix element (2Eg Z, ~1D 12T2gz t, ~) of  the electric 
dipole transition induced by the odd-parity perturbations 
V(TI~), (V(T:u)) are given by 

(2EgZ, ~1D [2Fuy ' ~} (2FuT, ~1 V(Tlu)12T2gz ', c~) 
E(2 T:g) - E(2G) 

+ (2~gZ, ~1 V(Tlu)12r'~ ', ~) (2r'~', ~1D 12T2gZ ', ~) 
E (2Eg) - E (2r ')  

(15) 

M. Yamaga et al. 

where E(2T2g), E(2Eg) and (E(2Fu), E(2Fut)) are energy 
levels of the ground, excited and intermediate states 
[25], respectively and the components of the interme- 
diate states, 7 and y' are given in Table 2 and 3. The first 
and second terms in (15) represent the radiative tran- 
sitions due to mixing odd terms from ligand p-orbitals 
into 2T2g and mixing odd-parity wavefunctions of the 
ligand s- and p-orbitals for 2Eg by odd-parity perturba- 
tions, respectively. The relative magnitudes of the matrix 
elements determined using vibronic wavefunctions are 
the same as those calculated using the purely electronic 
wavefunctions because the contribution of the nuclear 
wavefunctions to the electric dipole matrix element takes 
the form of the reduction factor. Therefore, the matrix 
elements are calculated using the electronic wavefunc- 
tions of the ground state, (l~}, It/), I~} or l -- 1), I0)) and 
(It/x}, Jr/y), Ir/z} or IZ+), Iz0)), and those of the lowest 

(a) Tlu(O') t e t r a g o n a l  d i s t o r t i o n  

x V z 

i I II I11 I III II 
x(O) y(O) z(1) x(O) y(2) z(O) x(O) y(Olz( l )  x(2) y(O)z(O) x(4) y(4) z(O) 

I I I  

III I I Ill II I II II I 
x(O) y(O) z(3) x(O) y(O)z(O) x(O) y(O) z(3) x(6) y(O) z(O) f o r b i d d e n  

I I I _ I 

(b) Tlu(~) t e t ragona l  d i s t o r t i o n  

x Y 

Ill I I I  II IJ II 
x(O) y(O) z(41 x(O) y(2) z(O) x(O) y(O) z(4) x(~ y(O) z(O) 

_ I I I  I I 
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II II II I 11 II II L I 
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_ I I I  _1 I I I  
:l 
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Fig. 4a, b. Polarizations and relative 
intensities of the emission induced by a 
T1u(cr) distortion, b Tlu(n) distortion in 
tetragonal symmetry. The letters x y, and 
z represent the x y, and z components 
of polarization in tetragonal symmetry. 
The numbers in parentheses represent the 
relative intensity 
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(a) Tlu(o') t r  g o n a [  d i s t o r t i o n  
x y z 
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(c)  T2u(TT,) t r i g o n a [  d i s t o r t i o n  
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II 1111 i i [II i l li 
X(6) Y(O) Z(O) X(O) Y(6) Z(O) X(6) Yt:)) Z(O) X(6) Y(O)Z@2) X(3) Y(3) Z(6) 

. I l l  _ I J l  . 

i I e,*}> 

forbidden 

iil,~ 4, 

lit I i ill ii 
X(O) Y(6) Z(O) X(6) Y(O) Z(12) X(O) Y(6) Z(O) X(O) Y(6) Z(O) X(3) Y(3) z(6) 

_ I J ~ l l  ]it 
I 

forbidden 

I I I  I~'o ,±~-> 
I~,*~) 

Fig. 5a-e. Polarizations and relative 
intensities of the emission induced by a 
Tlu(cr) distortion, b Tlu(rc) distortion, e 
T2u(~) distortion in trigonal symmetry. 
The letters X Y, and Z represent the X 
Y, and Z components of polarization 
in trigonal symmetry. The numbers 
in parentheses represent the relative 
intensity 



130 

_ 1  
excited state, ([0), le)) and +~-~ (10) + i  [e)) corresponding 

to tetragonal or trigonal symmetry, respectively. 

M. Yamaga et al. 

1 " 2 and the transitions of (0[ O I)~0) and (el O [Z0} are 
still forbidden. 

Tetragonal Symmetry. As shown in Table 1, the intrin- 
sic static crystal field has only the z-component of Tlu, 
V(Azu(Tlu)), in tetragonal symmetry. Although the odd- 
parity wavefunctions induced by T2u(n) dynamic distor- 
tion has different phase from those induced by Tlu(n), 
the transition probabilities and polarizations produced 
by Tlu(rC) and Tzu(~) are the same. Therefore, only the 
relative values of the matrix elements (Z[ D ] i)  (Z = 0, e, 
and )( = 4, t/, () produced by Tlu(n) and Tlu(n) odd- 
parity distortions in the tetragonal symmetry are cal- 
culated using Table 2. For example, the matrix element 
(0h D [~) produced by the y component of Tlu(O') in (15) 
is given by 

(01D ]~) = ~(01D Iru~) + B(r' 'l D 13} 

= ~ ( 0 1 0  Ic(Z2 + z5)) 
+ [3(-a($2 - $5) ÷ b(Y2 -I- Ys)l D 1~). (16) 

The first and second terms, respectively, correspond to 
the transitions between the even-MOs of the central d- 
orbital and ligand orbitals in Eg and the odd-MOs of 
ligand p-orbitals in T2g and between the odd-MOs of 
ligand s- and p-orbitals in Eg and the even-MOs of the 
central d-orbitals and ligand p-orbitals in T2g. The values 
of the two terms are different, but both are non-zero for 
Dllz. Then, the emission due to the transition from 10) 
to [~) induced by the y component of Tlu(a) distortion 
is polarized along the z direction. The relative intensities 
and polarizations of the emission produced by Tlu(a) 
and Tlu(~) distortions are shown in Fig. 4a, b. 

The z-component of rlu(a) distortion does not allow 
the transition (0l D ]0), (el D [0} and (el D I +-- 1), whereas 
the z-component of Tlu(n) allows the transitions (01D l-t- 
1) and (el D I +-- 1): the transitions (0l D 10} and (el D 10) 
are still forbidden. The remarkably different point be- 
tween Tlu(a) and Tlu(n) is that transitions (el D [___ 1) are 
still forbidden for both x and y components of Tlu(n) 
distortion. 

Trigonal Symmetry. The symmetry of the ground state of 
Ti 3+ in A1203 is trigonal [13]. However, the symmetry of 
the excited state which is determined by the competition 
of the static trigonal crystal field and Jahn-Teller effect 
has not been established experimentally. First, the matrix 
elements of the transitions (OI D [)~i) and (el D Iz~) (i = 
_+, 0), respectively, are calculated in the same way as for 
tetragonal symmetry. If  the symmetry of the excited state 
is trigonal, the transition probabilities are changed to 
[(u+[ D ]Zi)l 2 (i = ±, 0) which is given by the average of 
I(0[ D IZi)[ 2 and [(el D 1)~i)[2. The transition probabilities, 
I(0[ D [)~_+)12, are also given by the average of I(01D I~/x}l 2 
and I(OID 1~/v )12. The relative intensities and polarizations 
of the emission induced by Tlu(a), Tlu(TC) and Tzu(rC) 
distortions are shown in Fig. 5a-c. The selection rule 
derived from the Z-component of the T2u(rc) distortion 
in the trigonal symmetry is that the polarization of the 
transitions (01D I)~+) and (el D IX_+) are Ix  : !Y : Iz  = 1 : 

5. Conclusions 

We have discussed the radiative transitions of Ti 3+ in 
static axial crystal field in terms of the wavefunctions of 
the ground and excited states. These wavefunctions are 
represented by the eigenfunctions of the vibronic Hamil- 
tonian including intrinsic static crystal field, spin-orbit 
interaction and electron-phonon interaction. The radia- 
tive decay occurs through mixing of odd-parity wave- 
functions into the even-parity ground and excited states 
by odd-parity perturbations of Tlu and T2u. The relative 
intensities and polarizations of Ti 3+ emission in tetrago- 
nal and trigonal symmetries have been calculated using 
the odd-parity wavefunctions. 

The zero-phonon line emission is allowed by the in- 
trinsic static crystal field and the static distortion, whereas 
the braod-band is allowed by the intrinsic static crystal 
field and both static and dynamic distortions. As the tran- 
sition due to the dynamic distortion is associated with 
odd-parity phonon emission or absorption, which static 
or dynamic distortion contributes to the broad-band tran- 
sitions is determined by the temperature dependence of 
the fluorescence lifetime and total intensity of the broad- 
band. In subsequent papers, the polarizations of emission 
spectra of Ti 3+ doped YAP, YAG, and A1203 observed at 
10 K [26] and the temperature dependence of the fluores- 
cence lifetime and total intensity of the broad bands of 
Ti 3+ in these crystals [27] will be reported and compared 
with the results obtained in this paper. 
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